
Enhancing the Performance of Multigrid

Smoothers in Simultaneous Multithreading

Architectures ⋆

Carlos Garćıa1, Manuel Prieto1, Javier Setoain1, and Francisco Tirado1

Dto. Arquitectura de Computadores y Automática
Universidad Complutense de Madrid

Avd. Complutense s/n, 28040 Madrid, Spain
{garsanca,mpmatias,jsetoain,ptirado}@dacya.ucm.es

Abstract. We have addressed in this paper the implementation of red-
black multigrid smoothers on high-end microprocessors. Most of the pre-
vious work about this topic has been focused on cache memory issues
due to its tremendous impact on performance. In this paper, we have
extended these studies taking Simultaneous Multithreading (SMT) into
account. With the introduction of SMT, new possibilities arise, which
makes highly advisable a revision of the different alternatives. A new
strategy is proposed that focused on inter-thread sharing to tolerate the
increasing penalties caused by memory accesses. Performance results on
an IBM’s Power5 based system reveal that our alternative scheme can
compete with and even improve sophisticated schemes based on tailored
loop fusion and tiling transformations aimed at improving temporal lo-
cality.

1 Introduction

Multigrid methods are regarded as being the fastest iterative methods for the
solution of the linear systems associated with elliptic partial differential equa-
tions, and as amongst the fastest methods for other types of integral and partial
differential equations [16]. Fastest refers to the ability of Multigrid methods to
attain the solution in a computational work which is a small multiple of the op-
eration counts associated with discretizing the system. Such efficiency is known
as textbook multigrid efficiency (TME) [15] and has made multigrid one of the
most popular solvers on the niche of large-scale problems, where performance is
critical.

Nowadays, however, the number of executed operations is only one of the
factors that influences the actual performance of a given method. With the
advent of parallel computers and superscalar microprocessors, other factors such
as inherent parallelism or data locality (i.e. the memory access behavior of the
algorithm) have also become relevant. In fact, recent evolution of hardware has
exacerbated this trend since:
⋆ This work has been supported by the Spanish research grants TIC 2002-750 and

TIN 2005-5619

– The disparity between processor and memory speeds continues to grow de-
spite the integration of large caches.

– Parallelism is becoming the key of performance even on high-end micropro-
cessors, where multiple cores and multiple threads per core are becoming
mainstream due to clock frequency and power limitations.

In the multigrid context, these trends have prompted the the development of
specialized multigrid-like methods [1, 2, 10, 5], and the adoption of new schemes
that try to bridge the processor/memory gap by improving locality [14, 18, 7,
4, 8]. Our focus in this paper is the extension of this cache-aware schemes to
Simultaneous Multithreading (SMT) processors.

As its name suggests, SMT architectures allows several independent threads
to issue instructions simultaneously in a single cycle [17]. Its main goal is to yield
better use of the processor’s resources, hiding the inefficiencies caused by long
operational latencies such as memory accesses. At first glance, these processors
can be seen as a set of logical processors that share some resources. CWith HT,
the Intel Pentium 4 behaves as two logical processors sharing some resources
(Functional Units, Memory Hierarchy, etc). The exploitation of this additional
level of parallelism has been performed in this work by means of OpenMP di-
rectives, which are directly supported by the Intel ICC compileronsequently, one
may think that optimizations targeted for Symmetric Multiprocessors (SMP)
systems are also good candidates for SMT. However, unlike SMP systems, SMT
provides and benefits from fine-grained sharing of processor and memory re-
sources. On the other hand, unlike conventional superscalar architectures, SMT
exposes and benefits from thread level parallelism when hiding latencies. There-
fore, optimizations that are appropriate for these conventional machines may be
inappropriate or less effective for SMT [9].

Unfortunately, SMT potentials are not yet fully exploited in most applica-
tions due to the relative underdevelopment of compilers, which despite many
improvements still lag far behind. Due to this gap between compiler and pro-
cessor technology, applications cannot benefit from SMT hardware unless they
are explicitly aware of thread interactions. In this paper, we have revisited the
implementation of multigrid smoothers in this light. The popularity of multigrid
makes this study of great practical interest. In addition, it also provides certain
insights about the potential benefits of this relatively new capability and how to
take advantage of it, which could ideally help to develop more efficient compiler
schemes.

