Semantic-based Service trading: Application to
Linear Algebra***

Michel Daydé, Aurélie Hurault, Marc Pantel

IRIT - ENSEEIHT, 2 rue Camichel, B.P. 7122, F-31071 TOULOUSE CEDEX 7
{Aurelie. Hurault,Marc.Pantel } @enseeiht.fr

Abstract. One of the great benefit of computational grids is to provide
access to a wide range of scientific software and computers with different
architectures. It is then possible to use a variety of tools for solving the
same problem and even to combine these tools in order to obtain the
best solution technique.

Grid service trading (searching for the best combination of software and
execution platform according to the user requirements) is thus a crucial
issue. Trading relies both on the description of available services and
computers, on the current state of the grid, and on the user requirements.
Given the large amount of services available on the Grid, this description
cannot be reduced to a simple service name.

We present in this paper a more sophisticated service description similar
to algebraic data type. We then illustrate how it can be used to determine
the combinations of services that answer a user request. As a side effect,
users do not make direct explicit calls to grid-services but talk to a more
applicative-domain specific service trader.

We illustrate this approach and its possible limitations within the frame-
work of dense linear algebra. More precisely we focus on Level 3 BLAS
([DDDH90a,DDDH90b]) and LAPACK ([ABB199)]) type of basic oper-
ations.

1 Introduction

Given all the services deployed on a grid, finding the most appropriate service or
composition of services which are able to fulfill a user request is quite challenging
and requires more than the knowledge of the service’s signatures.

We introduce here an approach that consists in adding additional semantic
information to the services in order to reduce ambiguity in their description and
allow to find the services or combination of services that provide good answers
to a user request using equational unification to identify all the possible choices.
As a benefit, users do not need to make explicit call to specific services over
the grid (such as some GridRPC call for example). The user does not need to

* This work has been partially supported by the French Ministery of Research throught
the GRID-TLSE Project from ACI «Globalisation des Ressources Informatiques et
des Données»

** Candidate to the Best Student Paper Award

know the exact name of the service he is looking for, he just has to describe the
mathematical operation he wants to compute in a given applicative domain. Our
service trader finds the appropriate service or combination of services (eventually
it can provide the user a list of possible choices and ask him to choose the best
one given the mathematical operation and not the library name). The interaction
with the middleware can then be hidden behind a domain specific interface.

We take examples from dense linear algebra for the sake of simplicity, but
this approach can be extended to other areas since the algorithm is generic and
parameterized by the description of the application domain.

2 Problem description

A key issue in advanced trading of services is the choice of a description formalism
for the available services. The comparison between the available services and the
user’s requests depends on the formalism chosen for this description.

2.1 Different approaches

The simplest description used in most SOA (Service Oriented Architecture) such
as RPC, CORBA, COM, DCOM, RMI makes only use of the service signatures
(input and output types of parameters). This information has the advantage to
be easily available. But it is not sufficient for sophisticated trading, even if we use
type isomorphisms to remove the problems of parameter position. Indeed, with
such an approach there is no way to distinguish addition from multiplication as
both share the same signature.

We can add keywords or meta-data to the service signature (this is currently
the case in the GRID-TLSE project [PPA05,Pan04]). This formalism allows an
easy comparison of the services and the request. But this description requires
a preliminary agreement to define the keywords and their meaning, with all
the ambiguities implied by the natural language. Another disadvantage is the
difficulty to describe a complex service. How to describe without ambiguity and
with keywords some Level 3 BLAS procedures such as SGEM M expressed by
the following formula: a * A+xB 4+ 3% C ?

Another approach which extends keywords and metadata is based on ontolo-
gies such as OWL. The advantage of ontologies is the possibility to have a formal
description. It also provides the logic associated to reason about the descriptions.
The disadvantage is that we do not control this logic which can be undecidable.
The ontologies also need a preliminary agreement to define the keywords and
their meaning. In the case of ontologies, this preliminary agreement is formally
described thanks to relation between the different keywords, this is a main ad-
vantage over the previous approach. Moreover the definition of an ontology is
not trivial and hard to achieve for a non specialist.

In the Monet! and HELM? projects the description of the computational
services is based on MathML? and OpenMath* which provide an accurate de-
scription. But the comparison of services is based on RDF and ontologies which
did not allow easily to adapt and combine services during the trading.

