Management of Services based on a Semantic
Description within the GRID-TLSE Project

Patrick Amestoy, Michel Daydé, Christophe Hamerling, Marc Pantel and
Chiara Puglisi

TLSE Project”, IRIT-ENSEEIHT, 2 rue Camichel, 31071 Toulouse CEDEX, France
surname .name@enseeiht.fr
http://wuw.irit.enseeiht.fr/tlse

Abstract. The goal of the GRID-TLSE Project is to design an expert
site that provides an easy access to a number of tools allowing compara-
tive analysis of sparse matrix packages on a user-submitted problem, as
well as on particular matrices from the matrix collection also available
on the site.

When making available a large amount of software over a computational
Grid, facilitating its deployment and its exploitation become crucial.
Within the GRID-TLSE Project, we use a software component approach
based on a high level semantic description of the scientific computing
services. In this paper, we focus on one aspect of this description of the
computational services: the use of meta-data called abstract parameters.
Our approach allows the automatic discovery and the exploitation of new
services throught the concept of scenario.

1 Introduction

The main goal of the GRID-TLSE Project is to design an expert site that
provides an easy access to a number of direct solvers for solving sparse lin-
ear systems, allowing their comparative analysis on user-submitted problems,
as well as on matrices from collections also available on the site. The site pro-
vides user assistance in choosing the right solver for its problems and appropri-
ate values for the control parameters of the selected solver. It is also intended
to be a testbed for experts in sparse linear algebra. A computational Grid is
used to deal with all the runs arising from user requests. For more details see
http://www.irit.enseeiht.fr/tlse.

The expert site asks the user through a WEB interface (called WebSolve) to
describe his problem as well as, optionally, the characteristics of the computers
and the software that he plans to use. The expertise kernel (called Weaver) takes
into account the user requirements, the internal expertise scenarios and the Grid
state to build experience plans which are run using the DIET middleware [3] (
http://graal.ens-lyon.fr/“diet /). The results and metrics are used to produce

* funded by the French Ministery of Research throught ACI «Globalisation des
Ressources Informatiques et des Donnéess

synthetic graphics which help the user in choosing the best tools — and the
corresponding value of control parameters — for his problem (according to some
metric e.g. minimizing execution time).

In sparse linear algebra, similarly to other areas of scientific computing, there
exists a lot of different algorithmic approaches for solving the same problem
with different features and performance (e.g. several algorithmic variants for
factorizing a sparse matrix).

As a consequence, the description of the computational services provided by
each component is much more complex than usually advocated in software engi-
neering (typically restricted to service name, type of input / output parameters).
The computing services have functional parameters and results — as usual — but
also make use of parameters and results for algorithmic control and execution
metrics that depend on the numerical algorithms used. Controls (usually pa-
rameters) allow to adapt the algorithm to the user performance requirements.
Metrics (usually results) provide the users insights on the results quality and on
the way the computer was used.

We describe in the next sections the approach used within the GRID-TLSE
Project. It has been initially designed for allowing experts in sparse linear alge-
bra, that are not always grid computing specialists, to deploy easily software over
the grid and to use it within the expertise process they describe using scenarios.
This approach is generic and may be used in other areas.

2 Sparse direct solvers for linear systems

2.1 Sparse direct solvers

The main service used in the GRID-TLSE Project aims at solving Az = b where
A is sparse using direct solvers.

The direct approach for solving Ax = b consists in factorizing the matrix
A into a product of simpler matrices (so called factors) and then computing
the solution x. There exists different factorizations of A: A = LU, A = QR,
A=LLT, A=LDLT,....

Several algorithms can be used for solving the same linear system. They
all use the same functional input parameters A and b and produce the same
functional result xz. However, they do not always have the same set of input /
output parameters for algorithm control. They also provide execution metrics
(execution time, amount of memory used, number of flops, ...) that may not be
similar.

The performance of the sparse solvers depends on the exploitation of the
structural and numerical properties of the matrix A and on the target com-
puting platform characteristics. For the sake of simplicity, we focus on the LU
factorization in the following sections.

2.2 Algorithm controls and execution metrics

A computational service may possess a lot of input / output parameters for
algorithm controls and execution metrics that may vary with its implementation.

