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Abstract. Despite their dominance of high-end computing (HEC) through
the 1980’s, vector systems have been gradually replaced by microprocessor-
based systems. However, while peak performance of microprocessor-based
systems has grown exponentially, the gradual slide in sustained perfor-
mance delivered to scientific applications has become a growing concern
among HEC users. Recently, the Earth Simulator and Cray X1/X1E
parallel vector processor systems have spawned renewed interest in vec-
tor technology for scientific applications. In this work, we compare the
performance of two lattice-Boltzmann applications and the Cactus as-
trophysics package on vector based systems including the Cray X1/X1E,
Earth Simulator, and NEC SX-8, with commodity-based processor clus-
ters including the IBM SP Power3, IBM Power5, Intel Itanium2, and
AMD Opteron processors. We examine these important scientific appli-
cations to quantify effective performance and investigate if the efficiency
benefits are applicable to a broader array of numerical methods.

1 Introduction

Despite their dominance of high-end computing (HEC) through the 1980’s, vec-
tor systems have been progressively replaced by microprocessor based systems
due to the lower costs afforded by mass-market commercialization and the re-
lentless pace of clock frequency improvements for microprocessor cores. How-
ever, while peak performance of superscalar systems has grown exponentially,
the gradual slide in sustained performance delivered to scientific applications
has become a growing concern among HEC users. This trend has been widely
attributed to the use of superscalar-based commodity components whose archi-
tectural designs offer a balance between memory performance, network capabil-
ity, and execution rate, that is poorly matched to the requirements of large-scale
numerical computations. Furthermore, now that power dissipation is limiting
the growth rate in clock frequency, the low sustained performance of superscalar
systems has risen to the forefront of concerns. The latest generation of custom-
built parallel vector systems have the potential to address these performance
challenges for numerical algorithms amenable to vectorization.

The architectural complexity of superscalar cores has grown dramatically
in the past decade in order to support out-of-order execution of instructions



that feed an increasing number of concurrent functional units. However, there is
growing evidence that despite the enormously complex control structures, typ-
ical superscalar implementations are only able to exploit a modest amount of
ILP—on the order of 1-1.5 operations per cycle on typical scientific applications.
Vector technology, by contrast, is well suited to problems with plenty of inher-
ent data parallelism. For such problems, the vector approach reduces control
complexity because each operation defined in the instruction stream implicitly
controls numerous functional units operating in tandem, allowing memory la-
tencies to be masked by overlapping pipelined vector operations with memory
fetches.

However, when such operational parallelism cannot be found, the efficiency
of the vector architecture can suffer from the properties of Amdahl’s Law, where
the time taken by the portions of the code that are non-vectorizable can easily
dominate the execution time. In this regard, modern vector machines are quite
unlike the Cray 1 [1] in that the scalar performance is well below average com-
pared to commodity systems targeted at business applications. It is difficult for
vector vendors to compete on scalar processor performance, as the enormous
technology investment necessary to keep pace with the microprocessors is too
great to sustain without a large market share. Thus today’s vector systems have
been unable to produce competitive scalar processor implementations, result-
ing in more significant performance penalties for non-vectorizable code portions
when compared to classic vector system implementations.

In the context of these evolving architectural changes, it is important to
continue the assesment of vector platforms in the face of increasing algorithm
complexity. For this reason, our study focuses on full applications to get more
realistic assessments of vector performance in the face of limitations imposed
by increased application complexity. This work compares performance between
the vector-based Cray X1/X1E, Earth Simulator (ES) and NEC SX-8, with
commodity-based superscalar platforms: Intel Itanium2, AMD Opteron, and the
IBM Power3 and Power5 systems. We study the behavior of three scientific codes
with the potential to run at ultra-scale: lattice-Boltzmann (LB) simulations of
fluid dynamics and magnetohydrodynamics (LBMHD3D and ELBM3D), and
astrophysics (CACTUS). Our work builds on our previous efforts [2, 3] and makes
the contribution of adding recently acquired performance data for the SX-8,
and the latest generation of superscalar processors. Additionally, we explore
improved vectorization techniques Cactus boundary conditions, and effect of
cache-bypass pragmas for the LB applications. Overall results show that the SX-8
attains unprecedented aggregate performance across our evaluated applications,
continuing the trend set by the ES in our previous performance studies. Our
study also shows that the slide in sustained performance of microprocessor cores
is not irreversible if microprocessor architectures are willing to invest the effort to
make architectural decisions that eliminate bottlenecks for scientific applications.
For instance, the Power5 shows some improvement over its predecessors (the
Power3 and Power4) through more advanced latency-hiding prefetch features
and a much higher bandwidth to main memory.