The organization of this paper is as follows. We begin in Sections 2 and Sec-
tion 3 by briefly introducing multigrid methods and describing the main charac-
teristics of our target computing platform respectively. In Section 4 we describe
the baseline codes used in our study for validation and assessment. They are
based on the DIME project (DIME stands for Data Local Iterative Methods For
The Efficient Solution of Partial Differential Equations) [3, 14, 18, 7, 4, 8], which
is one of the most outstanding and systematic studies about the optimization of
multigrid smoothers. Afterwards, in Section 5, we discuss our SMT -aware im-

plementation. Performance results are discussed in Section 6. Finally, the paper
ends with some conclusions and hints for future research.

2 Multigrid Introduction

This section provides a brief introduction about multigrid, defining basic terms
and describing the most relevant aspects of these methods so that we have a
basis on which to discuss some of the performance issues.

The fundamental idea behind Multigrid methods [16] is to capture errors by
utilizing multiple length scales (multiple grids). They consist of the following
complementary components:

– Relaxation. The relaxation procedure, also called smoother in multigrid lingo,
is basically a simple (and inexpensive) iterative method like Gauß-Seidel,
damped Jacobi or block Jacobi. Its election depends on the target prob-
lem, but if well chosen, it is able to reduce the high-frequency or oscillatory
components of the error in relatively few steps.

– Coarse-Grid Correction. Smoothers are ineffectual in attenuating low-frequency
content of the error, but since the error after relaxation should lack the os-
cillatory components, it can be well-approximated using a coarser grid. On
that grid, errors appear more oscillatory and thus the smoother can be ap-
plied effectively. New values are transferred afterwards to the target grid to
update the solution.

The Coarse-Grid Correction can be applied recursively in different ways,
constructing different cycling strategies. Algorithm 1 shows the pseudo-code of
one of the most popular choices, known as V-cycle due to its pattern. This
algorithm telescopes down to a given coarsest grid, and then works its way back
to the target finest grid. The transfer operators I

2h

h
and I

h

2h
connect the grids

levels: I2h

h
is known as the restriction operator and transfers values from a finer

to a coarser level, whereas Ih

2h
is known as the prolongation operator and maps

from a coarser to a finer level.

Algorithm 1 V-cycle(ν1,ν2,vh,bh) multigrid V-cycle applied to the system
Ahuh = bh defined on a grid Ωh.

if h == Coarsest then
Return uH ← Solve(AH ,vH ,bH)

else
vh ← Smooth(ν1,vh,bh)
b2h ← I

2h

h
(bh −Ahvh)

v2h ← V-cycle(ν1,ν2,02h,b2h)
vh ← vh + Ih

2h
(v2h

Return un ← Smooth(ν2,vh,bh)
end if

The most time-consuming part of a multigrid method is the smoother and
hence is the primary parameter in optimizing the solve time for a particular
problem. In this initial study we have focused on point-wise smoothers. Block
smoothers [12, 11] are more efficient in certain problems but are beyond the scope
of this paper and will not be addressed at this time. The discussion about the
implementation of point-wise smoothers is taken up in Section 4.

3 Experimental Platform

Our experimental platform consists in an IBM’s Power5 processor running under
Linux, the main features of which are summarized in Table 1.

Table 1. Main features of the target computing platform.

Processor

IBM 2-way 1.5GHz Power5
(2 way core SMP)

L1 DataCache 32 KB 4-way associative, LRU
L2 Unified Cache 1.9MB 10-way associative, LRU
L3 Unified Cache 36MB shared per processor pair

(off-chip) 10-way associative, LRU
2048 MBytes

Memory (4x512) DIMMS
266 MHz DDR SDRAM

Operating GNU Debian
System Linux kernel 2.6.14-SMP for 64 bits

IBM XL Fortran -O5 -qarch=pwr5 -qtune=pwr5
Switches -q64 -qhot -qcache=auto

(Advance Ed. v9.1) Parallelization with OpenMP: -qsmp=omp

This processor has introduced SMT to the IBM’s Power family [6]. With this
design, each core of this dual-core processor appears to software as two logical
CPUs, usually denoted as threads, that share some resources such as functional
units or the memory hierarchy.