We follow the same approach as the NASA Amphion project [SWL194] and
more particularly the theorem prover SNARK (independence of the application
domain, reasoning based on starting from a description of the domain). But,
this project relies on «term rewriting and the paramodulation rule for reasoning
about equality». This supposes that «a recursive path ordering is supplied when
the application domain theory is formulated». The last constraint require that
the user is familiar with complex rewriting technics. One of our main require-
ments is that the user should not need to know anything about the underlying
technologies.

We are looking for a simpler description, with the least possible ambiguities,
that can be specified by a specialist of a given domain without the help of a
specialist on ontologies or the use of complex knowledge in rewriting techniques.

For all theses reasons, we have opted for a description similar to algebraic
data types. The advantages of this description is the possibility of describing
without ambiguity both the services and the knowledge of the main properties
of the domain that are required for composing services to fulfill the user requests.

We describe in more details our semantic-based description of services in the
next section. The trading algorithm is described in Section 3. Examples and
possible limitations of this approach when looking for the best combination of
services are reported in Section 4. We finally conclude in Section 5.

2.2 An algebraic data type based description for advanced trading

As said before, the semantic used is similar to algebraic data type description
[GHT8]. Indeed the required information are:

— the types (or sorts) used;

— the main operators of the specific domain and their signatures (we allow
overloading);

— the operators properties (such as commutativity and associativity) and the
equations that link operators.

When considering dense linear algebra and basic operations such as BLAS
and LAPACK, we define:

— Types: Int, Real, Char, Matriz, ...
— Operators and their signatures:
e Addition of matrices: + : Matrix x Matriz — Matriz

! http://monet.nag.co.uk/cocoon/monet /index.html

? http://helm.cs.unibo.it/

3 http://www.w3.org/Math/

4 http://www.openmath.org/cocoon /openmath /index.html

Multiplication of a matrix by a scalar: * : Real x Matriz — Matriz
Matrix multiplication: % : Matrix x Matrix — Matrix

Transpose of a matrix: T : Matrixz — Matriz

Identity: I :— Matrix

Null matrix: O :— Matrixz

e ...

— Properties:

e Addition +: commutative and associative (can be expressed directly by
the corresponding equations)

e Multiplication x: associative (can be expressed directly by the corre-
sponding equations)

e Neutral element I: a : Matriz Ixa=a

e Absorbant element O: a : Matrix Ox*xa =0

o Distributivity */+:
a: Matrixz b: Matriz ¢ : Matriz a* (b+c¢) = (axb)+ (a*c)

o Distributivity */+:
a: Real b: Matrixz ¢ : Matriz ax* (b+c) = (a*xb)+ (ax*c)

The last two equations can be factorized by:
a: b: Matriz ¢c: Matriz ax (b+c¢) = (axb)+ (axc).
That means that the equation is valid for all the types of a for which a * (b+ ¢)
and (a * b) 4 (a * ¢) are well typed.

With this description, we can describe some of the Level 3 BLAS procedures
in a formalism very similar to the official BLAS specification [DDDH90a].
SGEM M performs one of the matrix-matrix operations:

C=axop(A)x*op(B)+5xC

where o and (3 are scalars, op(A) and op(B) are rectangular matrices of di-
mensions mxk and kxn, respectively, C is a m x n matrix, and op(A) is A or
AT,

In the trader, SGEM M will be described by an XML document whose mean-
ing is:

SGEMM (TRANSA :Char, TRANSB:Char, M:Int, N:Int, K:Int, ALPHA:Real,
A:Matrix, LDA:Int, B:Matrix, LDB:Int, BETA:Real, C:Matrix, LDC:Int)
C <- ALPHA * op(TRANSA,A) * op(TRANSB,B) + BETA * C

Among the equations of the domain, will be: op('n’;a) = a and
op('t';a) = a”.

However, this description is not rich enough for sophisticated trading in-
volving service combination. Some numerical properties of the matrix are very
important to select a suitable Level 3 BLAS procedure. For example when con-
sidering matrix-matrix multiplication, symmetry of one of the matrices involved

in the operation may lead to select SSY M M rather than SGEM M and sim-
ilarly when dealing with a triangular matrix that is supported by ST RM M.
To take into account these properties, subtypes have been introduced in the de-
scription. Some restrictions are required about the definitions of subtypes. The
relation on types must be a partial order relation (antisymmetric, transitive and
reflexive), and must verify some constraints expressed in [CGL92].