2 HEC Platforms and Evaluated Applications

In this section we briefly describe the computing platforms and scientific ap-
plications examined in our study. Tables 1 and 2 present an overview of the
salient features for the eight parallel HEC architectures. Observe that the vec-
tor machines have higher peak performance and better system balance than the
superscalar platforms. Additionally, the X1, ES, SX-8, and to a lessor extent
the X1E, have high memory bandwidth (as measured by HPCC EP Stream [4])
relative to peak CPU speed (bytes/flop), allowing them to more effectively feed
the arithmetic units. Finally, the vector platforms utilize interconnects that are
tightly integrated to the processing units, with high performance network buses
and low communication software overhead.

Four superscalar commodity-based platforms are examined in our study. The
IBM Power3 experiments reported were conducted on the 380-node pSeries sys-
tem, running AIX 5.2 (xlf compiler 8.1.1) and located at Lawrence Berkeley Na-
tional Laboratory (LBNL). Each SMP node consists of sixteen 375 MHz proces-
sors (1.5 Gflop/s peak) connected to main memory via the Colony switch using
an omega-type topology. The Power5 system, also located at LBNL’s NERSC
facility, consists of 111 8-way Power5 nodes operating at 1.9 GHz (7.6 GFlops/s)
and interconnected by a dual-plane Federation interconnect using a fat-tree/CLOS
topology. Like the Power3, this system also runs AIX 5.2, but uses the newer xlf
9.1 compiler. The AMD Opteron system, is also located at LBNL and contains
320 dual nodes, running Linux 2.6.5 (PathScale 2.0 compiler). Each node con-
tains two 2.2 GHz Opteron processors (4.4 Gflop/s peak), interconnected via In-
finiband fabric in a fat-tree configuration. Finally, the Intel Itanium experiments
were performed on the 1024 node system located at Lawrence Livermore National
Laboratory. Each node contains four 1.4 GHz Itanium2 processors (5.6 Gflop/s
peak) and runs Linux Chaos 2.0 (Fortran version ifort 8.1). The system is inter-
connected using Quadrics Elan4 in a fat-tree configuration,

We also examine four state-of-the-art parallel vector systems. The Cray
X1/X1E is designed to combine traditional vector strengths with the generality

Table 1. CPU overview of the Power3, Power5, Itanium2, Opteron, X1/X1E, ES, and
SX-8 platforms.

CPU/ Clock Peak Stream BW Peak
Platform

Node (MHz) (GF/s) (GB/s) (Byte/Flop)