Apart from SMT, we should also highlight the impressive memory subsystem
of the Power5. The memory controller is moved on chip and the main memory is
directly connected to the processor via three buses: the address/command bus,
the unidirectional write data bus, and the unidirectional read data bus. The 36-
MB off-chip L3 has been removed from the path between the processor to the
memory controller and operates as a victim cache for the L2. This means that
data is transferred to the L3 only when it is replaced from the L2.

Finally, it is worth to mention that the exploitation of SMT has been per-
formed in this work by means of OpenMP directives, which are directly sup-
ported by the IBM’s FORTRAN compiler. Single thread performance have been

measured using a sequential code and enabling the Power5 single-threaded mode
of the Power5, which gives all of the chip resources to one of the logical CPUs.

4 Cache-aware Red-Black Smoothers

Gauß-Seidel has long been the smoother of choice within multigrid on both
structured and unstructured grids [1]. Although, it is inherently sequential in
its natural form (the lexicographic ordering), it is possible to expose parallelism
by applying multi-coloring, i.e. splitting grid nodes into disjoint sets, with each
set having a different color, and updating simultaneously all nodes of the same
color.

The best known example of this approach is the red-black Gauß-Seidel for
the 5-point Laplace stencil, which is schematically illustrated in Figure 1. For the
9-point Laplacian, a red-black ordering may lead to a race condition (depending
on the implementation), and at least a four color ordering of the grid space is
needed to decouple the grid nodes completely.

Fig. 1. 2D red-black Gauß-Seidel for the 5-point (on left-hand side) and 9-point
(on right-hand side) Laplace stencils

Apart from exposing parallelism, multi-coloring also impacts on the conver-
gence rate, but unlike other techniques such as block Gauß-Seidel (i.e. applying
Gauß-Seidel locally on every processor), the overall multigrid convergence rates
remain satisfactory.

Unfortunately, multi-coloring deteriorate the memory access and may lead to
poor performance. Algorithm 4 shows the pseudo-code of a red-black smoother,
denoted as rb1 by the DIME project. This näıve implementation performs a
complete sweep through the grid for updating all of the red nodes, and then an-
other complete sweep for updating all of the black nodes. Therefore, rb1 exhibits
lower spatial locality than a lexicographic ordering. Furthermore, if the target
grid is large enough, temporal locality is not fully exploited.

Algorithm 2 Red-Black Gauß-Seidel näıve implementation

for it=1,nIter do
// red nodes:
for i = 1; n-1 do

for j = 1+(i+1)%2; n-1; j=j+2 do
Relax point(i,j)

end for
end for
// black nodes:
for i = 1, n-1 do

for j = 1+i%2; n-1; j=j+2 do
Relax point(i,j)

end for
end for

end for

Alternatively, some authors have successfully improved cache reuse (locality)
using loop reordering and data layout transformations that were able to improve
both temporal and spatial data locality [13, 18].

Following these previous studies, in this paper we have used as baseline codes
the different red-black smoothers developed within the framework of the DIME
project. To simplify matters, these codes are restricted to 5-point as well as
9-point discretization of the Laplacian operator. Figures 2-4 illustrate some of
them, which are based on the following observations:

– The black nodes of a given row i− 1 can be updated once the red nodes of
the i row has been updated. This is the idea behind the DIME’s rb2 (see
figure 2) and rb3 schemes, which improve both temporal and spatial locality
fusing the red and black sweeps.

– If several successive relaxation have to be performed, additional improve-
ments can be achieved transforming the iteration traversal so that the oper-
ations are performed on small 1D or 2D tiles of the whole array. Data within a
tile is used as many times as possible before moving to the next tile. DIME’s
rb4-rb9 schemes perform different 1D and 2D tiling transformations. Figures
3 and 4 illustrate the rb5 and rb9 schemes respectively.