In the general case, A is factorized into PQrDrADcQcP T where :

— Dp and D¢ are diagonal scaling matrices for respectively rows and columns
of A;

— Qg and Q¢ are unsymmetric permutations for respectively rows and columns.
Solvers often use only one.

— P is a symmetric permutation whose purpose is to reduce the size of the
factors during the factorization of A.

The problem to be solved is then Az = b where A = PQrDrADcQcP7,
T = PQEDElx and b = PQprDRgrb. These transformations are usually computed
in the first phase of the algorithm referred to as symbolic analysis. The per-
mutations and scalings are also performed during this step. Algorithmic control
parameters are tuned according to the properties of the matrix for improving
execution.

Depending on the software, the permutations are either symmetric (P),
unsymmetric (either Qg or Q¢), left (PQgr) or right (QcP'). Many algo-
rithms - called orderings - are available for computing permutations, for exam-
ple AMD (Approximate Minimum Degree [1]), Metis (graph partitioning [11]),
MMD (Multiple Minimum Degree [12], Matrix bandwidth reduction [4]). Some
packages provide several orderings and a control parameter is used to select one.

The LU factorization of A is performed next. During this factorization phase,
the static symmetric ordering P can be completed by a dynamic ordering Py
(referred to as the numerical permutation) monitored using a pivoting threshold.
The linear system is then Py Az = Pyb. The pivoting threshold is not always
available as an algorithm control.

The last step (“solve”) computes & using the factors L and U.

Most of the direct algorithms for solving a sparse linear problem are using
these three steps (symbolic analysis, factorization and solve) in sequence. It is
therefore possible to share the symbolic analysis between several factorizations
(with different values for the pivoting threshold) and to share a factorization
between several solves (with different values of b). One of the main benefit is to
be able to use the ordering available within one sparse solver as an input for the
factorization of another solver. This implies that a functional description of the
package must be available to be able to call separately ordering, factorization
and solve and to recover the corresponding outputs.

3 The GRID-TLSE reflexive approach

We use a component approach with a dynamic discovery of component character-
istics. This approach relies on meta-data — called abstract parameters - describing
all the possible features for all available service implementations. This approach
is usually referred to as reflexive as it relies on services managing services. Note
that one package may be deployed in several places and several versions, i.e.
there may be several services implementing the same sofware.

There are two kinds of services within the GRID-TLSE Project:

— Computational services that correspond to sparse softwares or tools for pro-
cessing sparse matrices (visualization, . ..)

— Scenarios that are a high level level description of the expertise process.
The interpretation of scenarios by the Weaver software layer generates the
workflows executed over the Grid. Scenarios are specified by sparse linear
algebra experts.

4 Use of abstract parameters for describing services

From the Web interface to define the objective and parameters of the user request
up to the construction of scenarios, we use the same description of services based
on common meta-data.

To describe a computational service, we specify:

— its functionalities: assembled/elemental entries, type of factorisations (LU,
LDLT ,QR), multiprocessor, multiple Right-Hand-Side Members, .. .;

— and its algorithmic properties: unsymmetric/symmetric solver, multifrontal,
left /right looking, pivoting strategy,

To describe a scenario, in addition to service input / output parameters (as
usual), we specify:

— its execution metrics sent back by the solver executions: memory, numerical
precision, execution time, ...

— its control: type of graphic visualization for post-processing, level of user
(expert, non-expert, intermediate user).

More expert is the user, more control he may have on the parameters of the
expertise process.

4.1 Expressing dependencies between abstract parameters

The abstract parameters are used to express constraints and/or relations that
forms the basis of the expertise scenario. We can thus express qualitative and
quantitative dependencies between values of metrics and control parameters
within scenarios. This feature allows to limit the combinatorial explosion in-
herents to the expertise process. Here are some examples:

— If A symmetric and user is non-expert, then select only symmetric solver.

— Indicate that time and memory mostly depend on method and permutations
but also on scaling and pivoting.

— Indicate that numerical accuracy mostly depends on pivoting but also on
scaling and permutations.

— Advise orderings for QR based on AT A.

