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Abstract. We describe an efficient numerical simulator, based on an op-
erator splitting technique, for three-phase flow in heterogeneous porous
media that takes into account capillary forces, general relations for the
relative permeability functions and variable porosity and permeability
fields. Our numerical procedure combines a non-oscillatory, second or-
der, conservative central difference scheme for the system of hyperbolic
conservation laws modeling the convective transport of the fluid phases
with locally conservative mixed finite elements for the approximation of
the parabolic and elliptic problems associated with the diffusive trans-
port of fluid phases and the pressure-velocity calculation. This numerical
procedure has been used to investigate the existence and stability of non-
classical waves (also called transitional or undercompressive waves) in
heterogeneous two-dimensional flows, thereby extending previous results
for one-dimensional problems.

1 Introduction

Three-phase flow in porous media is important in a number of scientific and
technological contexts. Examples include gas injection and thermal flooding in oil
reservoirs, flow of non-aqueous phase liquids in the vadose zone, and radio-nuclide
migration from repositories of nuclear waste. In this paper we are concerned with
the accurate numerical simulation of three-phase flow in heterogeneous porous
media.

Three-phase flow in a porous medium can be modeled, using Darcy’s law,
in terms of the relative permeability functions of the three fluid phases (say,
oil, gas, and water). Distinct empirical models have been proposed for the rel-
ative permeability functions [10, 13, 26, 17]. It is well known that for some of
these models [10, 26], which have been used extensively in petroleum engineer-
ing, the 2× 2 system of conservation laws (the saturation equations) that arises
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when capillarity (diffusive) effects are neglected fails to be strictly hyperbolic
somewhere in the interior of the saturation triangle (the phase space). This loss
of strict hyperbolicity leads to the frequent occurrence of non-classical waves
(also called transitional or undercompressive shock waves) in the solutions of
the three-phase flow model. Crucial to calculating transitional shock waves is
the correct modeling of capillarity effects [15].

We describe a numerical procedure, based on a two-level operator splitting
technique, for three-phase flow that takes into account capillary pressure dif-
ferences. This procedure combines a non-oscillatory, second order, conservative
central difference scheme, introduced by Nessyahu-Tadmor (NT) [24], for the nu-
merical approximation of the system of conservation laws describing the convec-
tive transport of the fluid phases with locally conservative mixed finite elements
for the approximation of the parabolic and elliptic problems associated with the
diffusive transport of fluid phases and the pressure-velocity calculation [23] (see
also [2–4]).

This numerical procedure has been used to indicate the existence of non-
classical transitional waves in multidimensional heterogeneous flows (see [3, 4]
for preliminary computational results), thereby extending previous results for
one-dimensional problems [22, 2]. The authors are currently investigating, with
the numerical procedure developed, the existence and stability (with respect to
viscous fingering) of transitional waves in heterogeneous formations as a first
step in the analysis of the scale-up problem for three-phase flow.

We list four distinctive aspects of our numerical scheme:

– Dimensional splitting is unnecessary. Recently, a “corrected” time-splitting
method for one-dimensional nonlinear convection-diffusion problems was in-
troduced in [18, 19] to better account for the delicate balance between the fo-
cusing effects of nonlinear convection, which lead to the formation of shocks,
and the smoothing effects of diffusion. As a consequence, this new method re-
duces considerably the error associated with viscous splitting, allowing accu-
rate large time-steps to be taken in the computation. However, the extension
of this method to multidimensional problems requires the use of dimensional
splitting. It is known that in the presence of strong multidimensional effects
the errors of dimensional splitting might be large (see [9]).

– Riemann solvers or approximate Riemann solvers are unnecessary.
– A CFL time-step restriction applies only to the hyperbolic part of the cal-

culation. The parabolic part of the calculation is performed implicitly, and
does not restrict the size of the time-steps for stability.

– We compute accurate velocity fields in the presence of highly variable perme-
ability fields by discretizing the elliptic equation with mixed finite elements.

Different approaches for solving numerically the three-phase flow equations
are discussed in [5, 7, 21].

The rest of this paper is organized as follows. In Section 2 we introduce the
model for three-phase flow in heterogeneous porous media that we consider. In
Section 3 we discuss strategies for solving the hyperbolic and diffusive problems



taking into account variable porosity fields. In Section 4 we present computa-
tional solutions for the model problem considered here. Conclusions appear in
section 5.