Power3 16 375 1.5 0.4 0.3

Power5 8 1900 7.6 5.4 0.7

Itanium2 4 1400 5.6 1.1 0.2

Opteron 2 2200 4.4 2.3 0.5

X1 4 800 12.8 14.9 1.2

X1E 4 1130 18.1 9.7 0.5

ES 8 1000 8.0 26.3 3.3

SX-8 8 2000 16.0 41.0 2.6



and scalability features of modern superscalar cache-based parallel systems. The
computational core, called the single-streaming processor (SSP), contains two 32-
stage vector pipes running at 1130 MHz. Each SSP operates at 4.5 Gflop/s peak
for 64-bit data. The SSP also contains a two-way out-of-order superscalar proces-
sor running at 400 MHz. Four SSP can be combined into a logical computational
unit called the multi-streaming processor (MSP) with a peak of 18.0 Gflop/s.
The four SSPs share a 2-way set associative 2 MB data Ecache, a unique feature
for vector architectures that allows extremely high bandwidth (25–51 GB/s) for
computations with temporal data locality. The X1E node consists of eight MSPs
sharing a flat memory, and large system configuration are networked through a
modified 2D torus interconnect. X1E nodes are partitioned into two logical 4-way
SMP nodes from the application developers viewpoint. All reported X1E exper-
iments were performed on the 1024-MSP system (several reserved for system
services) running UNICOS/mp 3.1 (5.5 programming environment) and oper-
ated by Oak Ridge National Laboratory. The X1 experiments were performed
on the 512-MSP system at ORNL prior to the upgrade to X1E.

The 1000 MHz Earth Simulator processor was the precursor to the NEC
SX6, containing an 4-way replicated vector pipe with a peak performance of
8.0 Gflop/s per CPU. The system contains 640 ES nodes, 5120-processor, con-
nected through a custom single-stage IN crossbar. The ES runs Super-UX, a
64-bit Unix operating system based on System V-R3 with BSD4.2 communica-
tion features. As remote ES access is not available, the reported experiments
were performed during the authors’ visit to the Earth Simulator Center located
in Kanazawa-ku, Yokohama, Japan in 2004 and 2005.

Finally, we examine the NEC SX-8, the world’s most powerful vector proces-
sor. The SX-8 architecture operates at 2 GHz, and contains four replicated vector
pipes for a peak performance of 16 Gflop/s per processor. The SX-8 architecture
has several enhancements compared with the ES/SX6 predecessor, including im-
proved divide performance, hardware square root functionality, and in-memory
caching for reducing bank conflict overheads. However, the SX-8 used in our
study uses commodity DDR-SDRAM; thus, we expect higher memory overhead

Table 2. Interconnect performance of the Power3, Power5, Itanium2, Opteron, X1,
ES, and SX-8 platforms.

MPI Lat MPI BW Bisect BW Network
Platform Network

(µsec) (GB/s/CPU) (Byte/Flop) Topology

Power3 Colony 16.3 0.13 0.09 Fat-tree

Power5 Federation 3.0 4.0 0.52 Fat-tree

Itanium2 Quadrics 3.0 0.25 0.04 Fat-tree

Opteron InfiniBand 6.0 0.59 0.11 Fat-tree

X1 Custom 7.3 6.3 0.09 2D-torus

ES Custom (IN) 5.6 1.5 0.19 Crossbar

SX-8 IXS 5.0 2.0 0.13 Crossbar



for irregular accesses when compared with the specialized high-speed FPLRAM
(Full Pipelined RAM) of the ES. Both the ES and SX-8 processors contain 72
vector registers each holding 256 doubles, and utilize scalar units operating at
the half the peak of their vector counterparts. All reported SX-8 results were run
on the 72 node system located at High Performance Computer Center (HLRS) in
Stuttgart, Germany. This HLRS SX-8 is interconnected with the NEC Custom
IXS network and runs Super-UX (Fortran Version 2.0 Rev.313).

2.1 Scientific Applications

Two application domains from scientific computing were chosen to compare the
performance of the vector-based and superscalar-based systems.

We examine LBMHD3D, a three-dimensional plasma physics application
that uses the Lattice-Boltzmann method to study magneto-hydrodynamics [5];
ELBM3D, a a three-dimensional fluid dynamic application that uses the Lattice-
Boltzmann method to study turbulent fluid flow [6]; and CACTUS, a modu-
lar framework supporting a wide variety of multi-physics applications [7], using
the Arnowitt-Deser-Misner (ADM) formulation for the evolution of the Einstein
equations from first principles that are augmented by the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) [8] method to improve numerical stability for simu-
lation of black holes.

These codes represent grand-challenge scientific problems that require access
to ultrascale systems and provide code bases mature enough that they have
the potential to fully utilize the largest-scale computational resources available.
Performance results, presented in Gflop/s per processor and percentage of peak,
are used to compare the relative time to solution of our evaluated computing
systems. When different algorithmic approaches are used for the vector and
scalar implementations, this value is computed by dividing a valid baseline flop-
count by the measured wall-clock time of each platform.

