JaceV: a Programming and Execution
Environment for Asynchronous Iterative
Computations on Volatile Nodes

Jacques M. Bahi, Raphaél Couturier, and Philippe Vuillemin

LIFC, University of Franche-Comté, France* * *1
{jacques.bahi,raphael.couturier,philippe.vuillemin}@iut-bm.univ-fcomte.fr,

WWW home page: http://info.iut-bm.univ-fcomte.fr/and/

Abstract. In this paper we present JaceV, a multi-threaded Java based
library designed to build asynchronous parallel iterative applications
(with direct communications between computation nodes) and execute
them in a volatile environment. We describe the components of the sys-
tem and evaluate the performance of JaceV with the implementation and
execution of an iterative application with volatile nodes.

Key words: Asynchronous iterative algorithms, computational science prob-
lems, desktop grid computing, volatile nodes.

1 Introduction

Nowadays, PCs and workstations are becoming increasingly powerful and com-
munication networks are more and more stable and efficient. This leads scientists
to compute large scientific problems on virtual parallel machines (a set of net-
worked computers to simulate a supercomputer) rather than on expensive super-
computers. However, as the node count increases, the reliability of the parallel
system decreases. As a consequence, failures in the computing framework make
it more difficult to complete long-running jobs. Thus, several environments have
been proposed to compute scientific applications on volatile nodes using cycle
stealing concepts. In this paper, we consider as volatile node any volunteer per-
sonal computer connected to a network (WAN or LAN!) that can be used as
a computational resource during its idle times. The aim of this work is to run
scientific computations in such a volatile framework.

In this paper, we are interested in iterative algorithms. Those algorithms are
usually employed for sparse systems (like some linear systems) or when direct
methods cannot be applied to solve scientific problems (e.g. for polynomial root
finders). In the parallel execution of iterative algorithms, communications must
be performed between computation nodes after each iteration in order to satisfy

*** Candidate to the Best Student Paper Award
T this work was supported by the “Conseil Régional de Franche-Comté”
! World Area Network or Local Area Network

all the computing dependencies. For that reason, the reliability of the system is
a very important feature in such a context and can become a limiting factor for
scalability. Hence, it is necessary to study this reliability according to the differ-
ent classes of parallelism. We consider three concepts (or classes) of parallelism
with different characteristics.

1. Grid computing environments enable the sharing and aggregation of a wide
variety of geographically distributed computational resources (such as su-
percomputers, computing clusters...). In such architectures, communications
are very fast and efficient and the topology of the system is quite stable.

2. Desktop grid computing environments (also called Global Computing) ex-
ploit unused resources in the Intranet environments and across the Internet
(e.g. the SETI@home project [2]). In this class of parallelism, the archi-
tecture is fully centralized (client-server-based communications), tasks are
independent and the topology of the system is completely dynamic (nodes
appear and disappear during the computation).

3. Peer-To-Peer (P2P) environments are networks in which each workstation
has equivalent capabilities and responsibilities. The architecture is com-
pletely decentralized (peers directly communicate between each other) and
the topology of the system is completely dynamic.

As reliability is generally ensured in a Grid computing context, we do not
consider this class; furthermore, several frameworks are already available to im-
plement and run parallel iterative applications in such environments. Concerning
Desktop grid, although this class can provide much more resources than the first
one, it is generally not directly suitable for parallel iterative computations as
long as communication is restricted to the master-slave model of parallelism.

For that reason we would like to gather functionalities and characteristics
of the latter two cases: 1) a centralized architecture to manage all the nodes of
the system akin to a Desktop grid environment with volatile nodes and 2) direct
communications between computation nodes like in P2P environments. The pur-
pose of this paper is to describe a programming environment allowing users to
implement and run parallel asynchronous iterative algorithms on volatile nodes.
Asynchronous algorithms can be used in a significant set of applications. Indeed,
scientific applications are often described by systems of differential equations
which lead, after discretization, to linear systems Ax = b where A is a M-matrix
(ie. A;; > 0 and A;; < 0 and A is nonsingular with A=! > 0). A convergent
weak regular splitting can be derived from any M-matrix and any iterative al-
gorithm based on this multiplitting converges asynchronousely (see [1, 4, 10] and
the references therein).

