
Ja
eV: a Programming and Exe
utionEnvironment for Asyn
hronous IterativeComputations on Volatile NodesJa
ques M. Bahi, Raphaël Couturier, and Philippe VuilleminLIFC, University of Fran
he-Comté, Fran
e⋆ ⋆ ⋆†{ja
ques.bahi,raphael.
outurier,philippe.vuillemin}�iut-bm.univ-f
omte.fr,WWW home page: http://info.iut-bm.univ-f
omte.fr/and/Abstra
t. In this paper we present Ja
eV, a multi-threaded Java basedlibrary designed to build asyn
hronous parallel iterative appli
ations(with dire
t
ommuni
ations between
omputation nodes) and exe
utethem in a volatile environment. We des
ribe the
omponents of the sys-tem and evaluate the performan
e of Ja
eV with the implementation andexe
ution of an iterative appli
ation with volatile nodes.Key words: Asyn
hronous iterative algorithms,
omputational s
ien
e prob-lems, desktop grid
omputing, volatile nodes.1 Introdu
tionNowadays, PCs and workstations are be
oming in
reasingly powerful and
om-muni
ation networks are more and more stable and e�
ient. This leads s
ientiststo
ompute large s
ienti�
 problems on virtual parallel ma
hines (a set of net-worked
omputers to simulate a super
omputer) rather than on expensive super-
omputers. However, as the node
ount in
reases, the reliability of the parallelsystem de
reases. As a
onsequen
e, failures in the
omputing framework makeit more di�
ult to
omplete long-running jobs. Thus, several environments havebeen proposed to
ompute s
ienti�
 appli
ations on volatile nodes using
y
lestealing
on
epts. In this paper, we
onsider as volatile node any volunteer per-sonal
omputer
onne
ted to a network (WAN or LAN1) that
an be used asa
omputational resour
e during its idle times. The aim of this work is to runs
ienti�

omputations in su
h a volatile framework.In this paper, we are interested in iterative algorithms. Those algorithms areusually employed for sparse systems (like some linear systems) or when dire
tmethods
annot be applied to solve s
ienti�
 problems (e.g. for polynomial root�nders). In the parallel exe
ution of iterative algorithms,
ommuni
ations mustbe performed between
omputation nodes after ea
h iteration in order to satisfy
⋆ ⋆ ⋆ Candidate to the Best Student Paper Award

† this work was supported by the �Conseil Régional de Fran
he-Comté�1 World Area Network or Lo
al Area Network

2all the
omputing dependen
ies. For that reason, the reliability of the system isa very important feature in su
h a
ontext and
an be
ome a limiting fa
tor fors
alability. Hen
e, it is ne
essary to study this reliability a

ording to the di�er-ent
lasses of parallelism. We
onsider three
on
epts (or
lasses) of parallelismwith di�erent
hara
teristi
s.1. Grid
omputing environments enable the sharing and aggregation of a widevariety of geographi
ally distributed
omputational resour
es (su
h as su-per
omputers,
omputing
lusters...). In su
h ar
hite
tures,
ommuni
ationsare very fast and e�
ient and the topology of the system is quite stable.2. Desktop grid
omputing environments (also
alled Global Computing) ex-ploit unused resour
es in the Intranet environments and a
ross the Internet(e.g. the SETI�home proje
t [2℄). In this
lass of parallelism, the ar
hi-te
ture is fully
entralized (
lient-server-based
ommuni
ations), tasks areindependent and the topology of the system is
ompletely dynami
 (nodesappear and disappear during the
omputation).3. Peer-To-Peer (P2P) environments are networks in whi
h ea
h workstationhas equivalent
apabilities and responsibilities. The ar
hite
ture is
om-pletely de
entralized (peers dire
tly
ommuni
ate between ea
h other) andthe topology of the system is
ompletely dynami
.As reliability is generally ensured in a Grid
omputing
ontext, we do not
onsider this
lass; furthermore, several frameworks are already available to im-plement and run parallel iterative appli
ations in su
h environments. Con
erningDesktop grid, although this
lass
an provide mu
h more resour
es than the �rstone, it is generally not dire
tly suitable for parallel iterative
omputations aslong as
ommuni
ation is restri
ted to the master-slave model of parallelism.For that reason we would like to gather fun
tionalities and
hara
teristi
sof the latter two
ases: 1) a
entralized ar
hite
ture to manage all the nodes ofthe system akin to a Desktop grid environment with volatile nodes and 2) dire
t
ommuni
ations between
omputation nodes like in P2P environments. The pur-pose of this paper is to des
ribe a programming environment allowing users toimplement and run parallel asyn
hronous iterative algorithms on volatile nodes.Asyn
hronous algorithms
an be used in a signi�
ant set of appli
ations. Indeed,s
ienti�
 appli
ations are often des
ribed by systems of di�erential equationswhi
h lead, after dis
retization, to linear systems Ax = b where A is a M-matrix(i.e. Aii > 0 and Aij ≤ 0 and A is nonsingular with A−1 ≥ 0). A
onvergentweak regular splitting
an be derived from any M-matrix and any iterative al-gorithm based on this multiplitting
onverges asyn
hronousely (see [1, 4, 10℄ andthe referen
es therein).As idle times and syn
hronizations are suppressed in the asyn
hronous it-eration model (i.e. a
omputing node
an
ontinue to exe
ute its task withoutwaiting for its neighbor results), we do believe this solution is the most suitablein an environment with volatile nodes. Furthermore,
omputations formulated inparallel asyn
hronous iterative algorithms are mu
h less sensitive to heterogene-ity of
ommuni
ation and
omputational power than
onventional syn
hronousparallel iterative algorithms.