Tables 2 and 3 show the MFlops achieved by DIME’s rb1-9 codes on our
target platform. The speedup of the best transformation range from 1.2 to 1.8
for the 5-point stencil, and from 1.15 to 1.25 for the 9-point version. Our first
insight is that these gains are lower than on other architectures. For instance, the
improvements on a DEC PWS 500au reported on DIME’s website reach a factor
of 4 [3]. Furthermore, the sophisticated two-dimensional blocking transformation
DIME’s rb9 does not provide additional improvements, being DIME’s rb7 and
sometimes DIME’s rb2 the most effective transformations.

Fig. 2. DIME’s rb2.
The update of red
and black nodes is
fused to improve
temporal locality.

Fig. 3. DIME’s rb5.
Data within a tile is
reused as much as
possible before mov-
ing to the next tile.

Fig. 4. DIME’s rb9.
Data within a tile is
reused as much as
possible before mov-
ing to the next tile.

The main reason behind this difference in behavior is the relatively large
amount of on-chip and off-chip caches included in the IBM’s Power5, as well as
their higher degree of associativity.

5 SMT-aware Red-Black Smoothers

The availability of SMT introduces a new scenario in which thread-level paral-
lelism can also be applied to hide memory accesses. As mentioned above, SMT
processors can be seen as a set of logical processors that share execution units,
systems buses and the memory hierarchy. This logical view suggests the appli-
cation of the general principles of data partitioning to get the multithreaded
versions of the different DIME variants of the red-black Gauß-Seidel smoother.
This strategy, which can be easily expressed with OpenMP directives, is suit-
able for shared memory multiprocessor. However, in a SMT microprocessor, the
similarities amongst the different threads (they execute the same code with just
a different input dataset) may cause contention since they have to compete for
the same resources.

Alternatively, we have employed a dynamic partitioning where computations
are broken down into different tasks with are assigned to the pool of available
threads. Intuitively, the smoothing of the different colors is interleaved by as-
signing the relaxation of each color to a different thread. This interleaving is
controlled by a scheduler, which avoids race conditions and guarantees a deter-
ministic ordering.

Algorithm 3 shows a pseudo-code of this approach for red-black smoothing.
Our actual implementation is based on the OpenMP’s parallel and critical direc-
tives. The critical sections introduce some overhead but are necessary to avoid
race-conditions. However, the interleaving prompted by the scheduling allows
the black thread to take advantage of some sort of data prefetching since it pro-

cesses grid nodes that have just been processed by the red thread, i.e. the red
thread acts as a helper thread that performs data prefetching for the black one.

Algorithm 3 Interleaved implementation of a red-black Gauß-Seidel

#pragma omp parallel private(task,more tasks) shared(control variables)
more tasks == true
while more tasks do

#pragma omp critical
Scheduler.next task(&task)

if (task.type == RED) then
Relax RED line(task);

end if

if (task.type == BLACK) then
Relax BLACK line(task);

end if

#pragma omp critical
more task=Scheduler.commit(task)

end while

This interleaved approach can also be combined with DIME’s rb4-8 variants.
If two successive iterations have to be performed, the intuitive idea is that one
thread performs the first relaxation step whereas the other performs the second
one. The scheduler guarantees again a deterministic ordering.

In the next section we compare the performance of this novel approach
over traditional block-outer, cyclic-outer and cyclic-inner distributions of the
relaxation nested loop. For the näıve implementation, all of them are straight-
forward. However, for DIME’s rb2-8 variants, the cyclic-outer version is non-
deterministic, whereas the block-outer requires the processing of block bound-
aries in advance.

We have omitted a parallel version of DIME’s rb9 since even in the sequential
setting, that version does not provide superior performance over DIME’s rb5-8.
We have also omitted block-outer and cyclic-outer distributions of the red-black
smoother for the 9-point stencil, since they are also non-deterministic. Note,
however, that both the cyclic-inner and our interleaved approach avoid race-
conditions.