2 Governing equations for Three-Phase Flows

We consider two-dimensional, horizontal flow of three immiscible fluid phases
in a porous medium. The phases will be refereed to as water, gas, and oil and
indicated by the subscripts w, g, and o, respectively. We assume that there are
no internal sources or sinks. Compressibility, mass transfer between phases, and
thermal effects are neglected.

We assume that the three fluid phases saturate the pores; thus, with Si

denoting the saturation (local volume fraction) of phase i,
∑

i Si = 1, i = g, o, w.
Consequently, any pair of saturations inside the triangle of saturations 4 :=
{ (Si, Sj) : Si, Sj ≥ 0, Si + Sj ≤ 1, i 6= j} can be chosen to describe the state
of the fluid.

We refer the reader to [25, 3] for a detailed description of the derivation of the
phase formulation of the governing equations of three-phase flow. In our model
we shall work with the saturations Sw and Sg of water and gas, respectively.
Then, the equations governing the three-phase flow are as follows:

Saturation equations:

∂

∂t
(φ(x)Sw) + ∇ · (vfw(Sw, Sg)) = ∇ ·ww (1)

∂

∂t
(φ(x)Sg) + ∇ · (vfg(Sw, Sg)) = ∇ ·wg . (2)

The diffusion terms ww and wg that arise because of capillary pressure differ-
ences are given by

[ww,wg ]
T = K(x) B(Sw, Sg) [∇Sw,∇Sg ]

T
. (3)

Here, [a,b] denotes the 2-by-2 matrix with column vectors a and b, and B(Sw, Sg) =
QP ′, where

Q(Sw, Sg) =





λw(1 − fw) −λwfg

−λgfw λg(1 − fg)



 , P ′(Sw, Sg) =











∂pwo

∂Sw

∂pwo

∂Sg

∂pgo

∂Sw

∂pgo

∂Sg











. (4)

In the above, K(x) and φ(x) are the absolute permeability and the rock porosity
of the porous medium, respectively. λi(Sw, Sg) = ki/µi, i = w, g, denote the
phase mobilities, given in terms of the phase relative permeabilities ki and phase
viscosities µi. The fractional flow function of phase i is given by fi(Sw, Sg) =
λi/λ. The capillary pressures pij = pi − pj , i 6= j, where pi is the pressure in
phase i, are assumed to depend solely on the saturations.



Pressure-Velocity equations:

∇ · v = 0, (5)

v = −K(x)λ(Sw, Sg)∇po + vwo + vgo, (6)

where vwo and vgo are “correction velocities” defined by

vij = −K(x)λi(Sw, Sg)∇pij . (7)

Boundary and initial conditions for the system of equations (1)-(7) must be
imposed to complete the definition of the mathematical model. In particular, Sw

and Sg must be specified at the initial time t = 0.

3 The Numerical Simulator

We employ a two-level operator-splitting procedure for the numerical solution of
the three-phase flow system (1)-(7). Operator splitting techniques constitute one
of the several bridges between numerical and functional analysis. In numerical
analysis, they represent algorithms intended to approximate evolution equations
accurately in a computationally efficient fashion. In functional analysis, they
are used to prove estimates, existence and representation theorems. The survey
article [8] discusses both uses and point to a large bibliography.

The splitting technique discussed here allows for time steps for the pressure-
velocity calculation that are longer than those for the diffusive calculation, which,
in turn, can be longer than those for advection. Thus, we introduce three time
steps: ∆tc for the solution of the hyperbolic problem for the advection, ∆td for
the solution of the parabolic problem for the diffusive calculation and ∆tp for the
elliptic problem for the pressure-velocity calculation, so that ∆tp ≥ ∆td ≥ ∆tc.
We remark that in practice variable time steps are always useful, especially for
the advection micro-steps subject dynamically to a CFL condition.

The oil pressure and the Darcy velocity, Eqs. (5)-(7), are approximated at
times tm = m∆tp, m = 0, 1, 2, . . . using locally conservative mixed finite ele-
ments (see [3]). The linear system of algebraic equations that arises from the
discretization can be solved by a preconditioned conjugate gradient procedure
(PCG) or by a domain decomposition procedure [11, 4, 3].

The saturations Sw and Sg are approximated at times tn = n∆td, n =
1, 2, . . . in the diffusive calculation; recall that they are specified at t = 0. For
t > 0 these values are obtained from last solution of the hyperbolic subsystem of
conservation laws modeling the convective transport of the fluid phases. In this
stage the parabolic subsystem associated to the system (1)-(4) is solved. Locally
conservative mixed finite elements are used to discretize the spatial operators in
the diffusion system. The time discretization of the latter is performed by means
of the implicit backward Euler method (see [3]).