As idle times and synchronizations are suppressed in the asynchronous it-
eration model (i.e. a computing node can continue to execute its task without
waiting for its neighbor results), we do believe this solution is the most suitable
in an environment with volatile nodes. Furthermore, computations formulated in
parallel asynchronous iterative algorithms are much less sensitive to heterogene-
ity of communication and computational power than conventional synchronous
parallel iterative algorithms.

We do not consider the synchronous iteration model because it is neither
convenient for this volatile framework, nor for the heterogeneity and scalability.

In this paper, we describe JaceV, a multi-threaded Java based library de-
signed to build asynchronous parallel iterative applications (with direct com-
munications between computation nodes) and execute them in a desktop grid
environment with volatile nodes. To the best of our knowledge, this work is the
first one presenting a volatile execution environment with direct communications
between computing nodes and allowing the development of actual scientific ap-
plications with interdependent tasks.

The following section presents a survey of desktop grid and volatility tolerant
environments. Section 3 presents the architecture of JaceV and an overview of
all its components. Section 4 describes the scientific application implemented
with JaceV (the Poisson problem) in order to perform experiments. Section 5
evaluates the performance of JaceV by executing the application in different
contexts with volatile nodes. In section 6, we conclude and some perspectives
are given.

2 Related work

Cycle stealing in a LAN environment has already been studied in the Condor [9]
and Atlas [3] projects. However, the context of LAN and the Internet are dras-
tically different. In particular, scheduling techniques [7, 8] need to be adapted
for a Global Computing environment due to: 1) the very different communica-
tion and computing performance of the targeted hosts, 2) the sporadic Internet
connection and 3) the high frequency of faulty machines.

MPICH-V and MPICH-V2 [11,13] (message passing APIs? for automatic
Volatility tolerant MPI environment) have been proposed for volatile nodes.
However, MPI is not a multi-threaded environment. As a consequence, it is
not suitable for asynchronous iterations in which it is convenient to separate
communications and computation.

XtremWeb [16] is a Desktop Grid and Global Computing middleware which
allows users to build their own parallel applications and uses cycle stealing.
However, this environment does not provide direct communications between the
different computing nodes of the system. As a consequence, it is not suitable for
implementing and running parallel iterative applications.

Ninflet [6] is a Java-based global computing system. It is designed to overcome
the limitations of Ninf [5] that currently lacks security features as well as task
migration. The goal of Ninflet is to become a new generation of concurrent
object-oriented system which harnesses abundant idle computing powers, and
also integrates global as well as local network parallel computing. Unfortunately,
as with the XtremWeb environment, Ninflet only applies Master-Worker pattern
and does not provide direct communications between computation nodes.

In [15], no environment is proposed but the authors define the requirements
for an effective execution of iterative computations requiring communication on

2 Application Programming Interfaces

a desktop grid context. They propose a combination of a P2P communication
model, an algorithmic approach (asynchronous iterations) and a programming
model. Finally, they give some very preliminary results from application of the
extended desktop grid for computation of Google pagerank and solution of a
small linear system.

Jace [14] is a multi-threaded Java based library designed to build asyn-
chronous iterative algorithms and execute them in a Grid environment. In Jace,
communications are directly performed between computation nodes (in a syn-
chronous or an asynchronous way) using the message passing paradigm imple-
mented with Java RMI?. However, this environment is not designed to run ap-
plications on volatile nodes.

3 The JaceV system

3.1 The goal of JaceV

As described in the previous section, Jace is fully suitable for running parallel
iterative applications (in a synchronous or asynchronous mode) in a Grid com-
puting context where nodes do not disappear during computations. Then, it was
essential to completely redesign the Jace environment in order to make it toler-
ant to volatility. To do this, it is necessary to develop a strategy to periodically
save the results computed by each node during the execution in order to restart
computations from a consistent global state [12] when faults occur.

We propose JaceV, the volatility tolerant implementation of Jace (JaceV for
Jace Volatile). JaceV allows users to implement iterative applications and run
them over several volatile nodes using the asynchronous iteration model and
direct communications between processors.