3We do not
onsider the syn
hronous iteration model be
ause it is neither
onvenient for this volatile framework, nor for the heterogeneity and s
alability.In this paper, we des
ribe Ja
eV, a multi-threaded Java based library de-signed to build asyn
hronous parallel iterative appli
ations (with dire
t
om-muni
ations between
omputation nodes) and exe
ute them in a desktop gridenvironment with volatile nodes. To the best of our knowledge, this work is the�rst one presenting a volatile exe
ution environment with dire
t
ommuni
ationsbetween
omputing nodes and allowing the development of a
tual s
ienti�
 ap-pli
ations with interdependent tasks.The following se
tion presents a survey of desktop grid and volatility tolerantenvironments. Se
tion 3 presents the ar
hite
ture of Ja
eV and an overview ofall its
omponents. Se
tion 4 des
ribes the s
ienti�
 appli
ation implementedwith Ja
eV (the Poisson problem) in order to perform experiments. Se
tion 5evaluates the performan
e of Ja
eV by exe
uting the appli
ation in di�erent
ontexts with volatile nodes. In se
tion 6, we
on
lude and some perspe
tivesare given.2 Related workCy
le stealing in a LAN environment has already been studied in the Condor [9℄and Atlas [3℄ proje
ts. However, the
ontext of LAN and the Internet are dras-ti
ally di�erent. In parti
ular, s
heduling te
hniques [7, 8℄ need to be adaptedfor a Global Computing environment due to: 1) the very di�erent
ommuni
a-tion and
omputing performan
e of the targeted hosts, 2) the sporadi
 Internet
onne
tion and 3) the high frequen
y of faulty ma
hines.MPICH-V and MPICH-V2 [11, 13℄ (message passing APIs2 for automati
Volatility tolerant MPI environment) have been proposed for volatile nodes.However, MPI is not a multi-threaded environment. As a
onsequen
e, it isnot suitable for asyn
hronous iterations in whi
h it is
onvenient to separate
ommuni
ations and
omputation.XtremWeb [16℄ is a Desktop Grid and Global Computing middleware whi
hallows users to build their own parallel appli
ations and uses
y
le stealing.However, this environment does not provide dire
t
ommuni
ations between thedi�erent
omputing nodes of the system. As a
onsequen
e, it is not suitable forimplementing and running parallel iterative appli
ations.Nin�et [6℄ is a Java-based global
omputing system. It is designed to over
omethe limitations of Ninf [5℄ that
urrently la
ks se
urity features as well as taskmigration. The goal of Nin�et is to be
ome a new generation of
on
urrentobje
t-oriented system whi
h harnesses abundant idle
omputing powers, andalso integrates global as well as lo
al network parallel
omputing. Unfortunately,as with the XtremWeb environment, Nin�et only applies Master-Worker patternand does not provide dire
t
ommuni
ations between
omputation nodes.In [15℄, no environment is proposed but the authors de�ne the requirementsfor an e�e
tive exe
ution of iterative
omputations requiring
ommuni
ation on2 Appli
ation Programming Interfa
es

4a desktop grid
ontext. They propose a
ombination of a P2P
ommuni
ationmodel, an algorithmi
 approa
h (asyn
hronous iterations) and a programmingmodel. Finally, they give some very preliminary results from appli
ation of theextended desktop grid for
omputation of Google pagerank and solution of asmall linear system.Ja
e [14℄ is a multi-threaded Java based library designed to build asyn-
hronous iterative algorithms and exe
ute them in a Grid environment. In Ja
e,
ommuni
ations are dire
tly performed between
omputation nodes (in a syn-
hronous or an asyn
hronous way) using the message passing paradigm imple-mented with Java RMI3. However, this environment is not designed to run ap-pli
ations on volatile nodes.3 The Ja
eV system3.1 The goal of Ja
eVAs des
ribed in the previous se
tion, Ja
e is fully suitable for running paralleliterative appli
ations (in a syn
hronous or asyn
hronous mode) in a Grid
om-puting
ontext where nodes do not disappear during
omputations. Then, it wasessential to
ompletely redesign the Ja
e environment in order to make it toler-ant to volatility. To do this, it is ne
essary to develop a strategy to periodi
allysave the results
omputed by ea
h node during the exe
ution in order to restart
omputations from a
onsistent global state [12℄ when faults o