3 Lattice-Boltzmann Turbulence Simulations

Lattice-Boltzmann methods (LBM) have proved a good alternative to conven-
tional numerical approaches for simulating fluid flows and modeling physics in
fluids [9]. The basic idea is to develop a simplified kinetic model that incorporates
the essential physics, and reproduces correct macroscopic averaged properties.
These algorithms have been used extensively over the past ten years for simu-
lating Navier-Stokes flows, and more recently, several groups have applied the
LBM to the problem of magneto-hydrodynamics (MHD) [10–12] with promis-
ing results [5]. As can be expected from explicit algorithms, LBM are prone
to numerical nonlinear instabilities as one pushes to higher Reynolds numbers.
These numerical instabilities arise because there are no constraints imposed to
enforce the distribution functions to remain non-negative. Such entropic LBM
algorithms, which do preserve the non-negativity of the distribution functions—
even in the limit of arbitrary small transport coefficients—have recently been



developed for Navier-Stokes turbulence [13, 14]. Our LBM applications are rep-
resentative of these two active research areas: the LBMHD3D code simulates the
behavior of a conducting fluid evolving from simple initial conditions through
the onset of turbulence; and the ELBM3D code uses the entropic LB algorithm
to simulate the behaviour of Navier-Stokes turbulence.

While LBM methods lend themselves to easy implementation of difficult
boundary geometries, e.g., by the use of bounce-back to simulate no slip wall
conditions, here we report on 3D simulations under periodic boundary condi-
tions, with the spatial grid and phase space velocity lattice overlaying each other.
Each lattice point is associated with a set of mesoscopic variables, whose values
are stored in vectors proportional to the number of streaming directions. The
lattice is partitioned onto a 3-dimensional Cartesian processor grid, and MPI is
used for communication. As in most simulations of this nature, ghost cells are
used to hold copies of the planes of data from neighboring processors.

In simple terms an LB simulation proceeds by a sequence of collision and
stream steps. A collision step involves data local only to that spatial point, al-
lowing concurrent, dependence-free point updates; the mesoscopic variables at
each point are updated through a complex algebraic expression originally de-
rived from appropriate conservation laws. A stream step evolves the mesoscopic
variables along the streaming lattice. However, a key optimization described by
Wellein and co-workers [15] is often implemented, saving on the work required
by the stream step. They noticed that the two phases of the simulation could
be combined, so that either the newly calculated particle distribution function
could be scattered to the correct neighbor as soon as it was calculated, or equiva-
lently, data could be gathered from adjacent cells to calculate the updated value
for the current cell.

For ELBM3D, a non-linear equation must be solved for each grid-point and
at each time-step so that the collision process satisfies certain constraints. The
equation is solved via Newton-Raphson iteration (5 iterations are usually enough
to converge to within 10−8), and as this equation involves taking the logarithm
of each component of the distribution function at each iteration, the whole al-
gorithm become heavily constrained by the performance of the log function.

Figure 1 shows a slice through the xy-plane in the (left) ELBM3D and (right)
LBMHD3D simulation, where the vorticity profile has distorted considerably
after several hundred time steps as turbulence sets in.

3.1 Vectorization details

The basic computational structure consists of three nested loops over spatial grid
points (typically 1000s iterations) with inner loops over velocity streaming vec-
tors and, in the case of LBMHD3D, magnetic field streaming vectors (typically
10s iterations). Within these innermost loops the various macroscopic quantities
and their updated values are calculated via various algebraic expressions.