Hence, when a computer is not used during a defined finite time, it should
automatically contribute to compute data of a parallel iterative application al-
ready running (or to be started) on the system. A contrario, when a user needs
to work on this workstation, the resource must instantaneously be freed and this
node must automatically be removed from the system. In this way, a volatility
tolerant system must both tolerate appearance and disappearance of computa-
tion nodes without disturbing the final results of the applications running on it.
In fact, JaceV tolerates N simultaneous faults (N being the number of compu-
tational resources involved in an application) without disturbing the results at
all.

3.2 Architecture of the system

A JaceV application is a set of Task objects running on several computation
nodes. Like in Jace, the different Task objects of an application cooperate by
exchanging messages and data to solve a single problem. The JaceV architecture

3 Remote Method Invocation

consists of three entities which are JVMs % communicating with each others:
1) the Daemons, 2) the Spawner and 3) the Dispatcher. Since JaceV is based
on Jace, all the communications performed between the different entities of the
system are based on Java RMI and threads are used to overlap communications
by computations during each iteration.

The user of the JaceV system could play two types of roles, one being the
resource provider (during idle times of his computer) and the other being appli-
cation programmer (the user who wants to run his own specific parallel iterative
application on several volatile nodes). The resource provider will have a Dae-
mon running on his host. The Daemon is the entity responsible for executing a
Task and we consider it is busy and not available when a Task is executed on it
(thereafter, we use the term Daemon and node indifferently). On the other side,
the application programmer implements an application (using the Java language
and the JaceV API) and actually runs it using the Spawner: this entity actually
starts the application on several available Daemons.

Finally, the Dispatcher is the component in charge of 1) registering all the
Daemons connected to the system and managing them (i.e. detect the eventual
disconnections and replace the nodes) 2) distributing the Task objects of an
application over the different available nodes, 3) detecting the global convergence
of a running application, and 4) storing the backups of all the Tasks being
executed.

Three-tier architectures are commonly used in fault tolerant platforms, like in
Ninflet, XtremWeDb, etc. However, JaceV has the advantage to enable both direct
communications between computing nodes and multi-threaded programming,
which is impossible with other existing environments. Furthermore, JaceV is
the only one to implicitly provide an asynchronous iteration model by using
primitives of its API. Therefore, JaceV is an original architecture.

3.3 The Dispatcher

The Dispatcher is the first entity to be launched for the environment. We consider
it is running on a powerful and stable server. Therefore, all the data stored in
this entity are considered as persistent. The Dispatcher is composed of three
main components, 1) the Jace VDispatchServer, 2) the GlobalRegister and 3) the
ApplicationManager.

The JaceVDispatcher is the RMI server that contains all the methods re-
motely invoked by the Daemons and the Spawner. It is launched when the Dis-
patcher starts and is continuously waiting for remote invocations.

The GlobalRegister registers all the Daemons connected to the JaceV system
and also stores their current state (the ’alive’ and the *busy’ states, this will be
described in section 3.4).

Finally the ApplicationManager indexes all the RunningApplication objects
of the system. A RunningApplication is a JaceV object that models an applica-
tion being currently executed on the system: it contains for example attributes

4 Java Virtual Machines

such as the URL where are available the corresponding class files of the appli-
cation, the number of Tasks, the optional arguments, etc.

Each RunningApplication contains a single Register object, which is a sub-
set of the GlobalRegister. During the execution, the Register is automatically
updated in case of fault (due to a crash or a user disconnection) of one of the
computation node (it models the whole configuration at time ¢ of the nodes
running a given application and the mapping of the Tasks over the Daemons).

The Dispatcher is also in charge of storing the Task objects saved (called
Backups) during the computation in order to restart the application from a
consistent global state in case of fault. A list stored in the RunningApplication
object (the BackupList) indexes each Task composing an application. Hence,
when a faulty node is replaced, the last Backup of the Task it was computing
is sent to the new Daemon in order to restart computations. As iterations are
desynchronized in the asynchronous model, the other nodes keep computing
without stopping.

