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Abstract. Peer-to-peer (P2P) computing offers new opportunities for building 
highly distributed data systems. Unlike client-server computing, P2P is a very 
dynamic environment where peers can join and leave the network at any time 
and offers important advantages such as operation without central coordination, 
peers autonomy, and scale up to large number of peers. However, providing 
high-level data management services (schema, queries, replication, availability, 
etc.) in a P2P system implies revisiting distributed database technology in major 
ways. In this paper, we present APPA (Atlas Peer-to-Peer Architecture) and its 
high-level data management services. APPA has a network-independent 
architecture that can be implemented over various structured and super-peer 
P2P networks. It uses novel solutions for persistent data management with 
updates, data replication with semantic-based reconciliation and query 
processing. APPA’s services are implemented using the JXTA framework. 

1. Introduction 

Data management in distributed systems has been traditionally achieved by 
distributed database systems [16] which enable users to transparently access and 
update several databases in a network using a high-level query language (e.g. SQL). 
Transparency is achieved through a global schema which hides the local databases’ 
heterogeneity. In its simplest form, a distributed database system is a centralized 
server that supports a global schema and implements distributed database techniques 
(query processing, transaction management, consistency management, etc.). This 
approach has proved effective for applications that can benefit from centralized 
control and full-fledge database capabilities, e.g. information systems. However, it 
cannot scale up to more than tens of databases. Data integration systems [21][23] 
extend the distributed database approach to access data sources on the Internet with a 
simpler query language in read-only mode. Parallel database systems [24] also extend 
the distributed database approach to improve performance (transaction throughput or 
query response time) by exploiting database partitioning using a multiprocessor or 
cluster system. Although data integration systems and parallel database systems can 
scale up to hundreds of data sources or database partitions, they still rely on a 
centralized global schema and strong assumptions about the network. 
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In contrast, peer-to-peer (P2P) systems adopt a completely decentralized approach 
to data sharing. By distributing data storage and processing across autonomous peers 
in the network, they can scale without the need for powerful servers. Popular 
examples of P2P systems such as Gnutella [7] and Freenet [6] have millions of users 
sharing petabytes of data over the Internet. Although very useful, these systems are 
quite simple (e.g. file sharing), support limited functions (e.g. keyword search) and 
use simple techniques (e.g. resource location by flooding) which have performance 
problems. To deal with the dynamic behavior of peers that can join and leave the 
system at any time, they rely on the fact that popular data get massively duplicated. 

Initial research on P2P systems has focused on improving the performance of 
query routing in the unstructured systems which rely on flooding. This work led to 
structured solutions based on distributed hash tables (DHT), e.g. CAN [18] and Chord 
[20], or hybrid solutions with super-peers that index subsets of peers [15]. Although 
these designs can give better performance guarantees, more research is needed to 
understand their trade-offs between fault-tolerance, scalability, self-organization, etc.  

Recently, other work has concentrated on supporting advanced applications which 
must deal with semantically rich data (e.g. XML documents, relational tables, etc.) 
using a high-level SQL-like query language, e.g. ActiveXML [1], Edutella [15], 
Piazza [22], PIER [9]. As a potential example of advanced application that can benefit 
from a P2P system, consider the cooperation of scientists who are willing to share 
their private data (and programs) for the duration of a given experiment. For instance, 
medical doctors in a hospital may want to share some patient data for an 
epidemiological study. Medical doctors may have their own, independent data 
descriptions for patients and should be able to ask queries like “age and last weight of 
the male patients diagnosed with disease X between day1 and day2” over their own 
descriptions. 

Such data management in P2P systems is quite challenging because of the scale of 
the network and the autonomy and unreliable nature of peers. Most techniques 
designed for distributed database systems which statically exploit schema and 
network information no longer apply. New techniques are needed which should be 
decentralized, dynamic and self-adaptive. 