ur.We propose Ja
eV, the volatility tolerant implementation of Ja
e (Ja
eV forJa
e Volatile). Ja
eV allows users to implement iterative appli
ations and runthem over several volatile nodes using the asyn
hronous iteration model anddire
t
ommuni
ations between pro
essors.Hen
e, when a
omputer is not used during a de�ned �nite time, it shouldautomati
ally
ontribute to
ompute data of a parallel iterative appli
ation al-ready running (or to be started) on the system. A
ontrario, when a user needsto work on this workstation, the resour
e must instantaneously be freed and thisnode must automati
ally be removed from the system. In this way, a volatilitytolerant system must both tolerate appearan
e and disappearan
e of
omputa-tion nodes without disturbing the �nal results of the appli
ations running on it.In fa
t, Ja
eV tolerates N simultaneous faults (N being the number of
ompu-tational resour
es involved in an appli
ation) without disturbing the results atall.3.2 Ar
hite
ture of the systemA Ja
eV appli
ation is a set of Task obje
ts running on several
omputationnodes. Like in Ja
e, the di�erent Task obje
ts of an appli
ation
ooperate byex
hanging messages and data to solve a single problem. The Ja
eV ar
hite
ture3 Remote Method Invo
ation

5
onsists of three entities whi
h are JVMs 4
ommuni
ating with ea
h others:1) the Daemons, 2) the Spawner and 3) the Dispat
her. Sin
e Ja
eV is basedon Ja
e, all the
ommuni
ations performed between the di�erent entities of thesystem are based on Java RMI and threads are used to overlap
ommuni
ationsby
omputations during ea
h iteration.The user of the Ja
eV system
ould play two types of roles, one being theresour
e provider (during idle times of his
omputer) and the other being appli-
ation programmer (the user who wants to run his own spe
i�
 parallel iterativeappli
ation on several volatile nodes). The resour
e provider will have a Dae-mon running on his host. The Daemon is the entity responsible for exe
uting aTask and we
onsider it is busy and not available when a Task is exe
uted on it(thereafter, we use the term Daemon and node indi�erently). On the other side,the appli
ation programmer implements an appli
ation (using the Java languageand the Ja
eV API) and a
tually runs it using the Spawner: this entity a
tuallystarts the appli
ation on several available Daemons.Finally, the Dispat
her is the
omponent in
harge of 1) registering all theDaemons
onne
ted to the system and managing them (i.e. dete
t the eventualdis
onne
tions and repla
e the nodes) 2) distributing the Task obje
ts of anappli
ation over the di�erent available nodes, 3) dete
ting the global
onvergen
eof a running appli
ation, and 4) storing the ba
kups of all the Tasks beingexe
uted.Three-tier ar
hite
tures are
ommonly used in fault tolerant platforms, like inNin�et, XtremWeb, et
. However, Ja
eV has the advantage to enable both dire
t
ommuni
ations between
omputing nodes and multi-threaded programming,whi
h is impossible with other existing environments. Furthermore, Ja
eV isthe only one to impli
itly provide an asyn
hronous iteration model by usingprimitives of its API. Therefore, Ja
eV is an original ar
hite
ture.3.3 The Dispat
herThe Dispat
her is the �rst entity to be laun
hed for the environment. We
onsiderit is running on a powerful and stable server. Therefore, all the data stored inthis entity are
onsidered as persistent. The Dispat
her is
omposed of threemain
omponents, 1) the Ja
eVDispat
hServer, 2) the GlobalRegister and 3) theAppli
ationManager.The Ja
eVDispat
her is the RMI server that
ontains all the methods re-motely invoked by the Daemons and the Spawner. It is laun
hed when the Dis-pat
her starts and is
ontinuously waiting for remote invo
ations.The GlobalRegister registers all the Daemons
onne
ted to the Ja
eV systemand also stores their
urrent state (the 'alive' and the 'busy' states, this will bedes
ribed in se
tion 3.4).Finally the Appli
ationManager indexes all the RunningAppli
ation obje
tsof the system. A RunningAppli
ation is a Ja
eV obje
t that models an appli
a-tion being
urrently exe
uted on the system: it
ontains for example attributes4 Java Virtual Ma
hines