Finally, the RunningApplication object is responsible for detecting the global
convergence and halting the application when convergence is reached. To do this,
each RunningApplication object manages an array containing the local states of
the nodes involved in the computation. This array is affected each time a local
convergence message is received from the Daemons. When a node is in a local
stable state (i.e. the relative error between the last two iterations on this node
is greater than a given threshold) after a given number of iterations, it sends
1 to the Dispatcher, or else, it sends 0. The global state is computed on the
Dispatcher by testing all the cells of the array, if they are all in stable state then
the convergence is detected and the Daemons can stop computing.

To summarize the architecture of the Dispatcher, Figure 1 describes the
main objects with the GlobalRegister on the left, the JaceVDispatcher (the RMI
server) on the right and the ApplicationManager in the center.

Dispatcher
(Global ApplicationManager A
R&ster RunningApplication 1
nbTasks = 4
IN2| Reg1 | [NI[N3[N4N6]
BackupListl @@@
ConvTabl [0]0]1]0] RMI
Server
NG RunningApplication 2
nbTasks = 3
Reg2 |[N2]N5]N7]
BackupList2 @@@
ConvTab2 [0]1]1]
|\ — J

Fig. 1. Description of the Dispatcher elements.

In this example, nine Daemons are currently registered to the Dispatcher
(nodes N1 up to N9 in the GlobalRegister). Only seven nodes are actually busy
(i.e. computing an application). They appear in grey in the GlobalRegister (in
the figure, we represent the nodes in different grey levels in order to differentiate

the application being executed on the corresponding Daemon). In the Applica-
tionManager, we can see that two applications are currently running, the first
one (RunningApplicationl) is distributed over four nodes (which are the nodes
N1, N3, N/ and N6 in the corresponding Register called Reg!) and the second
one (RunningApplication2) over three nodes (which are the nodes N2, N5 and
N7 in the corresponding Register called Reg2). This figure also shows the Back-
ups stored on the Dispatcher for each application being executed (BackupListl
for the first application and BackupList2 for the second one). Every BackupList
contains a single Backup object for each Task running on a Daemon. The last
elements appearing in the figure are the convergence arrays (ConvTabl for the
first application and ConvTab2 for the second one): with the values of Con-
vTabl, we can deduce that only Task T8 (executed on node N4) is in a local
convergence state for the first application. Concerning the second application,
we can see that Tasks T2 and T8 (respectively running on nodes N5 and N7)
have locally converged to the solution.

3.4 The Daemon

When the Daemon is started, an RMI server is launched on it and is continuously
waiting for remote invocations. Then, the Daemon 1) contacts the Dispatcher
in order to obtain its remote RMI reference 2) remotely registers itself on the
GlobalRegister of the Dispatcher (where this Daemon is then labeled as available
because it has not been attributed an application yet), and 3) starts locally the
heartbeat Thread: this thread periodically invokes the beating remote method on
the Dispatcher RMI server to signal its activity. The Dispatcher continuously
monitors these calls to implement a timeout protocol: when a Daemon has not
called for a sufficient long time, it is considered down in the GlobalRegister (i.e.
it is labeled as notAlive). In case this node was executing an application, the
Task initially running on it should be rescheduled to a new available Daemon
by reloading the last Backup stored on the Dispatcher for the faulty node.

Once all those features are performed, the Daemon is initialized and ready to
be invoked by the Spawner in order to actually run computation Tasks. The main
objects composing the Daemon are mostly the same as in the Jace environment
(interested readers can see [14] to have more details about the components of
the Jace Daemon and their interaction). However, several objects have been
deeply modified or added to the JaceV environment in order to ensure volatility
tolerance. Those components are described in the following.

The Daemon contains the Register of the application it is running and this
Register is automatically updated by the Dispatcher when faults occur during
the execution. As the Register also contains the complete list of the nodes run-
ning a given application and the mapping of the Tasks over them, the Daemon is
always aware of the topology of the system. This ensures direct communications
are carried out between nodes because the Register contains the remote refer-
ence RMI for each Daemon. As a consequence, a given node can invoke remote
methods on every Daemon running the same application. Furthermore, when a

node receives a new Register, the recipient of all the Message objects to be sent
is automatically updated (if it has changed).