In addition, there are values for the saturations computed at intermediate
times tn,κ = tn +k∆tc for tn < tn,κ ≤ tn+1 that take into account the convective
transport of water and gas but ignore the diffusive effects. In these intermediate



times the subsystem of nonlinear conservation laws is approximated by a non-
oscillatory, second order, conservative central difference scheme (see [24, 3]).

We refer to [3, 2] for a detailed description of the fractional-step procedure.

3.1 The NT central scheme for variable porosity fields

In this section we discuss a possible implementation of the NT central differ-
encing scheme for variable porosity fields (see [24] for the original scheme) and
its application to the solution of the hyperbolic subsystem associated with sys-
tem (1)-(4). For brevity, we only discuss the ideas for a scalar conservation law
and in one space dimension. The simplicity of the extension of the ideas to sys-
tems of equations, by a component-wise application of the scalar scheme, and to
multi-dimensions is one of the hallmarks of the NT scheme.

The key features of the NT scheme are: a non-oscillatory, piecewise linear
(bilinear in two-space dimension) reconstruction of the solution point-values from
their given cell averages and central differencing based on the staggered evolution
of the reconstructed averages.

Consider the following scalar conservation law,

∂

∂t
(φ s) +

∂

∂x
f(s) = 0, (8)

where φ = φ(x) is the porosity and s = s(x, t) is the saturation (the volume
fraction of one of the fluid phases). At each time level, a piecewise constant
approximate solution over cells of width ∆x = xj+ 1

2
− xj− 1

2
(see Figure 1),

s(x, t) = sj(t), xj− 1
2
≤ x ≤ xj+ 1

2
, (9)

is first reconstructed by a piecewise linear approximation of the form

Lj(x, t) = sj(t) + (x − xj)
1

∆x
s′j(t), xj− 1

2
≤ x ≤ xj+ 1

2
, (10)

using nonlinear MUSCL-type slope limiters (see [24] and references therein) to
prevent oscillations. This reconstruction compensates the excessive numerical
diffusion of central differencing. We observe that (9) and (10) can be interpreted
as grid projections of solutions of successive noninteracting Riemann problems
which are integrated over a staggered grid (xj ≤ x ≤ xj+1; see Figure 1). The
form (10) retains conservation, i.e., (here the over-bar denotes the [xj− 1

2
, xj+ 1

2
]-

cell average),

L̄j(x, t) = s̄(x, t) = sj(t). (11)

Second-order accuracy is guaranteed if the numerical derivatives, defined as
1

∆x
s′j , satisfy (see [24]):

1

∆x
s′j(t) =

∂

∂x
s(x = xj , t) + O(∆x). (12)



In the second stage, the piecewise linear interpolant (10) is evolved in time
through the solution of successive noninteracting Generalized Riemann (GR)
problems (see Figure 1),

s(x, t + ∆tc) = GR(x, t + ∆tc; Lj(x, t), Lj+1(x, t)), xj < x < xj+1. (13)

The resulting solution (13) is then projected back into the space of staggered
piecewise constant grid-functions to yield

sj+ 1
2
(t + ∆tc)φj+ 1

2
≡ 1

∆x

∫ xj+1

xj

φ(x)s(x, t + ∆tc) dx, (14)

where φj+ 1
2

is the average value of φ(x) on the cell [xj , xj+1]. In view of the

conservation law (8),

sj+ 1
2
(t + ∆tc)φj+ 1

2
=

1

∆x

[
∫ x

j+ 1
2

xj

φ(x)Lj(x, t) dx +

∫ xj+1

x
j+ 1

2

φ(x)Lj+1(x, t) dx

]

− 1

∆x

[
∫ t+∆tc

t

f(s(xj+1, τ)) dτ −
∫ t+∆tc

t

f(s(xj , τ)) dτ

]

.