For the LBMHD3D case, on both the ES and SX-8, the innermost loops
were unrolled via compiler directives and the (now) innermost grid point loop
was vectorized. This proved a very effective strategy, and was also followed on



Fig. 1. Contour plot of xy-plane showing the evolution of vorticity from well-
defined tube-like structures into turbulent structures using (left) ELBM3D and (right)
LBMHD3D.

the X1E. In the case of the X1E, however, the compiler needed more coercing via
directives to multi-stream the outer grid point loop and vectorize the inner grid
point loop once the streaming loops had been unrolled. Following Worley [16], we
used the compiler directive NO CACHE ALLOC to attempt to optimize cache
use on the X1E. This directive works by indicating to the compiler that certain
arrays that have low reuse are not be to be cached. In this way, space is preserved
for data that can be more beneficially cached. This optimization produced a
speedup of 10%. For the superscalar architectures, we utilized a data layout
that has been previously shown to be optimal on cache-based machines [15], but
did not explicitly tune for the cache size on any machine.

For ELBM3D, in the case the vector architectures, the compilers were able
to vectorize all loops containing log functions. The routine containing the non-
linear equation solver was rewritten to operate on an array of grid points, rather
than a single point, allowing vectorization of this recursive operation. After this
optimization, high performance was achieved on all the vector systems. For the
X1E, two other factors are important to note. In a similar way to LBMHD3D,
compiler directives to enable efficient cache use led to a modest 5% speedup.
Less data is moved per gridpoint in ELBM3D as compared with LBMHD3D, so
cache tuning could reasonably be expected to produce less of a speedup. The call
to the non-linear equation solving routine prevented multistreaming of the outer
grid point loop on the X1E. Because of this, the innermost grid point loop is
now both multistreamed and vectorized. For the tests run here, the vector length
does not drop below 64, but it does lead to shorter vector lengths compared to
the LBMHD3D code.

For the superscalar systems, using the rewritten non-linear equation solving
routine proved to be much faster than the original approach. Presumably this



is due to a reduction of routine call overhead and better use of the functional
units. Depending on the architecture, a speedup of 20-30% is achieved on switch-
ing to the new routine. Another important optimization was to use optimized
library routines to compute a vector of logarithm values per invocation. Each
architecture offers an optimized math function library: MASS for IBM Power5
and Power3, MKL for Intel Itanium2; and ACML for AMD Opteron. A 15-30%
speedup over the the ‘non-vector’ log function is achieved, with the Itanium2
showing the largest speedup. In addition, the innermost grid point loop was
blocked to try and improve cache reuse. A downside to this optimization is that
it reduces the length of the array being passed to the log function. This produced
very minor speedups for Power3 and Power5, a slowdown for the Itanium2, but
a moderate improvement (roughly 15%)for the Opteron system.

3.2 Experimental Results

Tables 3 and 4 and present the performance of both LB applications across the
seven architectures evaluated in our study. Cases where the memory or number
of processors required exceeded that available are indicated with a dash.

Table 3. LBMHD3D performance in GFlop/s (per processor) across the studied ar-
chitectures for a range of concurrencies and grid sizes. Percentage of peak is shown in
parenthesis.

P Size Power3 Power5 Itanium2 Opteron X1E ES SX-8

16 2563 0.14 (9) 0.81 (11) 0.26 (5) 0.70 (16) 6.19 (34) 5.50 (69) 7.89 (49)
64 2563 0.15 (10) 0.82 (11) 0.35 (6) 0.68 (15) 5.73 (32) 5.25 (66) 8.10 (51)

256 5123 0.14 (9) 0.79 (10) 0.32 (6) 0.60 (14) 5.65 (31) 5.45 (68) 9.66 (60)
512 5123 0.14 (9) 0.79 (10) 0.35 (6) 0.59 (13) 5.47 (30) 5.21 (65) —

For LBMHD3D, observe that the vector architectures clearly outperform the
scalar systems by a significant factor. Across these architectures, the applica-
tion exhibits an average vector length (AVL) very close to the maximum (more
than 255.5) and a vector operation ratio (VOR) of more than 99.5%. In ab-
solute terms, the SX-8 is the leader by a wide margin, achieving the highest per
processor performance to date for LBMHD3D. The ES, however, sustains the
highest fraction of peak across all architectures — 65% even at the highest 512-
processor concurrency. Examining the X1E behavior, we see that in MSP mode,
absolute performance is between that of the ES and the SX-8. Although the
SX-8 achieves the highest absolute performance, the percentage of peak is some-
what lower than that of ES. Based on previous work [17], we believe that this
is related to the memory subsystem and use of DDR-SDRAM. Turning to the
superscalar architectures, the Opteron cluster outperforms the Itanium2 system
by almost a factor of 2X. One source of this disparity is that the Opteron system
achieves stream memory bandwidth (see Table 1) of more than twice that of the