6su
h as the URL where are available the
orresponding
lass �les of the appli-
ation, the number of Tasks, the optional arguments, et
.Ea
h RunningAppli
ation
ontains a single Register obje
t, whi
h is a sub-set of the GlobalRegister. During the exe
ution, the Register is automati
allyupdated in
ase of fault (due to a
rash or a user dis
onne
tion) of one of the
omputation node (it models the whole
on�guration at time t of the nodesrunning a given appli
ation and the mapping of the Tasks over the Daemons).The Dispat
her is also in
harge of storing the Task obje
ts saved (
alledBa
kups) during the
omputation in order to restart the appli
ation from a
onsistent global state in
ase of fault. A list stored in the RunningAppli
ationobje
t (the Ba
kupList) indexes ea
h Task
omposing an appli
ation. Hen
e,when a faulty node is repla
ed, the last Ba
kup of the Task it was
omputingis sent to the new Daemon in order to restart
omputations. As iterations aredesyn
hronized in the asyn
hronous model, the other nodes keep
omputingwithout stopping.Finally, the RunningAppli
ation obje
t is responsible for dete
ting the global
onvergen
e and halting the appli
ation when
onvergen
e is rea
hed. To do this,ea
h RunningAppli
ation obje
t manages an array
ontaining the lo
al states ofthe nodes involved in the
omputation. This array is a�e
ted ea
h time a lo
al
onvergen
e message is re
eived from the Daemons. When a node is in a lo
alstable state (i.e. the relative error between the last two iterations on this nodeis greater than a given threshold) after a given number of iterations, it sends1 to the Dispat
her, or else, it sends 0. The global state is
omputed on theDispat
her by testing all the
ells of the array, if they are all in stable state thenthe
onvergen
e is dete
ted and the Daemons
an stop
omputing.To summarize the ar
hite
ture of the Dispat
her, Figure 1 des
ribes themain obje
ts with the GlobalRegister on the left, the Ja
eVDispat
her (the RMIserver) on the right and the Appli
ationManager in the
enter.
ApplicationManager

Dispatcher

Register
Global

Server
RMI

RunningApplication 2

RunningApplication 1

Reg1

BackupList1

ConvTab1

nbTasks = 4

Reg2

BackupList2

ConvTab2

nbTasks = 3

N1

T3 T4T2

T3T2T1

N2
N3
N4

N5
N6
N7
N8
N9

N1 N3 N4 N6

N2 N5 N7

0 0 1 0

0 1 1

T1

Fig. 1. Des
ription of the Dispat
her elements.In this example, nine Daemons are
urrently registered to the Dispat
her(nodes N1 up to N9 in the GlobalRegister). Only seven nodes are a
tually busy(i.e.
omputing an appli
ation). They appear in grey in the GlobalRegister (inthe �gure, we represent the nodes in di�erent grey levels in order to di�erentiate

7the appli
ation being exe
uted on the
orresponding Daemon). In the Appli
a-tionManager, we
an see that two appli
ations are
urrently running, the �rstone (RunningAppli
ation1) is distributed over four nodes (whi
h are the nodesN1, N3, N4 and N6 in the
orresponding Register
alled Reg1) and the se
ondone (RunningAppli
ation2) over three nodes (whi
h are the nodes N2, N5 andN7 in the
orresponding Register
alled Reg2). This �gure also shows the Ba
k-ups stored on the Dispat
her for ea
h appli
ation being exe
uted (Ba
kupList1for the �rst appli
ation and Ba
kupList2 for the se
ond one). Every Ba
kupList
ontains a single Ba
kup obje
t for ea
h Task running on a Daemon. The lastelements appearing in the �gure are the
onvergen
e arrays (ConvTab1 for the�rst appli
ation and ConvTab2 for the se
ond one): with the values of Con-vTab1, we
an dedu
e that only Task T3 (exe
uted on node N4) is in a lo
al
onvergen
e state for the �rst appli
ation. Con
erning the se
ond appli
ation,we
an see that Tasks T2 and T3 (respe
tively running on nodes N5 and N7)have lo
ally
onverged to the solution.3.4 The DaemonWhen the Daemon is started, an RMI server is laun
hed on it and is
ontinuouslywaiting for remote invo
ations. Then, the Daemon 1)
onta
ts the Dispat
herin order to obtain its remote RMI referen
e 2) remotely registers itself on theGlobalRegister of the Dispat
her (where this Daemon is then labeled as availablebe
ause it has not been attributed an appli
ation yet), and 3) starts lo
ally theheartbeatThread : this thread periodi
ally invokes the beating remote method onthe Dispat
her RMI server to signal its a
tivity. The Dispat
her
ontinuouslymonitors these
alls to implement a timeout proto
ol: when a Daemon has not
alled for a su�
ient long time, it is
onsidered down in the GlobalRegister (i.e.it is labeled as notAlive). In
ase this node was exe
uting an appli
ation, theTask initially running on it should be res
heduled to a new available Daemonby reloading the last Ba
kup stored on the Dispat
her for the faulty node.On
e all those features are performed, the Daemon is initialized and ready tobe invoked by the Spawner in order to a
tually run
omputation Tasks. The mainobje
ts
omposing the Daemon are mostly the same as in the Ja
e environment(interested readers
an see [14℄ to have more details about the
omponents ofthe Ja
e Daemon and their intera
tion). However, several obje
ts have beendeeply modi�ed or added to the Ja
eV environment in order to ensure volatilitytoleran
e. Those
omponents are des
ribed in the following.The Daemon
ontains the Register of the appli
ation it is running and thisRegister is automati
ally updated by the Dispat
her when faults o

ur duringthe exe
ution. As the Register also
ontains the
omplete list of the nodes run-ning a given appli
ation and the mapping of the Tasks over them, the Daemon isalways aware of the topology of the system. This ensures dire
t
ommuni
ationsare
arried out between nodes be
ause the Register
ontains the remote refer-en
e RMI for ea
h Daemon. As a
onsequen
e, a given node
an invoke remotemethods on every Daemon running the same appli
ation. Furthermore, when a