(15)
The first two integrands on the right of (15), Lj(x, t) and Lj+1(x, t), can be
integrated exactly. We remark that the porosity is assumed to be constant on
cells, φ(x) = φj for xj ≤ x ≤ xj+1. Moreover, if the CFL condition

∆tc
∆x

max
xj≤x≤xj+1

{

f ′(s(x, t))

φ(x)

}

<
1

2
, (16)

holds, then the last two integrands on the right of (15) are smooth functions
of τ . Hence, they can be integrated approximately by the midpoint rule, at the
expense of an O(∆t3) local truncation error, to yield the following corrector step,

sj+ 1
2
(t + ∆tc)φj+ 1

2
=

1

2
[φjsj(t) + φj+1sj+1(t)] +

1

8
[φjs

′
j(t) − φj+1s

′
j+1(t)]

−αx

[

f
(

s
(

xj+1, t + ∆tc

2

))

− f
(

s
(

xj , t + ∆tc

2

))]

,
(17)

where αx = ∆tc/∆x.
We observe that the spatial integration in (15) is performed over the entire

Riemann fan, which consists of both left- and right-going waves. This is the dis-
tinctive feature of the NT scheme. On the one hand, this integration eliminates
the need of any detailed knowledge about the exact (or approximate) generalized
Riemann solver GR(·; ·, ·); on the other hand, it facilitates accurate computa-

tion of the numerical flux,
∫ t+∆tc

t
f(s(xj , τ))dτ , whose values are extracted from

the smooth interface of two noninteracting generalized Riemann problems (see
Figure 1).



x

Lj(x, t)

1

∆ x
s′j+1

xj xj+1 xj+ 3
2

xj− 1
2

xj+ 1
2

Lj+1(x, t)
1

∆ x
s′j

sj(t)

sj+ 1
2
(t + ∆tc)

sj+1(t)

Fig. 1. Evolution from the time level t to the time level t + ∆tc. The porosity is
assumed to be piecewise constant, with constant values on the cells of the original grid:
φ(x) = φj , xi−1/2 ≤ x ≤ xi+1/2.

By Taylor expansion and the conservation law (8),

s(xj , t + ∆tc/2) = sj(t) −
1

2φj

αxf ′
j(t), (18)

may serve (as predictor step) for the approximation of the saturation mid-values
of the numerical fluxes that appears in (17) within the permissible second-order
accuracy requirement. Here, 1

∆x
f ′

j stands for an approximate numerical deriva-
tive of the numerical flux f(s(x = xj , t)),

1

∆x
f ′

j(t) =
∂

∂x
(f(s(x = xj , t))) + O(∆x). (19)

Next, a piecewise linear interpolant is reconstructed

Lj+ 1
2
(x, t+∆tc) = sj+ 1

2
(t+∆tc)+(x−xj+ 1

2
)

1

∆x
s′

j+ 1
2

(t + ∆tc), xj ≤ x ≤ xj+1,

(20)
again using nonlinear slope limiters, and then averaged over the original grid to
yield the non-staggered cell average

st+∆tc

j =
1

2
(st+∆tc

j+ 1
2

+ st+∆tc

j− 1
2

) +
1

8
(s′

t+∆tc

j− 1
2

− s′
t+∆tc

j+ 1
2

). (21)

(Here st+∆tc

j ≡ sj(t + ∆tc).)



Remarks:

1) The NT central differencing scheme for the approximation of the hyperbolic
conservation law (8) can be written in the form of three separate steps: a pre-
diction step (18), a correction step (17), and projection step (21).

2) The numerical derivatives that appear in equations (17), (18), and (21) should
obey the accuracy constraints (12) and (19). The second-order accurate correc-
tion step (17) augments the first-order accurate prediction step (18), and results
in a high-resolution second-order central difference approximation of (8).

3) To guarantee the desired non-oscillatory property of these approximations,
the numerical derivatives 1

∆x
s′j and 1

∆x
f ′

j must be carefully chosen [24] (see [3]
for our choice).

4) To solve the hyperbolic subsystem associated to the system (1)-(4) we use a
component-wise extension [24] of the NT scheme for scalar equations discussed
above.

5) The CFL condition for the subsystem of hyperbolic conservation laws assumes
the form

∆tc
∆x

max
xj≤x≤xj+1

ρ

(

1

φ(x)
J(fw, fg)

)

<
1

2
, (22)

where ρ(A) denotes the spectral radius of matrix A and J(fw, fg) is the Jacobian
matrix of the fractional flow functions associated to the system (1)-(4).

3.2 Numerical approximation of the diffusive system with variable

porosity field

We discuss a numerical procedure in two space dimensions that we employ for
the solution of the parabolic subsystem associated to the system (1)-(4). This
procedure combines a domain decomposition technique with an implicit time
backward Euler method (see [3]) in the construction of an efficient iterative
method which allows for variable porosity.