Concerning the Messages to send to other Daemons, as the asynchronism
model is message loss tolerant, the Message is simply lost if the destination node
is not reachable.

3.5 The Spawner

The Spawner is the entity that actually starts a user application. For this reason,
when launching the Spawner, it is necessary to give some parameters to define
this application: 1) the number of nodes required for the parallel execution, 2)
the URL where the class files are available and finally 3) the optional arguments
of the specific application.

Then, the Spawner sends this information to the Dispatcher that creates a
new RunningApplication with the given parameters and a new Register com-
posed of the required number of available nodes appearing in the GlobalRegister
(which are then labeled as notAwvailable). This Register is then attributed to the
RunningApplication and sent to the Spawner.

Finally, when the Spawner receives the Register object, it broadcasts it to
the whole nodes of the topology and then actually starts the computation on
each of the Daemons.

The whole interaction between the JaceV entities is described in Figure 2. In
this example, we can see the Daemon NI (fig.2(a)) and then a set of Daemons
(N2, N3 and N4, fig.2(b)) registering themselves to the Dispatcher. Those Dae-
mons are then added to the GlobalRegister (Reg) and are labeled as available
because no application has been spawned on the system yet.

In fig.2(c), the Spawner SI launches application applil which requires two
nodes. The Dispatcher creates then a RunningApplication object for this appli-
cation and attributes it a Register object (Regl) containing two available nodes
of the GlobalRegister (N1 and N2 which are then labeled as notAvailable and
appear in grey level in the GlobalRegister). The Register is sent to NI and
N2 (in order to permit direct communications between the two nodes) and the
application is actually run by the Spawner on those two Daemons.

In fig.2(d), the Daemon N2 crashes (or is disconnected by its user). However,
as the asynchronous iteration model is used in JaceV, N1 keeps computing and
does not stop its job (the eventual messages to send to the Task running on N2
will be lost until the node is replaced). The Dispatcher detects this disconnection
and labels N2 as notAlive in the GlobalRegister. Reg! is then updated in the
RunningApplication object (N2 is replaced by N8 which is available) and this
new Register is sent to the corresponding Daemons (N1 and N3, the new one).
Since then, NI is aware of the new topology of the system and updates the list
of its neighbors (i.e it will no longer try to send messages to N2 but will directly
send them to N3%). Finally, the Dispatcher sends the appropriate Backup to the
new node of the topology and computations can restart on this Daemon.

After several minutes, the Daemon is launched again on node N2 (fig.2(e)).
It is then labeled as alive and awailable in the GlobalRegister.

N1

Daemon

workerRegister()

A Daemon (node N1) registers itself
@ tothe Dispgicher) reg

N4
Daemon

(b) Three Daemons (nodes N2 up to N4)
register themselves to the Dispatcher

Dispatcher

Applit

(d) Node N3 replaces N2 that crashed for "applil’

Dispatcher

Applit
Reg | P

Reg1
N2 || g
workerRegister()

Dispatcher

Spawner 1
(java jaceV.JaceV
-Spawner 2 appli1)

(c) The application 'applil’ is spawned for
two nodes

Reg | Applit

Appli2

Spawner 2
(java jaceV.JaceV
~Spawner 2 appli2)

(f) The application 'appli2’ is spawned for two nodes

Fig. 2. The registering and spawning processes in JaceV.

Finally, in fig.2(f), the Spawner S2 launches application appli2 that requires
two nodes. The Dispatcher creates the RunningApplication object for this appli-
cation, attributes it a new Register (Reg2) which contains the last two available
nodes of the GlobalRegister (N2 and N4) and sends them Reg2 in order to
enable direct communication between these Daemons. At the end, S2 actually

starts computations on N2 and N4.