In this paper, we present high-level data management services in APPA (Atlas 
Peer-to-Peer Architecture), a P2P data management system which we are building. 
The main objectives of APPA are scalability, availability and performance for 
advanced applications [2]. APPA has a network-independent architecture that can be 
implemented over various structured and super-peer P2P networks. This allows us to 
exploit continuing progress in such systems. To deal with semantically rich data, 
APPA supports decentralized schema management and uses novel solutions for 
persistent data management with updates, data replication with semantic-based 
reconciliation and query processing. APPA’s services are implemented using the 
JXTA framework [10]. 

The rest of the paper is organized as follows. Section 2 describes the APPA 
architecture. Section 3 introduces the APPA’s solution to persistent data management 
and support for updates. Section 4 describes its solution to high level data replication 
and distributed semantic reconciliation. Section 5 introduces the query processing 
strategy in APPA. Section 6 concludes. 



2. APPA Architecture 

APPA has a layered service-based architecture. Besides the traditional advantages of 
using services (encapsulation, reuse, portability, etc.), this enables APPA to be 
network-independent so it can be implemented over different structured (e.g. DHT) 
and super-peer P2P networks.  The main reason for this choice is to be able to exploit 
rapid and continuing progress in P2P networks. Another reason is that it is unlikely 
that a single P2P network design will be able to address the specific requirements of 
many different applications. Obviously, different implementations will yield different 
trade-offs between performance, fault-tolerance, scalability, quality of service, etc. 
For instance, fault-tolerance can be higher in DHTs because no peer is a single point 
of failure. On the other hand, through index servers, super-peer systems enable more 
efficient query processing. Furthermore, different P2P networks could be combined in 
order to exploit their relative advantages, e.g. DHT for key-based search and super-
peer for more complex searching. 

There are three layers of services in APPA: P2P network, basic services and 
advanced services. 

P2P network. This layer provides network independence with services that are 
common to different P2P networks: 
• Peer id assignment: assigns a unique id to a peer using a specific method, e.g. a 

combination of super-peer id and counter in a super-peer network. 
• Peer linking: links a peer to some other peers, e.g. by locating a zone in CAN. 
• Key-based storage and retrieval (KSR):  stores and retrieves a (key, data) pair in 

the P2P network, e.g. through hashing over all peers in DHT networks or using 
super-peers in super-peer networks. An important aspect of KSR is that it allows 
managing data using object semantics (i.e. with KSR it is possible to get and set 
specific data attributes). 

• Key-based timestamping (KTS): generates monotonically increasing timestamps 
which are used for ordering the events occurred in the P2P system. This service is 
useful to improve data availability. 

• Peer communication: enables peers to exchange messages (i.e. service calls). 
Basic services. This layer provides elementary services for the advanced services 

using the P2P network layer: 
• Persistent data management (PDM): provides high availability for the (key, 

data) pairs which are stored in the P2P network. 
• Peer management: provides support for peer joining, rejoining and for updating 

peer address (the peer ID is permanent but its address may be changed). 
• Group membership management: allows peers to join an abstract group, become 

members of the group and send and receive membership notifications. This is 
similar to group communication [4][5]. 
Advanced services. This layer provides advanced services for semantically rich 

data sharing including schema management, replication [13][14], query processing 
[3], security, etc. using the basic services. 



3. Persistent Data Management 

One of the main characteristics of P2P systems is the dynamic behavior of peers 
which can join and leave the system frequently, at anytime. When a peer gets offline, 
the data it stores becomes unavailable. To improve data persistence, we can rely on 
data replication by storing (k, data) pairs at several peers. If one peer is unavailable, 
the data can still be retrieved from the other peers that hold a replica. However, the 
mutual consistency of the replicas after updates can be compromised as a result of 
peers leaving the network or concurrent updates. Therefore, some of the replicas may 
not be current, i.e. they do not reflect the latest data stored with k in the P2P network. 
For some applications (e.g. agenda management, bulletin boards, cooperative auction 
management, reservation management, etc.) having the ability to get a current replica 
is very important. 

In APPA, the PDM service provides data persistence through replication by using 
multiple hash functions. It also addresses efficiently the problem of retrieving current 
replicas based on timestamping. For doing its tasks, PDM takes advantage of KSR 
and KTS which are two services in the APPA’s P2P network layer. 