6 Performance Results

Figure 5 shows the speedup achieved by the different parallel strategies over the
baseline code (with the best DIME’s transformation) for the the 5-point stencil.

Fig. 5. Speedup achieved by different parallel implementations of a red-black
Gauß-Seidel smoother for a 5-point Laplace stencil. Sched denotes our strategy,
whereas DP and Cyclic denote the best block and a cyclic distribution of the
smoother’s outer loop respectively. MELT is the number of successive relaxations
that have been applied.

As can be noticed, the election of the most suitable strategy depends on the
grid size:

– For small and medium grid sizes block and cyclic distributions outperforms
our approach, although for the smallest sizes none of them is able to improve
performance. This is the expected behavior given that for small and medium
working sets, memory bandwidth and data cache exploitation are not a key
issue and traditional strategies beats our approach on performance due to
the overheads introduced by the dynamic task scheduling.

– For large sizes we observe the opposite behavior given that the overheads
involved in task scheduling become negligible, whereas the competition for
memory resources becomes a bottleneck in the other versions. In fact, we
should highlight that the block and cyclic distributions become clearly inef-
ficient for large grids.

– The break-even point between the static distributions and our interleaved
approach is a relative large grid due to the impressive L3 cache (36 MB) of
the Power5.

Figure 6 confirms some of these observations for the the 9-point stencil.
Furthermore, the improvements over DIME’s variants are higher in this case,
since this is a more demanding problem.

Fig. 6. Speedup achieved by different parallel implementations of a red-black
Gauß-Seidel smoother for a 9-point Laplace stencil. Sched denotes our strategy,
whereas Cyclic denotes the best cyclic distribution of the smoother’s inner loop.
MELT is the number of successive relaxations that have been applied.

7 Conclusions

In this paper, we have introduced a new implementation of red-black Gauß-Seidel
Smoothers, which on SMT processors fits better than other traditional strategies.
From the results presented above, we can draw the following conclusions:

– Our alternative strategy, which implicitly introduce some sort of tiling amongst
threads, provide noticeable speed-ups that match or even outperform the re-
sults obtained with the different DIME’s rb2-9 variants for large grid sizes.
Notice that instead of improving intra-thread locality, our strategy improves
locality taking advantage of fine-grain thread sharing.

– For large grid sizes, competition amongst threads for memory bandwidth
and data cache works against traditional block distributions. Our interleaved
approach performs better in this case, but suffers important penalties for
small grids, since its scheduling overheads does not compensate its better
exploitation of the temporal locality. Given that multigrid solvers process
multiple scales, we advocate hybrid approaches.

We are encouraged by these results, and based on what we have learned in
this initial study we are proceeding with:

– Analyzing more elaborated multigrid solvers.
– Combining interleaving with grid partitioning distributions to scale beyond

two threads. The idea is to use grid partitioning to distribute data amongst a
large scale system, and interleaving to exploit thread level parallelism inside
their cores.

References

1. M. F. Adams, M. Brezina, J. J. Hu, and R. S. Tuminaro. Parallel multigrid smooth-
ing: polynomial versus Gauss-Seidel. J. Comp. Phys., 188(2):593–610, 2003.

2. Edmond Chow, Robert D. Falgout, Jonathan J. Hu, Raymond S. Tuminaro, and
Ulrike Meier Yang. A survey of parallelization techniques for multigrid solvers,.
Technical report, 2004.

3. Friedrich-Alexander University Erlangen-Nuremberg. Department of Computer
Science 10. DIME project. Available at http://www10.informatik.uni-
erlangen.de/Research/Projects/DiME-new.

4. C.C. Douglas, J. Hu, M. Kowarschik, U. Rüde, and C. Weiß. Cache Optimiza-
tion for Structured and Unstructured Grid Multigrid. Electronic Transactions on
Numerical Analysis (ETNA), 10:21–40, 2000.

5. F. Hülsemann, M. Kowarschik, M. Mohr, and U. Rde. Parallel geometric multigrid.
Lecture Notes in Computer Science and Engineering, 51:165–208, 2005.