We consider an element-by-element domain decomposition and require that
the pairs (Swj

,wwj
) and (Sgj

,wgj
) (where Sij

= Si|Ωj
, i = w, g.) be a solution

of the subsystem associated with (1)-(4) for x ∈ Ωj , j = 1, . . . , M . It is also
necessary to impose the consistency conditions,

Swj
= Swk

, Sgj
= Sgk

x ∈ Γjk ,
wwjk

· νj + wwkj
· νk = 0, wgjk

· νj + wgkj
· νk = 0, x ∈ Γjk ,

(23)

where νj is a outward normal unit vector of the element Ωj .
In order to define an iterative method to solve the above problem, it will be

convenient to replace the consistency conditions in Eq. (23) by the equivalent
Robin transmission boundary conditions [12]. These consistency conditions are
given by

−χwjk
wwj

· νjj
+ Swj

= χwjk
wwk

· νjk
+ Swk

, x ∈ Γjk ⊂ ∂Ωj , (24)

−χwkj
wwk

· νjk
+ Swk

= χwkj
wwj

· νjj
+ Swj

, x ∈ Γkj ⊂ ∂Ωk, (25)



−χgjk
wgj

· νjj
+ Sgj

= χgjk
wgk

· νjk
+ Sgk

, x ∈ Γjk ⊂ ∂Ωj , (26)

−χgkj
wgk

· νjk
+ Sgk

= χgkj
wgj

· νjj
+ Sgj

, x ∈ Γkj ⊂ ∂Ωk, (27)

where χwjk
and χgjk

are positive functions on Γjk (see [12]).
We consider the lowest index Raviart-Thomas space [23] over Ωj to approxi-

mate the pairs (Sw,ww) and (Sg ,wg). The degrees of freedom on an element Ωj

are the values Swj
and Sgj

and the two values wwjβ
and wgjβ

, β = L, R, B, T ,

of the diffusive fluxes across the edge of the elements. We shall also introduce
the Lagrange multipliers `wβ

and `gβ
, β = L, R, B, T , for the water and gas

saturations, respectively, on Γjk ; these multipliers are constant on each edge.
So, after some standard calculations the discrete form of the parabolic sub-

system can be written as (see [1, 11]):

φj

(

Swj
− S̄wj

∆td

)

− 1

hx

(wwjR
+ wwjL

) +
1

hy

(wwjU
+ wwjD

) = 0, (28)

wwjβ
B−1

11β
+ wgjβ

B−1

12β
=

2

hx

(Swj
− `wjβ

), β = L, R, (29)

wwjβ
B−1

11β
+ wgjβ

B−1

12β
=

2

hy

(Swj
− `wjβ

), β = B, T, (30)

φj

(

Sgj
− S̄gj

∆td

)

− 1

hx

(wgjR
+ wgjL

) +
1

hy

(wgjU
+ wgjD

) = 0, (31)

wwjβ
B−1

21β
+ wgjβ

B−1

22β
=

2

hx

(Sgj
− `gjβ

), β = L, R, (32)

wwjβ
B−1

21β
+ wgjβ

B−1

22β
=

2

hy

(Sgj
− `gjβ

), β = B, T, (33)

where B−1

ijβ
are the entries of the inverse matrix B−1(`wβ

, `gβ
) = (QP ′)−1(`wβ

, `gβ
).

Here a trapezoidal rule is used for the evaluation of the pertinent integrals in
the derivation of Eqs. (28)-(30) and Eqs. (31)-(33). To simplicity of notation, in
this section φj means the value of the porosity in the element Ωj .

Define an iterative scheme for the solution of the parabolic subsystem by
applying Eqs. (24)-(25) to Eqs. (29)-(30) and Eqs. (26)-(27) to Eqs. (32)-(33)
to express all Lagrange multipliers in terms of Lagrange multipliers and fluxes
associated with adjacent elements. This scheme, developed in [1, 3] for constant
porosity (see also [11]) is a natural extension for parabolic systems of the proce-
dure introduced in [12] for scalar elliptic and parabolic problems.

The time discretization for the equations (28)-(33) is performed by means
of the implicit backward Euler method (see [3]). Note that S̄w and S̄g are the
initial conditions for the diffusive (discrete form) system (28)-(33).