Itanium2 system. Another possible source of this degradation are the relatively
high cost of inner-loop register spills on the Itanium2, since the floating point
values cannot be stored in the first level of cache. Given the age and specifica-
tions, the Power3 does quite reasonably, obtaining a higher percent of peak that
the Itanium2, but falling behind the Opteron. The Power5 achieves a slightly
better percentage of peak than the Power3, but somewhat dissapointingly trails
the Opteron.

For ELBM3D, all superscalar architectures achieve a high percentage of peak
performance. The main reason is the much higher computational intensity and
less complex data access patterns of the application relative to LBMHD3D. For
the vector architectures, the converse is true—all achieve a lower percentage of
peak, as compared to LBMHD3D, with the ES decreasing the most. The problem
is not unvectorized code, the ELBM3D application has an AVL and VOR very
close to that of LBMHD3D. Lack of arithmetic operations and data movement
in the application has lessened the advantage of the fast ES memory and the
log function is probably a bottleneck in computation. However, although the
advantage of vector over superscalar has diminished, the SX-8 still achieves tha
highest overall performance, followed by the X1E and ES.

Table 4. ELBM3D performance in GFlop/s (per processor) across the studied archi-
tectures for a range of concurrencies and grid sizes. Percentage of peak is shown in
parenthesis.

P Size Power3 Power5 Itanium2 Opteron X1E ES SX-8

64 5123 0.49 (32) 2.31 (30) 1.86 (33) 1.15 (26) 4.49 (25) 3.36 (42) 5.87 (37)
256 5123 0.45 (30) 2.02 (27) 1.51 (27) 1.08 (25) 4.43 (25) 3.35 (42) 5.86 (37)
512 10243 — 2.04 (27) 1.79 (27) — 4.62 (26) 3.16 (39) —

1024 10243 — — 1.54 (26) — — 3.12 (39) —

4 CACTUS

One of the most challenging problems in astrophysics is the numerical solution
of Einstein’s equations following from the Theory of General Relativity (GR):
a set of coupled nonlinear hyperbolic and elliptic equations containing thou-
sands of terms when fully expanded. The Cactus Computational ToolKit [18,
8] is designed to evolve Einstein’s equations stably in 3D on supercomputers to
simulate astrophysical phenomena with high gravitational fluxes – such as the
collision of two black holes and the gravitational waves radiating from that event.
While Cactus is a modular framework supporting a wide variety of multi-physics
applications [7], this study focuses exclusively on the GR solver, which im-
plements the Arnowitt-Deser-Misner (ADM) Baumgarte-Shapiro-Shibata-Nak-
amura (BSSN) [8] method for stable evolutions of black holes. Figure 2 presents



a visualization of one of the first simulations of the grazing collision of two black
holes computed by the Cactus code. The merging black holes are enveloped by
their “apparent horizon”, which is colorized by its Gaussian curvature. The con-
centric surfaces that surround the black holes are equipotential surfaces of the
gravitational flux of the outgoing gravity wave generated by the collision.

Fig. 2. Visualization of grazing collision of two black holes as computed by Cactus1.

The Cactus General Relativity components solve Einstein’s equations as an
initial value problem that evolves partial differential equations on a regular grid
using the method of finite differences. The core of the General Relativity solver
uses the ADM formalism, also known also as the 3+1 form. For the purpose
of solving Einstein’s equations, the ADM solver decomposes the solution into
3D spatial hypersurfaces that represent different slices of space along the time
dimension. In this formalism, the equations are written as four constraint equa-
tions and 12 evolution equations. Additional stability is provided by the BSSN
modifications to the standard ADM method [8]. The evolution equations can
be solved using a number of different numerical approaches, including staggered
leapfrog, McCormack, Lax-Wendroff, and iterative Crank-Nicholson schemes. A
“lapse” function describes the time slicing between hypersurfaces for each step
in the evolution. A “shift metric” is used to move the coordinate system at each
step to avoid being drawn into a singularity. The four constraint equations are
used to select different lapse functions and the related shift vectors. For parallel
computation, the grid is block domain decomposed so that each processor has a
section of the global grid. The standard MPI driver for Cactus solves the PDE on
a local grid section and then updates the values at the ghost zones by exchanging
data on the faces of its topological neighbors in the domain decomposition.