6. Ronald N. Kalla, Balaram Sinharoy, and Joel M. Tendler. IBM Power5 chip: A
dual-core multithreaded processor. IEEE Micro, 24(2):40–47, 2004.

7. M. Kowarschik, U. Rüde, C. Weiß, and W. Karl. Cache-Aware Multigrid Methods
for Solving Poisson’s Equation in Two Dimensions. Computing, 64:381–399, 2000.

8. M. Kowarschik, C. Weiß, and U. Rüde. Data Layout Optimizations for Variable
Coefficient Multigrid. In P. Sloot, C. Tan, J. Dongarra, and A. Hoekstra, edi-
tors, Proc. of the 2002 Int. Conf. on Computational Science (ICCS 2002), Part
III, volume 2331 of Lecture Notes in Computer Science (LNCS), pages 642–651,
Amsterdam, The Netherlands, 2002. Springer.

9. Jack L. Lo, Susan J. Eggers, Henry M. Levy, Sujay S. Parekh, and Dean M. Tullsen.
Tuning compiler optimizations for simultaneous multithreading. In International
Symposium on Microarchitecture, pages 114–124, 1997.

10. W. Mitchell. Parallel adaptive multilevel methods with full domain partitions.
App. Num. Anal. and Comp. Math, 1:36–48, 2004.

11. Manuel Prieto, Rubén S. Montero, Ignacio Mart́ın Llorente, and Francisco Tirado.
A parallel multigrid solver for viscous flows on anisotropic structured grids. Parallel
Computing, 29(7):907–923, 2003.

12. Manuel Prieto, R. Santiago, David Espadas, Ignacio Mart́ın Llorente, and Francisco
Tirado. Parallel multigrid for anisotropic elliptic equations. J. Parallel Distrib.
Comput., 61(1):96–114, 2001.

13. D. Quinlan, F. Bassetti, and D. Keyes. Temporal locality optimizations for sten-
cil operations within parallel object-oriented scientific frameworks on cache-based
architectures. In Proceedings of the PDCS’98 Conference, July 1998.

14. U. Rüde. Iterative Algorithms on High Performance Architectures. In Proc. of
the EuroPar-97 Conf., Lecture Notes in Computer Science (LNCS), pages 26–29.
Springer, 1997.

15. James L. Thomas, Boris Diskin, and Achi Brandt. Textbook multigrid efficiency
for fluid simulations. Annual Review of Fluid Mechanics, 35:317–340, 2003.

16. U. Trottenberg, C. Oosterlee, and A. Schller. Multigrid. Academic Press, 2000.
17. Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multi-

threading: Maximizing on-chip parallelism. In 25 Years ISCA: Retrospectives and
Reprints, pages 533–544, 1998.

18. C. Weiß, W. Karl, M. Kowarschik, and U. Rüde. Memory Characteristics of Itera-
tive Methods. In Proc. of the ACM/IEEE Supercomputing Conf. (SC99), Portland,
Oregon, USA, 1999.

Table 2. MFlops achieved by the different DIME’s variants of the red-black Gauß-Seidel for a
5-point Laplace stencil. MELT denotes the number of successive iterations of this smoother.