In this section, we first discuss how PDM provides data persistence, then we 
introduce the concept of timestamping, and finally we present the update operations 
which are the main operations of the PDM service. 

3.1 Data Persistence Using Multiple Hash Functions 

In APPA, the KSR service maps a key k to a peer p using a hash function h. We call p 
the responsible for k wrt. h, and denote it by rsp(k, h). A peer may be responsible for 
k wrt. a hash function h1 but not responsible for k wrt. another hash function h2. There 
is a set of hash functions H which can be used for mapping the keys to peers. The 
KSR service has an operation puth(k, data) that, given a hash function h∈H, a data 
item data and its associated key k, stores the pair (k, data) at rsp(k,h). This operation 
can be issued concurrently by several peers. There is another operation geth(k) that 
retrieves the data associated with k stored at rsp(k,h). 

To improve data persistence, PDM stores each data and its associated key at 
several peers using a set of hash functions Hr⊂H. the set Hr is called the set of 
replication hash functions.  The number of replication hash functions, i.e. ⎪Hr⎪, can 
be different for different P2P networks. For instance, in a P2P network with low 
peer’s availability, data availability can be increased using a high value of ⎪Hr⎪ (e.g. 
20). 

Over time, some of the replicas stored with k at some peers may get stale, e.g. due 
to the absence of some peers at update time. To be able to return current replicas, 
before storing a data, PDM “stamps” it with a logical timestamp which is generated 
by KTS. Therefore, given a data item data and its associated key k, ∀h∈Hr, PDM 
replicates the pair (k, {data, timestamp}) at rsp(k,h). Upon a request for the data 
associated with a key, PDM returns one of the replicas which are stamped with the 
latest timestamp. 



3.2 Timestamping 

To generate timestamps, APPA uses KTS which is a distributed service. The main 
operation of KTS is gen_ts(k) which, given a key k, generates a real number as a 
timestamp for k. The timestamps generated by KTS have the monotonicity property, 
i.e. two timestamps generated for the same key are monotonically increasing. In other 
words, for any two timestamps ts1 and ts2 generated for a key k respectively at times t1 
and t2, if t1< t2 then we have ts1< ts2. This property permits us to order the timestamps 
generated for the same key according to the time at which they have been generated. 

KTS generates the timestamps in a completely distributed fashion, using local 
logical counters. At anytime, it generates at most one timestamp for a key k. Thus, 
regarding the monotonicity property, there is a total order on the set of timestamps 
generated for the same key. However, there is no total order on the timestamps 
generated for different keys. In addition to gen_ts, KTS has another operation denoted 
by last_ts(k) which, given a key k, returns the last timestamp generated for k by KTS.  

The idea of timestamping by KTS is like the idea of data storage in DHTs which is 
based on having a responsible for storing each data and determining the responsible 
dynamically using a hash function. In KTS, for each key we have a responsible of 
timestamping which is determined dynamically using a hash function. Due to space 
limitations, we don not describe the details of KTS. 

3.3 Update Operations 

The main operations of the PDM service are insert and retrieve operations. The detail 
of these operations is as follows. 

Insert(k, data): replicates a data and its associated key in the P2P network as 
follows. First, it uses KTS to generate a timestamp for k, e.g. ts. Then, for each h∈Hr 
it stores the pair (k, {data, ts}) at the peer that is rsp(k,h). When a peer p, which is 
responsible for k wrt. one of the hash functions involved in Hr, receives the pair (k, 
{data, ts}), it compares ts with the timestamp, say ts0, of its data (if any) associated 
with k. If ts>ts0, p overwrites its data and timestamp with the new ones. Recall that, at 
anytime, KTS.gen_ts (k) generates at most one timestamp for k, and different 
timestamps for k have the monotonicity property. Thus, in the case of concurrent calls 
to insert(k, data), i.e. from different peers, only the one that obtains the latest 
timestamp will succeed to store its data in the P2P network. 