To the previous description, we add:

— Types:

e Invertible matrices: InvMatrix < Matrixz

e Symmetric matrices: SymetricMatrix < Matriz

e Triangular matrices: TriangularMatriz < Matriz

e Invertible triangular matrices:
InvTriangular Matriz < Triangular M atriz,
InvTriangular Matriz < InvMatrix

e ...

— Operators and their signatures (we can specify the conservation of a property
by an operator):
e Multiplication of a symmetric matrix by a scalar:
* 1 Real x SymetricM atriz — SymetricM atrixz
(the symmetric property is conserved)
Multiplication of a triangular matrix by a scalar:
* 1 Real x Triangular Matrix — Triangular M atriz
Multiplication of an invertible triangular matrix by a non-zero scalar:
* : NzReal x InvTriangularMatriz — InvIriangularMatriz
e Transpose of a triangular matrix:
T : Triangular Matrix — Triangular M atriz

In the examples, we give high level properties, but we can enrich the descrip-
tion to specify more precisely the matrix. The user which defines the application
domain chosses the level of granularity of the description. It is important to
notice that the impact of a more precise description is in relation with the new
equations that the new properties may imply. Adding types is not very costly
but it generally leads to introduce new equations which is more expensive.

We are now able to define all the services.

SSY M M performs one of the matrix-matrix operations:

C=axAxB+4(+C, or C=axBxA-+xC

where o and (3 are scalars, A is an m x m symmetric matrix (only the upper or
lower triangular part is used), B and C are m X n matrices.

In the trader SSY M M will be described by an XML document whose mean-
ing is:

SSYMM(SIDE:Char, UPLO:Char, M:Int, N:Int, ALPHA:Real, A:SymetricMatrix,
LDA:Int, B:Matrix, LDB:Int, BETA:Real, C:Matrix, LDC:Int)

IF SIDE=’1’ THEN C <- ALPHA * A * B + BETA * C

IF SIDE=’r’ THEN C <- ALPHA * B * A + BETA * C

In practice the description is not exactly this one to take into account the
UPLO parameter. This point will be discussed later.

ST RSM solves one of the matrix equations:
AsxX=axB, AT « X=0+B, XxA=axB, or X * AT =a+B

where « is a scalar, X and B are m x n matrices and A is a unit, or non-unit,
upper or lower triangular matrix. B is overwritten by X.

In the trader ST RS M will be described by an XML document whose meaning
is:

STRSM(SIDE:Char, UPLO:Char, TRANSA:Char, DIAG:Char, M:Int, N:Int,
ALPHA:Real, A:InvTriangularMatrix, LDA:Int, B:Matrix, LDB:Int)

IF SIDE=’1’ THEN B <- ALPHA * op(TRANS,A~{-1}) * B

IF SIDE=’r’ THEN B <- ALPHA x B * op(TRANS,A~{-1})

In practice the description is not exactly this one to take into account the U PLO
and DIAG parameters.

The matrix A is not necessary a triangular matrix, but can be considered as
a triangular matrix (UPLO indicates if it is a lower or upper triangular matrix
and DIAG if it is a unit matrix). This is the case when this matrix is used
to store two different triangular matrices (like after a LU factorization). This
problem needs more work to reach an acceptable treatment.

Currently, ST RSM is defined with A not necessary a triangular matrix, and
with operation done on the upper or lower part, but it is not a good solution
because the real problem is not STRSM but the object which represents
several objects. We must design a general solution for this problem instead
of the ad-hoc approach currently in use which have an impact on all the services.

These descriptions illustrate that we can manage parameters which are both
input and output. We can also specify the service in function of a given param-
eter.

We can now describe the services and the user’s request. OQur aim is to find
the services or the combination of services that satisfies the client’s request. For
doing so, we first compute all the available services and combination of available
services which answer the user request. Then, in a second step, we will chose the
«best» one, according to the user’s criteria. We may combine these two step for
a better effectiveness.

3 Computing the combination of services corresponding
to an user’s request.

To identify all the services and combinations of services that answer the user’s
problem, we compare the description of the user’s problem with the description
of all the services, taking into account the properties of the domain (here dense
linear algebra).

3.1 The trading algorithm

Our comparison of two descriptions is based on equational unification [BS01]
and in particular on the set of transformations of Gallier and Snyder which has
been proved to be sound and complete [GS89]. This system has been adapted
to add types and subtypes and also to improve the performance. The problems
introduced by the overloaded functions with subtyping are treated as in [CGL92].