Indicate that multiple Right Hand Side option, although not available, can

still be performed (simulated within computational service).

Threshold for partial pivoting € [0, 1].

The first item illustrates how it is possible to limit the number of experiments
performed over the grid: when the user is non-expert and when the targert matrix
is symmetric, only symmetric solvers are experimented (while an expert user may
want to run an unsymmetric solver on a symmetric matrix).

4.2 Example: description of the MUMPS software

We illustrate this by considering the MUMPS software ([2]). The abstract pa-
rameters describing this software (this is not an exhaustive list) looks like:

— Functional decomposition: Symbolic analysis, Factorization, Solve (the three
steps are available and can be called independently)

— Control parameters: Symmetric Permutation, Unsymmetric Permutation,
Pivoting Threshold

— Possible values : Symmetric Permutations available are { AMD, Metis, ... }.
Unsymmetric Permutations are ...

— Metrics: estimated flops from the symbolic analysis, effective time for the
whole solution, numerical precision after the solve, ...

— Dependency: numerical precision depends on the pivoting threshold values

4.3 Structuring Abstract Parameters: illustration with symmetric
permutations

An ordering is a heuristic to permute the graph of the initial matrix with the
aim to limit the cost of the numerical factorization; the ordering has a strong
impact on both the number of operations and the memory used by a solver.
Orderings involves symmetric or unsymmetric permutations. We focus on the
abstract parameter associated to symmetric permutations.

The abstract parameter SymPerm that corresponds to symmetric permu-
tations is implemented as an enumeration of large size. One of the symmetric
ordering often used is the Approximate Minimum Degree (AMD [1]) available in
MUMPS and other sparse solvers. Each software may have its own implementa-
tion of the AMD ordering. One representative of the set of AMD implementa-
tions over all the sparse solvers available might be enough in most cases but they
may perform differently. How to define/select a representative implementation
of AMD since it may change from time to time is a quite complex issue.

Furthermore when studying the impact of using various symmetric orderings,
one may not want to test all possible values of the symmetric permutation. On
some matrices a subclass of orderings may be known to be superior. A non-
expert user only wants to capture major differences between orderings, thus
using a “good” representative of a subclass may be enough. This is a crucial
issues for limiting the combinatorial complexity of this expertise process (i.e.
avoiding to explore / execute all possibilities).

The "permutation" abstract parameter can be represented as a tree where:

— we define a default representative at each level of the tree,

— and a default realization for each leaf of the tree.

When managing expertise scenarios, it helps in designing more dynamic
server pages by adapting the web pages to the level of the user (normal, ex-
pert, debugger), and in limiting cost of scenarios.

Figure 1 illustrates the structuration of the abstract parameter corresponding
to permutations (only the symmetric permutation subtree is detailled).

ORDERING

UnsOrdering

Global
/\ “AMDD-MUMPS . _ /\ - BMF4-MUMPS >
B"?-imiag BBT

AMD MMD AMDD MF AMF

o N/

TAUCS SuperLU UMFPACK (MC47, MUMPS

Fig. 1. Structuring the Permutation Abstract Parameter

5 Using abstract parameters within the GRID-TLSE
Project

The TLSE Weaver expertise kernel relies on two levels of services : the expertise
scenarios exploited by users and the solvers used by scenarios and experts.

Extensibility is a key point in TLSE : new scenarios and new solvers will be
integrated in the expertise site regularly. New scenarios should be able to use
old solvers and new solvers should be used by old scenarios without modifica-
tion. Modifications should only be required if scenarios want to use new specific
features from solvers.

All services do not provide the whole set of controls and metrics. Input /
output parameters should then be optional with either default values, values
computed by other services or values explicitly provided. Tools may use or pro-
duce values in a slightly different manner for the same control or metric. It is
therefore necessary to add a wrapper around each tool in order to adapt its real
interface to the common one. New solvers may provide additional controls and
metrics. Their interfaces should therefore be extensible.

The solution chosen in the TLSE Project relies on the definition of an easy to
extend set of features for each service which will be wrapped around each tool.
Scenarios are then using these features.

The meta-data framework used within TLSE can be summarized as follows:

— Solvers are described using meta-data and wrappers translate meta-data
values to/from solver’s parameters and results.