Retrieve(k): retrieves the most recent replica associated with k in the P2P network 
as follows. First, it uses KTS to determine the latest timestamp generated for k, e.g. 
ts1. Then, for each hash function h∈Hr, it uses the KSR operation geth(k) to retrieve 
the pair {data, timestamp} stored along with k at rsp(k,h). If timestamp is equal to ts1, 
then the data is a current replica which is returned as output and the operation ends. 
Otherwise, the retrieval process continues while saving in datamr the most recent 
replica. If no replica with a timestamp equal to ts1 is found (i.e. no current replica is 
found) then the operation returns the most recent replica available, i.e. datamr. 



4. Data Replication 

Data replication is largely used to improve data availability and performance in 
distributed systems. In APPA, PDM is a low-level service that employs data 
replication to improve the availability of pairs (key, data) stored in the P2P network. 
For solving update conflicts by taking into account application semantics, APPA 
provides a higher-level replication service. This service is an optimistic solution [19] 
that allows the asynchronous updating of replicas such that applications can progress 
even though some nodes are disconnected or have failed. As a result, users can 
collaborate asynchronously. However, concurrent updates may cause replica 
divergence and conflicts, which should be reconciled. 

In this section, we present the DSR algorithm (Distributed Semantic 
Reconciliation) [13][14], a dynamic distributed version of the semantic reconciliation 
provided by IceCube [11][17]. Unlike IceCube, DSR is based on a distributed and 
parallel approach. With DSR, a subset of nodes, called reconcilers, are selected to 
concurrently reconcile conflicting updates. DSR works properly over cluster systems 
and grid architectures (e.g. we have implemented a DSR prototype [13] and validated 
this prototype on the cluster of the Paris team at INRIA [8]); however, our research is 
focused on P2P systems. We now describe the main terms and assumptions we 
consider for DSR followed by the main DSR algorithm itself.  

We assume that DSR is used in the context of a virtual community which requires 
a high level of collaboration and relies on a reasonable number of nodes (typically 
hundreds or even thousands of interacting users) [25].  

In our solution, a replica R is a copy of a collection of objects (e.g. copy of a 
relational table, or an XML document). A replica item is an object belonging to a 
replica (e.g. a tuple in a relational table, or an element in an XML document). We 
assume multi-master replication, i.e. a replica R is stored in several nodes and all 
nodes may read or write R. Conflicting updates are expected, but with low frequency. 

In order to update replicas, nodes produce tentative actions (henceforth actions) 
that are executed only if they conform to the application semantics. An action is 
defined by the application programmer and represents an application-specific 
operation (e.g. a write operation on a file or document, or a database transaction). The 
application semantics is described by means of constraints between actions. A 
constraint is the formal representation of an application invariant (e.g. an update 
cannot follow a delete).  

On the one hand, users and applications can create constraints between actions to 
make their intents explicit (they are called user-defined constraints). On the other 
hand, the reconciler node identifies conflicting actions, and asks the application if 
these actions may be executed together in any order (commutative actions) or if they 
are mutually dependent. New constraints are created to represent semantic 
dependencies between conflicting actions (they are called system-defined constraints). 
Details about the language used to express constraints can be found in [17]. 

A cluster is set of actions related by constraints, and a schedule is a set of ordered 
actions that do not violate constraints. 

With DSR, data replication proceeds basically as follows. First, nodes execute 
local actions to update replicas while respecting user-defined constraints. Then, these 
actions (with the associated constraints) are stored in the P2P network using the PDM 



service. Finally, reconciler nodes retrieve actions and constraints from the P2P 
network and produce a global schedule, by performing conflict resolution in 5 
distributed steps based on the application semantics. This schedule is locally executed 
at every node, thereby assuring eventual consistency [17]. The replicated data is 
eventually consistent if, when all nodes stop the production of new actions, all nodes 
will eventually reach the same value in their local replicas. 

In order to avoid communication overhead and due to dynamic connections and 
disconnections, we distinguish replica nodes, which are the nodes that hold replicas, 
from reconciler nodes, which is a subset of the replica nodes that participate in 
distributed reconciliation.  