To control the algorithm we use two parameters: the depth of combination al-
lowed and the number of equations applied. This second number is really critical
because our algorithm has an exponential complexity for this parameter. Further
improvements to our algorithm are required in the future to limit the complexity
of computing the combinations of services corresponding to a request. It may be
interesting to use ad-hoc treatments for properties such as commutativity, asso-
ciativity, distributivity, zero element, identity element, ... The general principle
of the algorithm is explained in details in [HP06].

3.2 Examples

We consider examples arising in dense linear algebra with a complete description
of this domain.

For all the following examples, the results given, are some among all the
results computed by the trader. The number of equations allowed and the depth
of combination given are the minimum ones. If more equations are allowed to be
applied and a bigger depth of combination is allowed, the number of results will
grow.

Ezxample 1 The available services are the ones from the Level 3 BLAS. The
request of the user is A : Matrix, B : Matriz, C : Matrix C =AxBxC.
One combination of services computed by the trader is:

Matrix p2=Any x1;
SGEMM(’n’,’n’,m?,n?,k?,1.,B,1da?,C,1db?,0.,p2,1dc?); \\p2<-B*C
Matrix pl=Any x1;
SGEMM(’n’,’n’,m?,n?,k?,1.,A,1da?,p2,1db?,0.,p1,1dc); \\pl<-A*p2
pl;

where Any 1 can be any matrix and the parameters following by a “?” are the
ones we cannot determine, they will be determined later on.

To find this solution, the trader must be run with more than 5 equations allowed
to be applied and a depth of combination allowed of at least 1.

Ezxample 2 Now, the available services are the ones from the Level 3 BLAS
and some from LAPACK [ABB199| (row interchanges SLASW P, the Cholesky
factorization SPOTRF and the LU factorization SGET RF’). The user wants to
solve the linear system with multiple right-hand side members Az = B (where
no property is known about A). One answer computed by the trader is:

InvMatrix p2=A;

Vector p6=ipiv?;

SGETRF (m?,n7,p2,1da?,p6,info?); \\p2<-fatorization LU of A (A= Px*Lx*U)
Matrix p5=B;

SLASWP(n?,p5,1da?,k17,k27,p6,incx?) ; \\pb<-row interchanges of B
Matrix p3=pb5;

STRSM(’1’,°1’,’n’ ,u?,m?,n7,1.,p2,1da?,p3,1db?); \\solve Lxx=pb; p3<-x;
Matrix pl=p3;

STRSM(’1’,’u’,’n’,u?,m?,n?,1.,p2,1da?,pl1,1db?); \\solve U*x=p3; pl<-x;
pl;

To find this solution, the trader must be run with more than 7 equations allowed
to be applied and a depth of combination allowed of at least 3.

Ezxample 8 The example in similar conditions as the previous one but now A is
a symmetric positive definite matrix.
The trader computes the following compositions of services:

SymDefPosMatrix p2=A:SymDefPosMatrix ;

Vector p6=ipiv?;

SGETRF (m?,n?,p2,1da?,p6,info?); \\ p2<-fatorization LU of A (A= PxLxU)
Matrix pb=B;

SLASWP(n?,p5,1da?,k17,k27,p6,incx?); \\ pb<-row interchanges of B

Matrix p3=pb5;

STRSM(’1’,°1’,’n’ ,diag?,m?,n7,1.,p2,1da?,p3,1db?); \\solve L*x=p5; p3<-x;
Matrix pl=p3;

STRSM(’1’,’u’,’n’ ,diag?,m?,n7,1.,p2,1da?,pl,1db?); \\solve U*x=p3; pl<-x;
pl;

To find this solution, the trader must be run with more than 7 equations allowed
to be applied and a depth of combination allowed of at least 3.

and

SymDefPosMatrix p2=A;
SPOTRF(’u’,p2,info); \\ p2<- Cholesky factorization of A (A=U{~T}*U)

Matrix p3=B;

STRSM(’1’,’u’,’t’ ,diag?,m?,n?,1.,p2,1da?,p3,1db?); \\solve U{"T}*x=B; p3<-x;
Matrix pl=p3;

STRSM(’1’,’u’,’n’ ,diag?,m?,n?,1.,p2,1da?,pl1,1db?); \\solve U*x=p3; pl<-x;
pl;

To find this solution, the trader must be run with more than 6 equations allowed

to be applied and a depth of combination allowed of at least 3.

and

SymDefPosMatrix p2=A;

SPOTRF(’1’,p2,info) ; \\p2<- Cholesky factorization of A (A=L*xL{"T})

Matrix p3=B;

STRSM(°’1’,’1’,’n’ ,diag?,m?,n?,1.,p2,1da?,p3,1db?); \\solve L*x=B; p3<-x;
Matrix pl=p3;

STRSM(°1’,°1?,°t’ ,diag?,m?,n7,1.,p2,1da?,p1,1db?); \\solve U{"T}*x=p3; pl<-x;
pl;

To find this solution, the trader must be run with more than 7 equations allowed

to be applied and a depth of combination allowed of at least 3.