— Scenarios require solvers to provide specific meta-data and process experi-
ments which are sets of meta-data.

— The middleware exchanges sets of meta-data with the wrappers of solvers.

— The Web interface is dynamically built from scenarios and their correspond-
ing meta-data and solver meta-data and their values.

The service profile is composed of an abstract parameter set. It qualifies the
following aspects of the service : the name of the tool; the service semantics;
the functional parameters and results; the parameters and results for algorithm
control; the parameters and results for execution metrics.

Each abstract parameter is defined using:

— its values (type, possible values, variation (linear, logarithmic, normal, Gaus-
sian, ...));

— its mode : input or output;

— its constraint : mandatory, optional, with default value, with value com-
putable by another service;

— the expertise level of the users (novice, standard, advanced, expert, man-
ager);

— some documentation related to its purpose (several levels may be defined

according to the user level);

dependencies with other features for expressing incompatibilities, depen-

dence upon a parameter and other constraints.

It is quite similar to an interface in the component world but extended in
order to enable an easy integration of the tools that provide the same service
with quite different algorithms (therefore different controls and metrics).

6 Use of Abstract Parameters within Expertise scenarios

The expertise scenarios are used by the expertise kernel to build experience plans
according to the user request. These experience plans are worflows executed over
the Grid. The results of one experience plans may be used to biuld the next
experience plan and thus the workflows executed are dynamic since they may
depend of results of a previous executions.

The scenarios are structured hierarchically in a dataflow like approach. Sce-
nario inputs and outputs are connected to the sub-scenario inputs and outputs.
It can also contain internal links between sub-scenario inputs and outputs. A sce-
nario may also use internal operators for creation, modification, execution and
filtering of experience plans. A given scenario may then build several internal

experience plans, executes these plans, and finally produces new plans depending
on the results from the previous ones. Scenarios are therefore fully dynamic and
may depend on the availability of services and the results of experiences in order
to generate new experiences. In order to ensure that a scenario will stop, there
must be no internal cyclic links between sub-scenarios. Experience plan creation
and execution operators use service description in order to assign a value to ex-
perience abstract parameters. Some instances may not qualify if some of their
abstract parameters have values that are different from the ones required in the
experiences.

The ”Ordering sensitivity” scenario consists into studying the effect of using
the available orderings on the solution of the linear systems in terms of the
metrics selected by the user (execution time, memory, number of flops, ...). We
only generates runs for default solvers (defined by experts), which is some kind
of leaf cleaning and limits the combinatorial complexity of the expertise. The
first box called "AllOrdering" corresponds the search of all available symmetric
orderings. The second box, called "Exec", requires the executions of all the
permutations sent by first box. The final results, in term of the metrics asked
by the user, are then produced in a graphical way. The scenario is described by
expert using a graphical interface called "GEQOS” that is interpreted by Weaver
to build experience plans. It is reported in Figure 2.

sym Control User Level
Gener ator
A
[E—— Sy Run for
Ordering G
Results
Services i
AllOrdering Ordering
b
Exec

Fig. 2. Ordering Sensitivity Scenario.

In the "Minimum time” scenario displayed in Figure 3, we try to identify
which combination of ordering and factorization achieves the best execution
time. Some branch cleaning is effected by selecting only one possibility at each
level of tree of available permutations. This is expressed by the sequence of the
two boxes: "AllOrdering" (used in the previous example) and "Select". We then
only execute the default solvers (defined by the sparse linear algebra experts)
which corresponds to some leaf cleaning.

[MinimumTime(S}/m, Levet)]

Sym User Level Control
Generator
A
Symmet.
| Select
Orderin
g best
AllOrdering Ordering | | Results
Numeri.
Services Select SymPerm
Exec
b
Exec

Fig. 3. Minimum Time Scenario.

7 Conclusion

We have described the main aspects of the component framework used in the
GRID-TLSE Project. This high level description of scientific software is used
within the scenarios for generating the dynamic workflows that perform exper-
tise. The main benefit is that adding / removing solvers does not require to
update scenarios (they will be automatically discovered). New scenarios make
use of all the deployed softwares.