We now present DSR in more details. We first introduce the reconciliation objects 
necessary to DSR. Then, we present the five steps of the DSR algorithm. Finally, we 
describe how DSR deals with dynamic connections and disconnections. 

4.1 Reconciliation Objects 

Data managed by DSR during reconciliation are held by reconciliation objects that 
are stored in the P2P network giving the object identifier. To enable the storage and 
retrieval of reconciliation objects, each reconciliation object has a unique identifier. 
DSR uses five reconciliation objects: 
• Action log R (noted LR): it holds all actions that try to update the replica R.  
• Action groups of R (noted GR): actions that manage a common replica item are 

put together into the same action group in order to enable the parallel checking of 
semantic conflicts among actions (each action group can be checked independently 
of the others); every replica R may have a set of action groups, which are stored in 
the action groups of R reconciliation object.  

• Clusters set (noted CS): all clusters produced during reconciliation are included in 
the clusters set reconciliation object; a cluster is not associated with a replica.  

• Action summary (noted AS): it comprises constraints and action memberships (an 
action is a member of one or more clusters).  

• Schedule (noted S): it contains a set of ordered actions. 
The node that holds a reconciliation object is called the provider node for that 

object (e.g. schedule provider is the node that currently holds S). 

4.2 DSR Algorithm 

DSR executes reconciliation in 5 distributed steps as showed in Figure 1. 
• Step 1 – actions grouping: for each replica R, reconcilers put actions that try to 

update common replica items of R into the same group, thereby producing GR.  
• Step 2 – clusters creation: reconcilers split action groups into clusters of 

semantically dependent conflicting actions (two actions a1 and a2 are semantically 
independent if the application judge safe to execute them together, in any order, 
even if a1 and a2 update a common replica item; otherwise, a1 and a2 are 
semantically dependent). Clusters produced in this step are stored in the clusters 
set, and the associated action memberships are included in the action summary.  
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Fig. 1. DSR Steps 

• Step 3 – clusters extension: user-defined constraints are not taken into account in 
clusters creation. Thus, in this step, reconcilers extend clusters by adding to them 
new conflicting actions, according to user-defined constraints. The associated 
action memberships are also included in the action summary.  

• Step 4 – clusters integration: clusters extensions lead to the overlap of clusters’ 
actions (an overlap occurs when different clusters have common actions, and this is 
identified by analyzing action memberships). In this step, reconcilers bring 
together overlapping clusters, thereby producing integrated clusters.  

• Step 5 – clusters ordering: in this step, reconcilers produce the global schedule by 
ordering actions of integrated clusters; all replica nodes execute this schedule. 
At every step, the DSR algorithm takes advantage of data parallelism, i.e. several 

nodes perform simultaneously independent activities on a distinct subset of actions 
(e.g. ordering of different clusters). No centralized criterion is applied to partition 
actions. In fact, whenever a set of reconciler nodes request data to a provider, the 
provider node naively supplies reconcilers with about the same amount of data (the 
provider node knows the maximal number of reconcilers because it receives this 
information from the node that launches reconciliation). 

DSR avoids network overhead by minimizing the number of exchanged messages 
and the amount of transferred data. The number of messages is linear wrt. the number 
of reconcilers, and the number of reconcilers is not large. Concerning data transfer, 
most of messages carry only data identifiers (e.g. actions’ identifiers) instead of the 
entire data items. 