16 32 64
no PAD. PADDING no PAD. PADDING no PAD. PADDING

rb1 (MELT=1) 1220.41 1328.02 1554.55 1886.03 1846.53 2151.69

rb2 (MELT=1) 1654.44 1799.24 1590.53 2353.55 2396.09 2464.36

rb3 (MELT=1) 1655.28 1800.82 1588.90 2364.93 2387.07 2474.08

rb4 (MELT=2) 1317.74 1353.41 1418.75 1435.21 1468.09 1471.15

rb4 (MELT=3) 1375.39 1410.50 1447.29 1489.77 1368.22 1384.25

rb5 (MELT=2) 1315.34 1355.12 1418.45 1433.10 1462.85 1472.53

rb5 (MELT=3) 1371.65 1411.75 1446.33 1490.16 1364.34 1386.79

rb6 (MELT=2) 1834.07 2055.36 2139.22 2743.28 2961.18 3101.63

rb6 (MELT=3) 1851.40 2121.46 2137.32 2908.11 3138.46 3235.82

rb7 (MELT=2) 2079.85 2091.77 2406.82 2826.85 3052.28 3128.04

rb7 (MELT=3) 1728.44 1768.35 1916.17 2066.12 2030.17 2124.82

rb8 (MELT=2) 2061.58 2087.47 2511.27 2833.20 3052.79 3128.73

rb8 (MELT=3) 1726.98 1766.26 1871.81 2038.05 1998.76 2069.93

rb9 (MELT=4) 1603.72 1672.13 2075.09 2349.55 2453.04 2643.53

128 256 512
no PAD. PADDING no PAD. PADDING no PAD. PADDING

rb1 (MELT=1) 2637.98 2673.35 2801.20 2823.32 2139.93 2412.95

rb2 (MELT=1) 2642.36 2667.40 2794.10 2794.10 2178.04 2495.04

rb3 (MELT=1) 2661.24 2664.53 2840.70 2840.70 2150.20 2500.19

rb4 (MELT=2) 1368.15 1380.44 1370.40 1375.65 1248.74 1292.01

rb4 (MELT=3) 1386.74 1393.14 1359.37 1368.66 1377.90 1427.34

rb5 (MELT=2) 1367.39 1379.36 1371.12 1373.43 1248.87 1292.34

rb5 (MELT=3) 1388.05 1398.70 1359.08 1369.72 1386.58 1425.09

rb6 (MELT=2) 3362.78 3445.60 3453.84 3513.04 2009.28 2561.72

rb6 (MELT=3) 3677.55 3710.23 3376.07 3487.90 1372.93 2390.08

rb7 (MELT=2) 3461.82 3553.01 3597.04 3625.99 1976.21 2619.95

rb7 (MELT=3) 2190.06 2207.63 2038.09 2109.38 1332.34 1833.58

rb8 (MELT=2) 3488.76 3549.89 3553.04 3618.60 1995.86 2620.77

rb8 (MELT=3) 2124.59 2152.84 2033.73 2054.91 1355.92 1788.43

rb9 (MELT=4) 2785.56 2965.07 2262.49 2981.07 864.31 2079.22

1024 2048 4096
no PAD. PADDING no PAD. PADDING no PAD. PADDING

rb1 (MELT=1) 1530.51 1904.80 1012.56 1130.23 827.73 908.38

rb2 (MELT=1) 1135.85 2012.24 1108.30 1322.43 909.35 1060.96

rb3 (MELT=1) 1138.72 1995.31 1108.83 1311.42 909.32 1060.65

rb4 (MELT=2) 691.73 1366.76 645.31 1198.68 607.49 1048.54

rb4 (MELT=3) 699.54 1405.66 664.97 1283.75 625.90 1096.99

rb5 (MELT=2) 691.23 1364.57 644.51 1191.35 607.49 1047.26

rb5 (MELT=3) 700.39 1406.21 664.47 1283.65 625.21 1093.09

rb6 (MELT=2) 797.33 2405.67 424.95 1228.52 425.91 1202.53

rb6 (MELT=3) 740.90 2385.51 377.16 1046.89 359.09 985.14

rb7 (MELT=2) 769.53 2319.02 490.97 1336.46 465.97 1248.94

rb7 (MELT=3) 706.90 1658.36 598.65 1132.00 555.64 988.34

rb8 (MELT=2) 888.24 2507.34 460.97 1087.26 474.43 1193.49

rb8 (MELT=3) 713.10 1670.59 551.20 1201.43 464.93 954.55

rb9 (MELT=4) 444.54 1928.21 353.77 1248.75 348.30 1058.10

Table 3. MFlops achieved by the different DIME’s variants of the red-black Gauß-Seidel for a
9-point Laplace stencil. MELT denotes the number of successive iterations of this smoother.