This type of reflexive approach is commonly used for the dynamic discovery
of services (for example, in the Java language or the Corba middleware). Sim-
ilar approaches have been described for the use of object-oriented technologies
for scientific computations in order to combine several algorithmic solutions:
for example centralized and distributed matrix structures, (see F. Guidec [8],
E. Noulard and N. Emad [6]), the SANS (Self Adapting Numerical Software)
Project (see [5]), or the Salsa Project (see [7]).

Our component framework combines two approaches : a static approach for
accessing the functional parameters and the results for a given service; a dynamic
approach for accessing the controls and metrics of a service. The set of meta-data
used within the TLSE Project can be easily extended which is not always the
case in the approaches mentioned above.

The GRID-TLSE Project focus on sparse solvers. The corresponding ab-
stract parameters are defined using a graphical interface called PRUNE. Adding
abstract parameters or specifying an entire set of new parameters is easy. As
a consequence, the approach described in this paper can be extended to other
areas providing that an adequate set of abstract parameters has been derived.

An important requirement in our approach is to be able to give an accurate
description of the computation done by a given service according to its functional
parameters and results. The service semantics could also be described using
algebraic specification technologies. This semantics could then be used for service

trading. This point is currently under investigation (see [10]). The use of accurate
semantics allows to combine basic services in order to provide more sophisticated
ones. This trading approach can also be combined with a scheduler for finding
the best service combination (see [9]).

References

1.

10.

11.

12.

P. R. Amestoy, T. A. Davis, and 1. S. Duff. An approximate minimum degree
ordering algorithm. SIAM Journal on Matriz Analysis and Applications, 17:886—
905, 1996.

. P. R. Amestoy, I. S. Duff, and J.-Y. L'Excellent. Multifrontal parallel distributed

symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng., 184:501—
520, 2000.

E. Caron, F. Desprez, E. Fleury, F. Lombard, J.-M. Nicod, M. Quinson, and
F. Suter. Une approche hiérarchique des serveurs de calculs. In Frangoise Baude,
editor, Calcul réparti & grande échelle, pages 129-151. Hermés Science Paris, 2002.
ISBN 2-7462-0472-X.

E. Cuthill. Several strategies for reducing the bandwidth of matrices. In D. J.
Rose and R. A. Willoughby, editors, Sparse Matrices and Their Applications, New
York, 1972. Plenum Press.

J. Dongarra and V. Eijkhout. Self-adapting numerical software and automatic tun-
ing of heuristics. In Proceedings of the International Conference on Computational
Science, June 2-4 2003, St. Petersburg (Russia) and Melbourne (Australia), 2003.
N. Emad E. Noulard. A key for reusable parallel linear algebra software. Parallel
Computing, 27(10):1299-1319, 2001.

Victor Eijkhout and Erika Fuentes. A proposed standard for numerical metadata.
Technical Report ICL-UT-03-02, Innovative Computing Laboratory, University of
Tennessee, 2003.

F. Guidec. Object-Oriented Parallel Software Components for Supercomputing. In
Peters D’Hollander, Joubert and Trystram, editors, Parallel Computing: State of
the Art and Perspectives. Proceedings of PARCO’95 (Parallel Computing), Gent,
Belgium, Advances in Parallel Computing. North-Holland, 1995.

A. Hurault, M. Pantel, and F. Desprez. Recherche de services en algébre linéaire sur
une grille. 5-8 Avril 2005. Rencontres Francophones en Parallélisme, Architecture,
Systéme et Composant (RenPar’16), Croisic, (France).

Aurélie Hurault and Marc Pantel. Mathematical service trading based on equa-
tional matching. In Calculemus 2005, 12th Symposium on the Integration of Sym-
bolic Computation and Mechanized Reasoning, Newcastle, United Kingdom, July
18-19 2005.

G. Karypis and V. Kumar. MEDNS — A Software Package for Partitioning Un-
structured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings
of Sparse Matrices — Version 4.0. University of Minnesota, September 1998.

J. W. H. Liu. Modification of the minimum degree algorithm by multiple elimina-
tion. ACM Transactions on Mathematical Software, 11(2):141-153, 1985.