4.3 Managing Dynamic Disconnections and Reconnections 

Whenever distributed reconciliation takes place, a set of nodes Nd may be 
disconnected. As a result, the global schedule is not applied by nodes of Nd. 
Moreover, actions produced by Nd nodes and not yet stored in the P2P network via 
APPA PDM service are not reconciled. In order to assure eventual consistency despite 
disconnections, the APPA replication service proceeds as follows. Each node locally 
stores the identifier of the last schedule it has locally executed (noted Slast). In 
addition, the replication service stores in the P2P network (using the APPA PDM 
service) a chronological sequence of schedules’ identifiers produced by 
reconciliations, which is called schedule history and noted H = (Sid1, Sid2, …, Sidn). As 
any reconciliation object, the schedule history has a unique identifier. The application 
knows this identifier and can provide it to the reconciler nodes. When a node n of Nd 
reconnects, it proceeds as follows: (1) n checks whether Slast is equal to Sidn, and, if not 
(i.e. n’s replicas are out of date), n locally applies all schedules that follow Slast in the 
H history; (2) actions locally produced by n and not yet stored in the P2P network 



using the APPA PDM service are put into the involved action logs for later 
reconciliation. 

At the beginning of reconciliation, a set of connected replica nodes must be 
allocated to proceed as reconciler nodes. To minimize reconciliation time, such 
allocation should be dynamic, i.e. nodes should be allocated based on the 
reconciliation context (e.g. number of actions, number of replicas, network properties, 
etc.). Currently, we are elaborating a cost model and the associated algorithms for 
allocating reconciler nodes based on communication costs. These algorithms take into 
account cost changes due to dynamic disconnections and reconnections. 

5. Query Processing 

Query processing in APPA deals with schema-based queries and considers data 
replication. In this section, we first present schema mapping in APPA, and then we 
describe the main phases of query processing. 

5.1 Schema Mapping 

In order to support schema-based queries, APPA must deal with heterogeneous 
schema management. In a P2P system, peers should be able to express queries over 
their own schema without relying on a centralized global schema as in data 
integration systems [21]. Several solutions have been proposed to support 
decentralized schema mapping, e.g. [15][22]. For instance, Piazza [22] proposes a 
general, network-independent, solution that supports a graph of pair-wise mappings 
between heterogeneous schema peers. APPA uses a simpler solution that takes 
advantage of the collaborative nature of the applications. It assumes that peers that 
wish to cooperate, e.g. for the duration of an experiment, agree on a Common Schema 
Description (CSD). Given a CSD, a peer schema can be specified using views. This is 
similar to the local-as-view approach in data integration [12] except that, in APPA, 
queries at a peer are expressed against the views, not the CSD. 

When a peer decides to share data, it needs to define a peer schema, only once, to 
map its local schema to the CSD. To simplify the discussion, we use the relational 
model (APPA uses XML) and the Datalog-like notation of [21] for mapping rules. 
Thus, a peer schema includes peer mappings, one per local relation. Given 2 CSD 
relation definitions r1 and r2, an example of peer mapping at peer p is: 

p:r(A,B,D) ⊆ csd:r1(A,B,C), csd:r2(C,D,E) 
In APPA, mapped schemas are stored in the P2P network using the PDM service. 

5.2 Query Processing Phases 

Given a user query on a peer schema, the objective is to find the minimum set of 
relevant peers (query matching), route the query to these peers (query routing), collect 
the answers and return a (ranked) list of answers to the user. Since the relevant peers 
may be disconnected, the returned answers may be incomplete. 



Query processing proceeds in four main phases: (1) query reformulation, (2) query 
matching, (3) query optimization and (4) query decomposition and execution.  

Query reformulation. The user query (on the peer schema) is rewritten in a query 
on CSD relations. This is similar to query modification using views. For instance, the 
following query at peer p: 

select A,D from r where B=b 
would be rewritten on the CSD relations as: 
select A,D from r1,r2 where B=b and r1.C=r2.C 
Query matching. Given a reformulated query Q, it finds all the peers that have 

data relevant to the query. For simplicity, we assume conjunctive queries. Let P be the 
set of peers in the P2P system, the problem is to find P’⊆ P where each p in P’ has 
relevant data, i.e. refers to relations of Q in its mapped schema. These peers can be 
iteratively (for each Q’s relation) retrieved using the PDM service. Let R be the set of 
relations involved in Q, and ms(p,r) denote that the mapped schema of peer p involves 
relation r, query matching produces: 

P’= { p | (p∈P) ∧  (∃ r∈R ∧ ms(p,r)) } 
Query optimization. Because of data replication, each relevant data may be 

replicated at some peers in P’. The optimization objective is to minimize the cost of 
query processing by selecting best candidate peer(s) for each relevant data based on a 
cost function. Selecting more than one candidate peer is necessary in a very dynamic 
environment since some candidate peers may have left the network. Thus, selecting 
several candidate peers increases the answer’s completeness but at the expense of 
redundant work. This step produces a set P”⊆ P’ of best peers. 