8node re
eives a new Register, the re
ipient of all the Message obje
ts to be sentis automati
ally updated (if it has
hanged).Con
erning the Messages to send to other Daemons, as the asyn
hronismmodel is message loss tolerant, the Message is simply lost if the destination nodeis not rea
hable.3.5 The SpawnerThe Spawner is the entity that a
tually starts a user appli
ation. For this reason,when laun
hing the Spawner, it is ne
essary to give some parameters to de�nethis appli
ation: 1) the number of nodes required for the parallel exe
ution, 2)the URL where the
lass �les are available and �nally 3) the optional argumentsof the spe
i�
 appli
ation.Then, the Spawner sends this information to the Dispat
her that
reates anew RunningAppli
ation with the given parameters and a new Register
om-posed of the required number of available nodes appearing in the GlobalRegister(whi
h are then labeled as notAvailable). This Register is then attributed to theRunningAppli
ation and sent to the Spawner.Finally, when the Spawner re
eives the Register obje
t, it broad
asts it tothe whole nodes of the topology and then a
tually starts the
omputation onea
h of the Daemons.The whole intera
tion between the Ja
eV entities is des
ribed in Figure 2. Inthis example, we
an see the Daemon N1 (�g.2(a)) and then a set of Daemons(N2, N3 and N4, �g.2(b)) registering themselves to the Dispat
her. Those Dae-mons are then added to the GlobalRegister (Reg) and are labeled as availablebe
ause no appli
ation has been spawned on the system yet.In �g.2(
), the Spawner S1 laun
hes appli
ation appli1 whi
h requires twonodes. The Dispat
her
reates then a RunningAppli
ation obje
t for this appli-
ation and attributes it a Register obje
t (Reg1)
ontaining two available nodesof the GlobalRegister (N1 and N2 whi
h are then labeled as notAvailable andappear in grey level in the GlobalRegister). The Register is sent to N1 andN2 (in order to permit dire
t
ommuni
ations between the two nodes) and theappli
ation is a
tually run by the Spawner on those two Daemons.In �g.2(d), the Daemon N2
rashes (or is dis
onne
ted by its user). However,as the asyn
hronous iteration model is used in Ja
eV, N1 keeps
omputing anddoes not stop its job (the eventual messages to send to the Task running on N2will be lost until the node is repla
ed). The Dispat
her dete
ts this dis
onne
tionand labels N2 as notAlive in the GlobalRegister. Reg1 is then updated in theRunningAppli
ation obje
t (N2 is repla
ed by N3 whi
h is available) and thisnew Register is sent to the
orresponding Daemons (N1 and N3, the new one).Sin
e then, N1 is aware of the new topology of the system and updates the listof its neighbors (i.e it will no longer try to send messages to N2 but will dire
tlysend them to N3). Finally, the Dispat
her sends the appropriate Ba
kup to thenew node of the topology and
omputations
an restart on this Daemon.After several minutes, the Daemon is laun
hed again on node N2 (�g.2(e)).It is then labeled as alive and available in the GlobalRegister.

9

comm.

comm.

comm.

comm.

Reg

Dispatcher

Appli1

N1

N2

N3

N4

N1 N2Reg1

N1 N2Reg1

N1 N2Reg1

N1

N2

N3

N4

comm.

S1

Dispatcher

Appli1

N1

N2

N3

N4

N1 N3Reg1

N2 N4Reg2

Appli2

N1 N3Reg1

N2 N4Reg2

N1 N3Reg1

N2 N4Reg2

Reg

N4

N3

N2

N1

S2

Dispatcher

workerRegister()

Reg

N1

N3

N4

N2

N1

N2

N3

N4

Reg

Dispatcher

N1

N1

Dispatcher

Appli1 N1 N3Reg1

N1 N3Reg1

N1 N3Reg1

workerRegister()

Reg

N1

N2

N3

N4

N4

N3

N2

N1

(java jaceV.JaceV
Spawner 1

−Spawner 2 appli1)
(java jaceV.JaceV
Spawner 2

−Spawner 2 appli2)

update()

update()

workerRegister()

workerRegister()

update()

update()
Reg

Dispatcher

Appli1

N1

N2

N3

N4

N1 N3Reg1

N1 N3Reg1

N1 N3Reg1

N3

N2

N1

(a) A Daemon (node N1) registers itself

(c) The application ’appli1’ is spawned for

(e) Node N2 registers itself again to the Dispatcher

(f) The application ’appli2’ is spawned for two nodes

update()

update()

N4

CRASH !