4 Problem description

In this section, we describe the problem used for the experiments with JaceV. It
consists of the Poisson equation discretized in two dimensions. This is a common
problem in physics that models for instance heat problems. This linear elliptic

10

partial differential equations system is defined as
—Au = f. (1)

This equation is discretized using a finite difference scheme on a square domain
using a uniform Cartesian grid consisting of grid points (z;,y;) where a; = iAx
and y; = jAy. Let u; ; represent an approximation to u(z;,y;). In order to dis-
cretize (1) we replace the z— and y—derivatives with centered finite differences,
which gives

Wimy = 2yt Wiy | Wit T 2 F Ui

(a0 @

Assuming that Az = Ay = h are discretized using the same discretization
step h, (2) can be rewritten in

R B T W R RS Y B 2 U L R S e (3)
h2 - 7"

For this problem we have used Dirichlet boundary conditions.

So, (1) is solved by finding the solution of the following linear system of the
type A x x = b where A is a 5-diagonal matrix and b represents the function f.

To solve this linear system we use a block-Jacobi method that allows us to
decompose the matrix into block matrices and solve each block using an iterative
method. In our experiments, we have chosen the sparse Conjugate Gradient
algorithm. Besides, this method allows to use overlapping techniques that may
dramatically reduce the number of iterations required to reach the convergence
by letting some components to be computed by two processors.

From a practical point of view, if we consider a discretization grid of size
n x n, A is a matrix of size (n?,n?).

It should be noticed that, in the following, the number of components by
processor is important and is a multiple of n, the number of components of a
discretized line, and that the overlapped components is less important than this
number of components. The solution of this problem using parallelism involves
that each processor exchanges, at each Jacobi iteration, its first » components
with its predecessor neighbor node and its last n ones with its successor neighbor
node. The number of components exchanged with each neighbor is equal to n. In
fact, we have only studied the case where the totality of overlapped components
are not used by a neighbor processor, only the first or last n components are
used because the other case entails more data exchanged without decreasing the
number of iterations. So, whatever the size of the overlapped components, the
exchanged data are constant.

Moreover we recall that the block-Jacobi method has the advantage to be
solvable using the asynchronous iteration model if the spectral radius of the
absolute value of the iteration matrix is less than 1, which is the case for this
problem.

Finally, the Poisson problem implemented using the JaceV API has the skele-
ton described in Algorithm 1:

11

Algorithm 1 The Poisson problem skeleton using the JaceV API

Build the local Poisson submatrix

Initialize dependencies

repeat
Solve local Block-Jacobi subsystem
Asynchronous exchange of nonlocal data //with jaceSend() and jaceReceive()
jaceLobalConvergence() //Local convergence detection
jaceSave() //Primitive used to save the Task object on the Dispatcher
jacelteration++ //Increment the iteration number of the Backup to store

until jaceGlobalConvergence()

5 Experiments

For our experiments, we study the execution times of the application over 16
nodes according to n (with n varying from 500 up to 1800, which respectively
corresponds to matrices of size 250,000x 250,000 up to 3,240,000x 3,240,000 be-
cause the problem size is n?). An optimal overlapping value is used for each
n. These experiments are performed with different configurations of processors
and networks. For each configuration, we first run the application over 16 stable
nodes, and then, for the execution in a volatile context, we launch 19 Daemons
and run the application over 16 of them. In the last case, our strategy for volatil-
ity is to randomly disconnect each Daemon on average slightly less than two
times during the whole execution of the application and reconnect it a few sec-
onds later (i.e. there are approximatively about 30 disconnections/reconnections
for each execution).

We choose to perform those series of tests with different configurations of
processors and networks. According to processors, we use both homogeneous and
heterogeneous processors. The first context consists of a 19-workstation cluster
of Intel(R) Pentium(R) 4 CPU 3.00GHz processors with 1024MB of RAM. For
the heterogeneous case, we use 19 workstations from Intel(R) Pentium(R) III
CPU 1266MHz processors with 256 MB of RAM up to Intel(R) Pentium(R) 4
CPU 3.00GHz with 1024MB of RAM. Then, we perform our tests with different
network bandwidths.

Finally our series of tests are performed using four configurations of proces-
sors and network, which are described as follows.

1. A configuration with homogeneous processors and an Ethernet 1Gbps net-
work,

2. a configuration with homogeneous processors and a 10,000Kbps upload and
download bandwidth,

3. a configuration with homogeneous processors and a 1,000Kbps upload and
download bandwidth,

4. a configuration with heterogeneous processors and an Ethernet 100Mbps
network.