The first solution is the same as in the general case for A (i.e. A general
square). The other uses the fact that A is positive definite and replaces the LU
factorization by a Cholesky factorization which is a better solution.

Ezxample 4 The example in similar conditions as the previous ones but now A
is an invertible upper triangular matrix.
The following solution is found:

Matrix p1=B;

STRSM(’1’,’u’,’n’ ,diag?,m?,n7,1.,A,1da?,p1,1db?); \\solve A*x=B; pl<-x;
pl;

To find this solution, the trader must be run with more than one equation allowed

to be applied and any depth of combination (since no combination is needed).

These examples illustrate the fact that the trader look for several solutions
taking into account the properties of the domain and of the parameters. All the
solutions do not have the same quality, a choice must be made among these
solutions.

4 Choosing the solution to be run

The trading algorithm finds all the suitable solutions within given depth and
number of equations applied. We still have to select the one that will be executed.
Among the set of solutions produced, only the most relevant ones are kept. When
this first choice is made, we will interact with a grid middleware to finally select
the one to execute.

4.1 Discarding solutions without interest

When looking for a solution, we compare the request with all the services. For a
given service, we may find a solution that is a combination of services involving
subproblems to be solved. In this case, we run again the algorithm on the sub-
problems. To avoid computation of uninteresting solutions, we do not run again
the algorithm if there is a subproblem which is the same as the initial problem.
Example: We want to compute a + b and we have the service x * y. Then,
{x — a+b, y«— I} is a solution requiring a combination, but we discard it.
We also simplify the request before running again the algorithm. This is
necessary, to avoid running the algorithm on requests such that a + O, ax1, ...

4.2 Selecting the most relevant solutions

Piloting research To improve the search of relevant results, we can explore
first the most interesting services.

To decide whether a service is interesting, we consider its complexity (static
information) and its availability (dynamic information). By exploring these ser-
vices at the beginning of the trading process, the initial solutions found will be
the most relevant ones, since they will be the least complex and they will be
available.

Static information are not sufficient since we are on a Grid whose QoS can
change dramatically, and we must take into account the network load, the data
migration, Indeed, we prefer to satisfy a request with a service located on
a server which has a strong availability rather than with a service located on a
busy server assuming that both servers have the same performance. Improving
the computation of services using these dynamic informations that can be
provided by a middleware such as Diet (see section 4.3), used in the GRID-TLSE
project, may be crucial for performance and will require further improvements
and experiments in the trading algorithm .

Another way to find first the most relevant solutions is to change the way we
traverse the research tree. Currently, we do a breadth first traversal. It may be
interesting to use a more complex traversal based on a weighting of the branches.
This weight will be calculated in function of the complexity of the subproblem.

Sorting results The obtained results must be sorted. Currently, this sort is
done by considering the complexity of the services. Services which have the
same complexity, are sorted in function of their parameters.

Assume that f(z,y,z,0), f(z,y,0,0) and f(z,y, Any, O) solve the prob-
lem. The most interesting result is the last one (f(z,y, Any, O)) because it is
the most general. f(x,y, O, O) is more interesting than f(z,y, x, O), because the
null matrix is, in general, less complex than the user matrix. In the general case,
services with same complexity will be sorted according to the increasing numbers
of Any, constants and parameters given by the user within their parameters.

4.3 Interaction with a middleware

The trader can then choose to transmit the most relevant result to the mid-
dleware which will schedule the chosen composite service. It can also choose to
transmit several relevant results. The choice among the different results will be
done by the middleware. Several environments provide the features needed: Net-
Solve [AABT01], NINF [TNS*03|, DIET |DIE|, NEOS [NEO], or RCS [AGM97|.
DIET is the middleware used in the GRID-TLSE project, where our work takes
place.