(b) Three Daemons (nodes N2 up to N4)

backup()

Daemon

Daemon

Daemon

Daemon

workerRegister()

(d) Node N3 replaces N2 that crashed for ’appli1’

two nodes

register themselves to the Dispatcher

to the Dispatcher

Fig. 2. The registering and spawning pro
esses in Ja
eV.Finally, in �g.2(f), the Spawner S2 laun
hes appli
ation appli2 that requirestwo nodes. The Dispat
her
reates the RunningAppli
ation obje
t for this appli-
ation, attributes it a new Register (Reg2) whi
h
ontains the last two availablenodes of the GlobalRegister (N2 and N4) and sends them Reg2 in order toenable dire
t
ommuni
ation between these Daemons. At the end, S2 a
tuallystarts
omputations on N2 and N4.4 Problem des
riptionIn this se
tion, we des
ribe the problem used for the experiments with Ja
eV. It
onsists of the Poisson equation dis
retized in two dimensions. This is a
ommonproblem in physi
s that models for instan
e heat problems. This linear ellipti

10partial di�erential equations system is de�ned as
−∆u = f. (1)This equation is dis
retized using a �nite di�eren
e s
heme on a square domainusing a uniform Cartesian grid
onsisting of grid points (xi, yi) where xi = i∆xand yj = j∆y. Let ui,j represent an approximation to u(xi, yi). In order to dis-
retize (1) we repla
e the x− and y−derivatives with
entered �nite di�eren
es,whi
h gives

ui−1,j − 2ui,j + ui+1,j

(∆x)2
+

ui,j−1 − 2ui,j + ui,j+1

(∆y)2
= −fi,j (2)Assuming that ∆x = ∆y = h are dis
retized using the same dis
retizationstep h, (2)
an be rewritten in

−4 ∗ ui,j + ui−1,j + ui+1,j + ui,j−1 + ui,j+1

h2
= −fi,j. (3)For this problem we have used Diri
hlet boundary
onditions.So, (1) is solved by �nding the solution of the following linear system of thetype A × x = b where A is a 5-diagonal matrix and b represents the fun
tion f .To solve this linear system we use a blo
k-Ja
obi method that allows us tode
ompose the matrix into blo
k matri
es and solve ea
h blo
k using an iterativemethod. In our experiments, we have
hosen the sparse Conjugate Gradientalgorithm. Besides, this method allows to use overlapping te
hniques that maydramati
ally redu
e the number of iterations required to rea
h the
onvergen
eby letting some
omponents to be
omputed by two pro
essors.From a pra
ti
al point of view, if we
onsider a dis
retization grid of size

n × n, A is a matrix of size (n2, n2).It should be noti
ed that, in the following, the number of
omponents bypro
essor is important and is a multiple of n, the number of
omponents of adis
retized line, and that the overlapped
omponents is less important than thisnumber of
omponents. The solution of this problem using parallelism involvesthat ea
h pro
essor ex
hanges, at ea
h Ja
obi iteration, its �rst n
omponentswith its prede
essor neighbor node and its last n ones with its su

essor neighbornode. The number of
omponents ex
hanged with ea
h neighbor is equal to n. Infa
t, we have only studied the
ase where the totality of overlapped
omponentsare not used by a neighbor pro
essor, only the �rst or last n
omponents areused be
ause the other
ase entails more data ex
hanged without de
reasing thenumber of iterations. So, whatever the size of the overlapped
omponents, theex
hanged data are
onstant.Moreover we re
all that the blo
k-Ja
obi method has the advantage to besolvable using the asyn
hronous iteration model if the spe
tral radius of theabsolute value of the iteration matrix is less than 1, whi
h is the
ase for thisproblem.Finally, the Poisson problem implemented using the Ja
eV API has the skele-ton des
ribed in Algorithm 1:

11Algorithm 1 The Poisson problem skeleton using the Ja
eV APIBuild the lo
al Poisson submatrixInitialize dependen
iesrepeatSolve lo
al Blo
k-Ja
obi subsystemAsyn
hronous ex
hange of nonlo
al data //with ja
eSend() and ja
eRe
eive()ja
eLobalConvergen
e() //Lo
al
onvergen
e dete
tionja
eSave() //Primitive used to save the Task obje
t on the Dispat
herja
eIteration++ //In
rement the iteration number of the Ba
kup to storeuntil ja
eGlobalConvergen
e()5 ExperimentsFor our experiments, we study the exe
ution times of the appli
ation over 16nodes a

ording to n (with n varying from 500 up to 1800, whi
h respe
tively
orresponds to matri
es of size 250,000×250,000 up to 3,240,000×3,240,000 be-
ause the problem size is n2). An optimal overlapping value is used for ea
h
n. These experiments are performed with di�erent
on�gurations of pro
essorsand networks. For ea
h
on�guration, we �rst run the appli
ation over 16 stablenodes, and then, for the exe
ution in a volatile
ontext, we laun
h 19 Daemonsand run the appli
ation over 16 of them. In the last
ase, our strategy for volatil-ity is to randomly dis
onne
t ea
h Daemon on average slightly less than twotimes during the whole exe
ution of the appli
ation and re
onne
t it a few se
-onds later (i.e. there are approximatively about 30 dis
onne
tions/re
onne
tionsfor ea
h exe
ution).We
hoose to perform those series of tests with di�erent
on�gurations ofpro
essors and networks. A