12

For the second and the third configurations, each workstation of the cluster
runs a Qos® script in order to limit the network bandwidth to 10,000Kbps (for
configuration 2) and 1,000Kbps (for configuration 3).

Whatever the configuration used, the Dispatcher is running on an Intel(R)
Pentium(R) 4 CPU 3.00GHz processor with 1024MB of RAM.

The results of the experiments are represented in figure 3 and each execution
time is the average of a series of ten executions.

2500 3000

T T T T T T T T T T T T
Stable nodes = = Stable nodes = =
Volatile nodes 2500 Volatile nodes
2000
2000 ~
@ 1500 - @
£ £
g E 1500
£ 1000 - i
1000
500 500 |-
0 1 1 1 1 1 1 0
400 600 800 1000 1200 1400 1600 1800 400 600 800 1000 1200 1400 1600 1800
n (problem size = n x n) n (problem size = n x n)
(a) Homogeneous configuration. (b) 10,000Kbps configuration.
3000 T T T T T T 2500 T T T T T T
Stable nodes = = Stable nodes = =
2500 Volatile nodes Volatile nodes
2000 —
2000
@ @ 1500 [~ —
£ £
g 1500 GEJ
i = 1000 |- —
1000
500 |- 500 [~ —
0 1 1 1 1 1 1 0 1 1 1 1 1 1
400 600 800 1000 1200 1400 1600 1800 400 600 800 1000 1200 1400 1600 1800

n (problem size = n x n)

(¢) 1,000Kbps configuration.

n (problem size = n x n)

(d) Heterogeneous configuration.

Fig. 3. Execution times of volatile and non volatile contexts for the different configu-
rations.

Analyzing the four figures, we deduce that JaceV supports rather well the
volatile context. Indeed, although there are approximatively 30 disconnections
during the whole execution, the ratio wvolatile context execution time/stable
context execution time is always less than 2.5. Furthermore, at some point
during the execution, less than 16 nodes are actually computing because more
than 3 nodes are currently disconnected (they have not reconnected to the system
yet). In this case, the alive nodes keep computing and are not waiting for the
other Daemons to reconnect as it would occur in a synchronous execution.

% Quality of Service

13

We can also deduce that the lower the network bandwidth is, the greater the
ratio according to the problem size is (this is particularly obvious in fig.3(c)).
This is due to the fault detection and the restarting of the application. Indeed,
when the Dispatcher detects the disconnection of a node (and eventually replaces
it), it broadcasts the new Register object to all the alive nodes involved in the
execution of the application. If the bandwidth is low, this action takes a certain
time to be performed (because the size of the Register is not negligible). Hence,
some Daemons would continue to send messages to the disappeared node during
this period until the Register is actually updated on the Daemons. Furthermore,
when the new Daemon replaces a faulty node, it must completely reload the
Backup object from the Dispatcher. This object is rather important in terms of
size, and it can take some time to deliver it on a low bandwidth network and to
actually update it on the new Daemon. All those actions make the application
much slower to converge to the solution.

Finally, comparing the execution times on homogeneous and heterogeneous
workstations (respectively fig.3(a) and fig.3(d)) we can see that the curves are
rather similar. As a consequence, we can deduce that JaceV does not seem to
be that sensitive to the heterogeneity of processors for this typical application
and perhaps for other similar coarse grained applications. This is undoubtedly
due to the asynchronism which allows the fastest processors to perform more
iterations.

6 Conclusion and Future Works

In this paper, we describe JaceV, a multi-threaded Java based library designed
to build asynchronous parallel iterative applications and run them over volatile
nodes. A goal of JaceV is to provide an environment with communications be-
tween computation nodes after each iteration, as it is necessary to run parallel
iterative applications. JaceV uses the asynchronous iteration model in order to
avoid synchronizations. Indeed, synchronous iterations would dramatically slow
down the execution in a volatile context where nodes appear and disappear
during computation.

The performance of the Poisson problem resolution show that JaceV is fully
suitable for running asynchronous iterative applications with volatile nodes. We
also remark that performances of JaceV are degraded if the network band-
width gets very low. Experiments have been conducted with matrices of size
250,000x 250,000 up to 3,240,000x 3,240,000.