4 Numerical Experiments

We consider the following Riemann problem for the numerical experiments re-
ported in this work:

SL
w = 0.721 SL

g = 0.279 and SR
w = 0.05 SR

g = 0.15. (34)



We take the Leverett model [20] for capillary pressure which is given by

pwo = 5ε(2 − Sw)(1 − Sw) and pgo = ε(2 − Sg)(1 − Sg), (35)

where the coefficient ε controls the relative importance of convective and diffusive
forces. We take ε = 0.001 and fluid viscosities µo = 1.0, µw = 0.5, and µg = 0.3.

We adopt two distinct sets of relative permeability functions in our numerical
experiments. These sets are particular choices of the following expressions

kw = S2
w, ko = S2

o , and kg = (1 − αg)S
2
g + αgSg , 0 ≤ αg ≤ 1. (36)

By setting the parameter αg = 0 we obtain the classical immiscible Corey-type
model for phase relative permeabilities. For this model, the subsystem of conser-
vation laws modeling phase convection loses strict hyperbolicity at a particular
point in the interior of the saturation triangle, whose location is determined by
the fluid viscosities. It is well known that non-classical transitional shock waves
typically arise in solutions of this model, and that their correct computation
requires the precise modeling of capillarity effects. See [6] for some experimental
evidence of the occurrence of transitional shock waves.

Following [16], any choice

αg >
µg√
µw µo

(37)

leads to a strictly hyperbolic subsystem of conservation laws for the convective
transport of fluid phases.

The boundary conditions and injection and production specifications for
three-phase flow equations (1)-(7) are as follows. For the horizontal slab ge-
ometry (Figure 2), injection is performed uniformly along the left edge (x = 0
m) of the reservoir (see top picture in Figure 2) and the (total) production rate
is taken to be uniform along the right edge (x = 512 m); no flow is allowed along
the edges appearing at the top and bottom of the reservoir. In the case of a five-
spot geometry (Figure 3), injection takes place at one corner and production at
the diametrically opposite corner; no flow is allowed across the entirety of the
boundary. In the simulations reported in Figures 2, 3, and 4 (right column) the
Corey-type model was used (αg = 0).

Note in Figure 3 that low porosity region drives a fast finger towards this
region (see top left picture in Figure 3). This finger is better resolved under
refinement (see bottom left and right pictures in Figure 3).

For the study reported in Figure 2 we consider a scalar absolute permeability
field K(x) taken to be log-normal (a fractal field, see [14] and references therein
for more details) with moderately large heterogeneity strength. The spatially
variable permeability field is defined on 512 × 128 grid with the coefficient
of variation Cv (standard deviation)/mean: 0.5. The porosity field is piecewise
constant with two distinct alternating values, 0.1 and 0.3 (see top picture in
Figure 2).

Next we turn to a 1D comparison between the two models for phase rela-
tives permeabilities. Figure 4 shows that the numerical solution of (1)-(7) with



Riemann problem data (34) for the Corey-type model (αg = 0) a transitional
shock wave is simulated (right) which is not present in the solution model with
αg = 0.43 (left) that leads to a strictly hyperbolic subsystem of conservation
laws modeling the convective transport of fluid phases for three-phase flow.

5 Conclusions

We described the development of a numerical simulation tool for three-phase
immiscible incompressible flow. The porous medium may be heterogeneous with
variable porosity and permeability fields. General relations for the relative per-
meability functions may also be used. It may lead to the loss of strict hyper-
bolicity and, thus, to the existence of an elliptic region or an umbilic point for
the system of nonlinear hyperbolic conservation laws describing the convective
transport of the fluid phases.

We reiterate that transitional waves are related to the immiscible Corey-
type model for phase relative permeabilities and to the existence of an umbilic
point and it has a strong dependency upon the physical diffusion being modeled
(see [15] and references therein). Thus, their accurate computation constitutes
a difficult test for numerical simulators.

This numerical procedure has been used to investigate the existence and sta-
bility of non-classical waves (also called transitional or undercompressive waves)
in heterogeneous two-dimensional flows, thereby extending previous results for
one-dimensional problems.
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Fig. 3. Mesh refinement study in a 5-spot pattern reservoir after 250 days of simulation.
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in a small rectangular region where the finger develops and 0.2 elsewhere. The 128 m
× 128 m reservoir is discretized with computational grid having 64 × 64 (top right),
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Fig. 4. Oil and gas saturation profiles are shown as a function of dimensionless distance
from top to bottom at time 750 days for two models of phase relative permeabilities. We
remark that for the choice αg = 0 a transitional (intermediate) shock wave is simulated
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αg = 0.43 (left) that leads to a strictly hyperbolic subsystem of conservation laws.
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