ording to pro
essors, we use both homogeneous andheterogeneous pro
essors. The �rst
ontext
onsists of a 19-workstation
lusterof Intel(R) Pentium(R) 4 CPU 3.00GHz pro
essors with 1024MB of RAM. Forthe heterogeneous
ase, we use 19 workstations from Intel(R) Pentium(R) IIICPU 1266MHz pro
essors with 256MB of RAM up to Intel(R) Pentium(R) 4CPU 3.00GHz with 1024MB of RAM. Then, we perform our tests with di�erentnetwork bandwidths.Finally our series of tests are performed using four
on�gurations of pro
es-sors and network, whi
h are des
ribed as follows.1. A
on�guration with homogeneous pro
essors and an Ethernet 1Gbps net-work,2. a
on�guration with homogeneous pro
essors and a 10,000Kbps upload anddownload bandwidth,3. a
on�guration with homogeneous pro
essors and a 1,000Kbps upload anddownload bandwidth,4. a
on�guration with heterogeneous pro
essors and an Ethernet 100Mbpsnetwork.

12 For the se
ond and the third
on�gurations, ea
h workstation of the
lusterruns a Qos5 s
ript in order to limit the network bandwidth to 10,000Kbps (for
on�guration 2) and 1,000Kbps (for
on�guration 3).Whatever the
on�guration used, the Dispat
her is running on an Intel(R)Pentium(R) 4 CPU 3.00GHz pro
essor with 1024MB of RAM.The results of the experiments are represented in �gure 3 and ea
h exe
utiontime is the average of a series of ten exe
utions.
 0

 500

 1000

 1500

 2000

 2500

 400 600 800 1000 1200 1400 1600 1800

T
im

e
(in

 s
)

n (problem size = n x n)

Stable nodes
Volatile nodes

(a) Homogeneous
on�guration. 0

 500

 1000

 1500

 2000

 2500

 3000

 400 600 800 1000 1200 1400 1600 1800

T
im

e
(in

 s
)

n (problem size = n x n)

Stable nodes
Volatile nodes

(b) 10,000Kbps
on�guration.
 0

 500

 1000

 1500

 2000

 2500

 3000

 400 600 800 1000 1200 1400 1600 1800

T
im

e
(in

 s
)

n (problem size = n x n)

Stable nodes
Volatile nodes

(
) 1,000Kbps
on�guration. 0

 500

 1000

 1500

 2000

 2500

 400 600 800 1000 1200 1400 1600 1800

T
im

e
(in

 s
)

n (problem size = n x n)

Stable nodes
Volatile nodes

(d) Heterogeneous
on�guration.Fig. 3. Exe
ution times of volatile and non volatile
ontexts for the di�erent
on�gu-rations.Analyzing the four �gures, we dedu
e that Ja
eV supports rather well thevolatile
ontext. Indeed, although there are approximatively 30 dis
onne
tionsduring the whole exe
ution, the ratio volatile context execution time/stable
context execution time is always less than 2.5. Furthermore, at some pointduring the exe
ution, less than 16 nodes are a
tually
omputing be
ause morethan 3 nodes are
urrently dis
onne
ted (they have not re
onne
ted to the systemyet). In this
ase, the alive nodes keep
omputing and are not waiting for theother Daemons to re
onne
t as it would o

ur in a syn
hronous exe
ution.5 Quality of Servi
e

13We
an also dedu
e that the lower the network bandwidth is, the greater theratio a

ording to the problem size is (this is parti
ularly obvious in �g.3(
)).This is due to the fault dete
tion and the restarting of the appli
ation. Indeed,when the Dispat
her dete
ts the dis
onne
tion of a node (and eventually repla
esit), it broad
asts the new Register obje
t to all the alive nodes involved in theexe
ution of the appli
ation. If the bandwidth is low, this a
tion takes a
ertaintime to be performed (be
ause the size of the Register is not negligible). Hen
e,some Daemons would
ontinue to send messages to the disappeared node duringthis period until the Register is a
tually updated on the Daemons. Furthermore,when the new Daemon repla
es a faulty node, it must
ompletely reload theBa
kup obje
t from the Dispat
her. This obje
t is rather important in terms ofsize, and it
an take some time to deliver it on a low bandwidth network and toa
tually update it on the new Daemon. All those a
tions make the appli
ationmu
h slower to
onverge to the solution.Finally,
omparing the exe
ution times on homogeneous and heterogeneousworkstations (respe
tively �g.3(a) and �g.3(d)) we
an see that the
urves arerather similar. As a
onsequen
e, we
an dedu
e that Ja
eV does not seem tobe that sensitive to the heterogeneity of pro
essors for this typi
al appli
ationand perhaps for other similar
oarse grained appli
ations. This is undoubtedlydue to the asyn
hronism whi
h allows the fastest pro
essors to perform moreiterations.6 Con
lusion and Future WorksIn this paper, we des
ribe Ja
eV, a multi-threaded Java based library designedto build asyn
hronous parallel iterative appli
ations and run them over volatilenodes. A goal of Ja
eV is to provide an environment with
ommuni
ations be-tween
omputation nodes after ea
h iteration, as it is ne
essary to run paralleliterative appli
ations. Ja
eV uses the asyn
hronous iteration model in order toavoid syn
hronizations. Indeed, syn
hronous iterations would dramati
ally slowdown the exe
ution in a volatile
ontext where nodes appear and disappearduring
omputation.The performan
e of the Poisson problem resolution show that Ja
eV is fullysuitable for running asyn
hronous iterative appli
ations with volatile nodes. Wealso remark that performan
es of Ja
eV are degraded if the network band-width gets very low. Experiments have been
ondu
ted with matri
es of size250,000×250,000 up to 3,240,000×3,240,000.In future works, we plan to de
entralize the ar
hite
ture of Ja
eV in order toavoid bottlene
ks on the Dispat
her. Some solutions to
arry out those modi�-
ations lie in using for example a de
entralized
onvergen
e dete
tion algorithm,or storing Ba
kups on
omputation nodes, and so, to rea
h a really P2P likeenvironment.