In future works, we plan to decentralize the architecture of JaceV in order to
avoid bottlenecks on the Dispatcher. Some solutions to carry out those modifi-
cations lie in using for example a decentralized convergence detection algorithm,
or storing Backups on computation nodes, and so, to reach a really P2P like
environment.

14

References

1. Bertsekas, D., Tsitsiklis, J.: Parallel and Distributed Computation: Numerical Meth-
ods. Prentice Hall, Englewood Cliffs NJ (1989)

2. SETI@home: http://setiathome.ssl.berkeley.edu

3. Baldeschwieler, J., Blumofe, R., Brewer, E.: Atlas: An infrastructure for global com-
puting. 7th ACM SIGOPS European Workshop on System Support for Worldwide
Application (1996)

4. Bahi, J., Miellou, J. -C., Rhofir, K.: Asynchronous multisplitting methods for non-
linear fixed point problems Numerical Algorithms; 15(3, 4) (1997) 315-345

5. Sato, M., Nakada, H., Sekiguchi, S., Matsuoka, S., Nagashima, U., Takagi, H.: Nin-
flet: A Network based information Library for a global world-wide computing in-
frastructure. HPCN’97 (LNCS-1225) (1997) 491-502

6. Takagi, H., Matsuoka, S., Nakada, H., Sekiguchi, S., Sato, M., Nagashima, U.: a
Migratable Parallel Object Framework using Java. In Proceedings of the ACM 1998
Workshop on Java for High-Performance Network Computing (1998)

7. Aida, K., Nagashima, U., Nakada, H., Matsuoka, S., Takefusa, A.: Performance
evaluation model for job scheduling in a global computing system. 7th IEEE Inter-
national Symp on High Performance Distributed Computing. (1998) 352 353

8. Rosenberg A. L.: Guidelines for data-parallel cycle-stealing in networks of worksta-
tion. Journal of Parallel and Distributed Computing. 59 (1999) 31-53

9. Basney, J., Levy, M.: Deploying a High Throughput Computing Cluster. Volume 1,
Chapter 5, Prentice Hall (1999)

10. Frommer, A. and Szyld, D.: On asynchronous iterations Journal of computational
and applied mathematics. 23 (2000) 201 216

11. Bosilca, G., Bouteiller, A., Capello, F., Djilali, S., Fedak, G., Germain, C., Herault,
T., Lemarinier, P., Lodygensky, O., Magniette, F., Neri, V., Selikhov, A.: MPICH-V:
Toward a Scalable Fault Tolerant MPI for Volatile Nodes. ACM/IEEE International
Conference on SuperComputing, SC 2002, Baltimore, USA (2002)

12. Elnozahy, E.N.; Alvisi, L., Wang, Y.M., and Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv., 34(3) (2002)
375 408

13. Bouteiller, A., Capello, Herault, T., Lemarinier, P., Magniette, F.: MPICH-V2:
a Fault Tolerant MPI for Volatile Nodes based on Pessimistic Sender Based Mes-
sage Logging. ACM/IEEE International Conference on SuperComputing, SC 2003,
Phoenix, USA (2003)

14. Bahi, J., Domas, S. and Mazouzi, K.: Combination of java and asynchronism for
the grid: a comparative study based on a parallel power method. 6th International
Workshop on Java for Parallel and Distributed Computing, JAVAPDC workshop of
IPDPS 2004, IEEE computer society press (2004) 158a, 8 pages

15. Browne, J. C., Yalamanchi, M., Kane, K., Sankaralingam, K.: General Parallel
Computations on Desktop Grid and P2P Systems. 7th Workshop on Languages,
Compilers and Runtime Support for Scalable Systems. LCR 2004, Houston,Texas
(2004)

16. Cappello, F., Djilali, S., Fedak, G., Hérault, T., Magniette, F., Néri, V. and Lody-
gensky, O.: Computing on large-scale distributed systems: Xtremweb architecture,
programming models, security, tests and convergence with grid. Future Generation
Comp. Syst., 21(3) (2005) 417-437