16 32 64
no PAD. PADDING no PAD. PADDING no PAD. PADDING

rb1 (MELT=1) 846.24 845.91 1134.27 1172.41 1321.73 1348.14

rb2 (MELT=1) 950.62 1034.2 1042.20 1414.47 1126.24 1656.04

rb3 (MELT=1) 962.94 964.20 1248.63 1278.89 1371.60 1464.29

rb4 (MELT=2) 746.65 747.42 760.19 764.49 740.99 748.75

rb4 (MELT=3) 780.77 783.89 782.92 793.98 752.32 770.89

rb5 (MELT=2) 623.14 627.04 602.06 607.46 561.58 564.05

rb5 (MELT=3) 662.97 670.53 624.34 636.21 586.11 598.19

rb6 (MELT=2) 796.40 802.01 837.04 848.68 835.16 848.87

rb6 (MELT=3) 777.82 977.49 1094.88 1159.87 1125.33 1173.56

rb7 (MELT=2) 791.24 819.63 809.41 852.67 813.76 821.87

rb7 (MELT=3) 916.94 932.90 1007.62 1038.20 1029.50 1066.33

rb8 (MELT=2) 818.48 846.73 857.17 883.96 858.65 868.43

rb8 (MELT=3) 919.03 936.28 1007.72 1038.38 1047.92 1084.02

rb9 (MELT=4) 817.50 837.66 937.08 983.44 1039.88 1101.31

128 256 512
no PAD. PADDING no PAD. PADDING no PAD. PADDING

rb1 (MELT=1) 1667.04 1670.97 1729.36 1759.88 1562.05 1554.85

rb2 (MELT=1) 1831.58 1925.38 2018.26 2067.22 1951.36 1941.23

rb3 (MELT=1) 1727.06 1747.52 1862.76 1857.99 1742.83 1715.75

rb4 (MELT=2) 698.13 699.38 696.54 696.83 719.67 731.25

rb4 (MELT=3) 765.17 766.85 755.06 753.95 727.05 737.16

rb5 (MELT=2) 564.48 564.48 558.92 560.02 545.81 548.25

rb5 (MELT=3) 585.55 585.71 575.29 576.74 560.88 564.15

rb6 (MELT=2) 864.13 863.54 868.21 868.07 675.26 836.98

rb6 (MELT=3) 1284.45 1286.39 1280.24 1293.26 765.69 1135.30

rb7 (MELT=2) 831.41 831.08 821.43 830.45 725.22 794.60

rb7 (MELT=3) 1083.47 1083.95 1076.12 1080.96 903.37 913.06

rb8 (MELT=2) 885.39 878.57 885.83 892.54 776.17 859.16

rb8 (MELT=3) 1104.18 1105.80 1099.24 1100.55 961.44 976.59

rb9 (MELT=4) 1130.08 1146.71 871.69 1147.63 532.22 868.32

1024 2048 4096
no PAD. PADDING no PAD. PADDING no PAD. PADDING

rb1 (MELT=1) 1209.56 1249.72 497.73 554.38 504.74 571.47

rb2 (MELT=1) 932.55 1656.93 374.89 521.46 420.05 574.23

rb3 (MELT=1) 1295.14 1468.16 583.47 671.95 662.89 632.52

rb4 (MELT=2) 679.67 717.89 593.96 659.83 593.07 663.24

rb4 (MELT=3) 691.21 726.90 611.44 681.95 609.99 684.88

rb5 (MELT=2) 386.53 554.37 366.12 535.87 367.82 533.03

rb5 (MELT=3) 388.97 561.67 373.21 542.73 374.81 546.64

rb6 (MELT=2) 361.31 594.64 274.79 566.75 273.87 567.97

rb6 (MELT=3) 317.80 552.96 285.76 449.79 274.89 445.53

rb7 (MELT=2) 436.52 653.60 340.72 685.85 359.81 570.45

rb7 (MELT=3) 618.65 1053.75 762.01 754.74 471.25 701.31

rb8 (MELT=2) 438.12 697.92 333.05 617.26 384.65 613.42

rb8 (MELT=3) 641.91 1073.55 760.33 795.94 497.73 663.63

rb9 (MELT=4) 339.64 896.80 290.39 617.66 278.66 573.70