14Referen
es1. Bertsekas, D., Tsitsiklis, J.: Parallel and Distributed Computation: Numeri
al Meth-ods. Prenti
e Hall, Englewood Cli�s NJ (1989)2. SETI�home: http://setiathome.ssl.berkeley.edu3. Baldes
hwieler, J., Blumofe, R., Brewer, E.: Atlas: An infrastru
ture for global
om-puting. 7th ACM SIGOPS European Workshop on System Support for WorldwideAppli
ation (1996)4. Bahi, J., Miellou, J. -C., Rho�r, K.: Asyn
hronous multisplitting methods for non-linear �xed point problems Numeri
al Algorithms, 15(3, 4) (1997) 315�3455. Sato, M., Nakada, H., Sekigu
hi, S., Matsuoka, S., Nagashima, U., Takagi, H.: Nin-�et: A Network based information Library for a global world-wide
omputing in-frastru
ture. HPCN'97 (LNCS-1225) (1997) 491�5026. Takagi, H., Matsuoka, S., Nakada, H., Sekigu
hi, S., Sato, M., Nagashima, U.: aMigratable Parallel Obje
t Framework using Java. In Pro
eedings of the ACM 1998Workshop on Java for High-Performan
e Network Computing (1998)7. Aida, K., Nagashima, U., Nakada, H., Matsuoka, S., Takefusa, A.: Performan
eevaluation model for job s
heduling in a global
omputing system. 7th IEEE Inter-national Symp on High Performan
e Distributed Computing. (1998) 352�3538. Rosenberg A. L.: Guidelines for data-parallel
y
le-stealing in networks of worksta-tion. Journal of Parallel and Distributed Computing. 59 (1999) 31�539. Basney, J., Levy, M.: Deploying a High Throughput Computing Cluster. Volume 1,Chapter 5, Prenti
e Hall (1999)10. Frommer, A. and Szyld, D.: On asyn
hronous iterations Journal of
omputationaland applied mathemati
s. 23 (2000) 201�21611. Bosil
a, G., Bouteiller, A., Capello, F., Djilali, S., Fedak, G., Germain, C., Herault,T., Lemarinier, P., Lodygensky, O., Magniette, F., Neri, V., Selikhov, A.: MPICH-V:Toward a S
alable Fault Tolerant MPI for Volatile Nodes. ACM/IEEE InternationalConferen
e on SuperComputing, SC 2002, Baltimore, USA (2002)12. Elnozahy, E.N., Alvisi, L., Wang, Y.M., and Johnson, D.B.: A survey of rollba
k-re
overy proto
ols in message-passing systems. ACM Comput. Surv., 34(3) (2002)375�40813. Bouteiller, A., Capello, Herault, T., Lemarinier, P., Magniette, F.: MPICH-V2:a Fault Tolerant MPI for Volatile Nodes based on Pessimisti
 Sender Based Mes-sage Logging. ACM/IEEE International Conferen
e on SuperComputing, SC 2003,Phoenix, USA (2003)14. Bahi, J., Domas, S. and Mazouzi, K.: Combination of java and asyn
hronism forthe grid: a
omparative study based on a parallel power method. 6th InternationalWorkshop on Java for Parallel and Distributed Computing, JAVAPDC workshop ofIPDPS 2004, IEEE
omputer so
iety press (2004) 158a, 8 pages15. Browne, J. C., Yalaman
hi, M., Kane, K., Sankaralingam, K.: General ParallelComputations on Desktop Grid and P2P Systems. 7th Workshop on Languages,Compilers and Runtime Support for S
alable Systems. LCR 2004, Houston,Texas(2004)16. Cappello, F., Djilali, S., Fedak, G., Hérault, T., Magniette, F., Néri, V. and Lody-gensky, O.: Computing on large-s
ale distributed systems: Xtremweb ar
hite
ture,programming models, se
urity, tests and
onvergen
e with grid. Future GenerationComp. Syst., 21(3) (2005) 417�437