 

 
Fig. 2. Example of parallel execution using intermediate peers. This strategy exhibits 
independent parallelism between peers 1-4 (the select (σ) operations can all be done in parallel) 
and peers 5-6 (the union operations can be done in parallel). It can also yield pipelined 
parallelism. For instance, if the left-hand operand of an intermediate peer is smaller than the 
right-hand operand, then it would be entirely transferred first so the other operand could be 
pipelined thus yielding parallelism between peers 2-5-q and peers 4-6-q. Parallel execution 
strategies improve both the query response time and the global efficiency of the P2P system. 

Query decomposition and execution. This phase is similar to that in data 
integration systems and APPA reuses well-known, yet sophisticated techniques. Since 
some peers in P” may have only subsets of Q’s relations, query decomposition 
produces a number of subqueries (not necessarily different), one for each peer, 
together with a composition query to integrate, e.g. through join and union operations, 



the intermediate results [12]. Finally, the subqueries are sent to the peers in P”, which 
reformulate it on their local schema (using the peer mappings), execute it, and send 
the results back to the sending peer, who integrates the results. Result composition 
can also exploit parallelism using intermediate peers. For instance, let us consider 
relations r1 and r2 defined over CSD r and relations s1 and s2 defined over CSD s, 
each stored at a different peer, and the query select * from r, s where r.a=s.a and 
r.b=2 and s.c=5 issued by a peer q. A parallel execution strategy for Q is shown in 
Figure 2. 

6. Conclusion 

In this paper, we presented APPA (Atlas Peer-to-Peer Architecture), a P2P data 
management system for supporting advanced applications which must deal with 
semantically rich data (e.g. XML documents, relational tables, etc.). Such applications 
typically have a collaborative nature as in distributed scientific experimentation where 
scientists wish to share data and programs. 

APPA has a network-independent architecture that can be implemented over 
various structured and super-peer P2P networks. It provides network services (peer id 
assignment, peer linking, peer communication, key-based storage and retrieval, etc.), 
basic services (persistent data management, peer management, group membership) 
and advanced services such as schema management, replication and query processing. 
The main advantage of such architecture is to be able to exploit rapid and continuing 
progress in P2P networks.  

APPA uses novel solutions for persistent data management, data replication and 
query processing. APPA provides data persistence with high availability through 
replication by using multiple hash functions. It also addresses efficiently the problem 
of retrieving current replicas based on timestamping. APPA also provides a higher-
level replication service with multi-master replication. This service enables 
asynchronous collaboration among users. In order to resolve conflicting updates, we 
use a distributed semantic-based reconciliation algorithm which exploits parallelism. 
Query processing in APPA deals with schema-based queries and considers data 
replication. The main phases of query processing are query reformulation on a 
common schema description, query matching to find relevant peers, query 
optimization to select best peers, and query decomposition and execution.  

We have started the implementation of APPA using the JXTA framework [10]. 
APPA’s advanced services are provided as JXTA community services. Only the P2P 
network layer of the APPA implementation depends on the JXTA platform. Thus, 
APPA is portable and can be used over other platforms by replacing the services of 
the P2P network layer. We validated some of the APPA’s services on the cluster of 
Paris team at INRIA [8], which has 64 nodes. Additionally, in order to study the 
scalability of these services with larger numbers of nodes, we implemented 
simulators. The current version of the APPA prototype and its service simulators 
manage data using a Chord DHT. Experimental results showed that simulators are 
well calibrated and the implemented services have good performance and scale up. 
Details about APPA implementation can be found in [2]. 
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