In the case of simple service (without combination), the state of the machine
where the service is located, its capacity, its availability, ... will be considered.
In the case of combination of services, in addition to these information, the data
dependencies must also be taken into account to evaluate the costs in term of
communication between the computers running the different services. Indeed,
the local execution (even on a less powerful server) might be quicker than the
remote execution because of the extra overhead due to data movements.

If none of the services is satisfying to the middleware, it can ask for more
results until it obtains satisfaction. More complex searches may then be started.
As soon as the middleware obtains a valid solution, it executes the request (or
the sequence of requests).

5 Conclusion

We have described an approach for advanced trading of services based on an
algebraic data type like description of applicative domain and services. Our
trading algorithm allows to compose existing services in order to satisfy the user
request.

The trading algorithm first computes all the possible solutions within a given
depth and a given number of equations examined. The main difficulty in that
process is to limit the exponential complexity of the search for solutions by dis-
carding the less relevant ones. Some issues are currently explored consisting in
using a different strategy for searching in the solution tree: aiming at decreasing
the number of branches explored, use of a cache mechanism for avoiding recom-
puting solutions, Finally, within the set of solutions computed, a selection
is made by considering the complexity of the operations and their parameters.

The current trading algorithm provides the appropriate results but it is still
very preliminary and further improvements on time and memory performances
are required. Our goal would be to incorporate such a trading mechanisms within
interactive scientific computing environments such as MATLAB or SciLAB to
allow users to take advantage of grid services - when adequate - in a transparent
way (without explicit calls) and to interact with a middleware to benefit of their
scheduling capacity.

References

[AABT01]

[ABBT99

[AGMO7]

[BSO1]

[CGL92]

D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Sagi,
Z. Shi, and S. Vadhiyar. Users’ Guide to NetSolve V1.4. Computer Science
Dept. Technical Report CS-01-467, University of Tennessee, Knoxville,
TN, July 2001.

E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Don-
garra, J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney, and
D. Sorensen. LAPACK Users’ guide (third ed.). Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1999.

P. Arbenz, W. Gander, and J. Mori. The Remote Computational System.
Parallel Computing, 23(10):1421-1428, 1997.

F. Baader and W. Snyder. Unification theory. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chap-
ter 8, pages 445-532. Elsevier Science, 2001.

Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for
overloaded functions with subtyping. In Proceedings of the ACM Con-
ference on Lisp and Functional Programming, volume 5, pages 182-192,
1992.

[DDDH90a] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. Algorithm 679.

a set of Level 3 Basic Linear Algebra S ubprograms. ACM Transactions
on Mathematical Software, 16:1-17, 1990.

[DDDH90b] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. Algorithm 679.

[DIE]
[GHTS]

[GS89]

[HPO6]

[NEO]
[Pan04]

[PPAOS]

[SWLT94]

[TNST03]

a set of level 3 basic linear algebra subprograms: model implementation
and test programs. ACM Transactions on Mathematical Software, 16:18—
28, 1990.

DIET. http://graal.ens-lyon.fr/DIET.

John V. Guttag and James J. Horning. The algebraic specification of
abstract data types. Acta Inf., 10:27-52, 1978.

J. H. Gallier and W. Snyder. Complete Sets of Transformations for General
E-Unification. Theor. Comput. Sci., 67(2-3):203-260, 1989.

Aurélie Hurault and Marc Pantel. Mathematical service trading based
on equational matching. In Proceedings of the 12th Symposium on the
Integration of Symbolic Computation and Mechanized Reasoning (Calcule-
mus 2005), volume 151, pages 161-177. Electronic Notes in Theoretical
Computer Science, 21 March 2006.

NEOS - Server for Optimization. http://www-neos.mcs.anl.gov/neos/.
M. Pantel. Test of Large Systems of Equations on the Grid: Meta-Data
for Matrices, Computers, and Solvers. In PMAA 04, 2004.

Marc Pantel, Chiara Puglisi, and Patrick Amestoy. Grid, Components and
Scientific computing. In Submission to Euro-Par 2005, 2005.

Mark E. Stickel, Richard J. Waldinger, Michael R. Lowry, Thomas Press-
burger, and Ian Underwood. Deductive composition of astronomical soft-
ware from subroutine libraries. In CADE, pages 341-355, 1994.

Yoshio Tanaka, Hidemoto Nakada, Satoshi Sekiguchi, Toyotaro Suzumura,
and Satoshi Matsuoka. Ninf-G: A Reference Implementation of RPC-
based Programming Middleware for Grid Computing. Journal of Grid
Computing, 1(1):41-51, 2003.