4.1 Vectorization Details

For the superscalar systems, the computations on the 3D grid are blocked in
order to improve cache locality. Blocking is accomplished through the use of
temporary ‘slice buffers’, which improve cache reuse while modestly increasing
the computational overhead. On vector architectures these blocking optimiza-
tions were disabled, since they reduced the vector length and inhibited perfor-
mance. The ES compiler misidentified some of the temporary variables in the
most compute-intensive loop of the ADM-BSSN algorithm as having inter-loop
dependencies. When attempts to force the loop to vectorize failed, a temporary
array was created to break the phantom dependency.

Another performance bottleneck that arose on the vector systems was the
cost of calculating radiation boundary conditions. The cost of boundary condi-
tion enforcement is inconsequential on the microprocessor based systems, how-
ever they unexpectedly accounted for up to 20% of the ES runtime and over 30%
of the X1 overhead. The boundary conditions were vectorized using very light-
weight modifications such as inline expansion of subroutine calls and replication
of loops to hoist conditional statements outside of the loop. Although the bound-
aries were vectorized via these transformations, the effective AVL remained in-
finitesimally small. Obtaining longer vector lengths would have required more
drastic modifications that were deemed impractical due the amount of the Cactus
code that would be affected by the changes. This modification was very effective
on the X1 because the loops could be multistreamed. Multistreaming enabled
an easy 3x performance improvement in the boundary calculations that reduced
their runtime contribution from the most expensive part of the calculation to
just under 9% of the overall wallclock time. These same modifications produced
no net benefit for the ES or SX-8, however, because the extremely short vector
lengths.

4.2 Experimental Results

The full-fledged production version of the Cactus ADM-BSSN application was
run on each of the architectures with results for two grid sizes shown in Table 5.
The problem size was scaled with the number of processors to keep the compu-
tational load the same (weak scaling). Cactus problems are typically scaled in
this manner because their science requires the highest-possible resolutions.

For the vector systems, Cactus achieves almost perfect VOR (over 99%)
while the AVL is dependent on the x-dimension size of the local computational
domain. Consequently, the larger problem size (250x64x64) executed with far
higher efficiency on both vector machines than the smaller test case (AVL =
248 vs. 92), achieving 34% of peak on the ES. The oddly shaped domains for
the larger test case were required because the ES does not have enough memory
per node to support a 2503 domain. This rectangular grid configuration had
no adverse effect on scaling efficiency despite the worse surface-to-volume ratio.

1 Visualization by Werner Benger (AEI/ZIB) using Amira [19]



Additional performance gains could be realized if the compiler was able to fuse
the X and Y loop nests to form larger effective vector lengths. Also, note that
for the Cactus simulations, bank conflict overheads are negligible for the chosen
(not power of two) grid sizes.

Recall that the boundary condition enforcement was not vectorized on the
ES and accounts for up to 20% of the execution time, compared with less than
5% on the superscalar systems. This demonstrates a a different dimension of ar-
chitectural balance that is specific to vector architectures: seemingly minor code
portions that fail to vectorize can quickly dominate the overall execution time.
The architectural imbalance between vector and scalar performance was partic-
ularly acute of the X1, which suffered a much greater impact from unvectorized
code than the ES. On the SX-8, the boundary conditions occupy approximately
the same percentage of the execution time as it did on the ES, which is consistent
with the fact that the performance improvements in the SX8 scalar execution
unit have scaled proportionally with the vector performance improvements. The
decreased execution efficiency is primarily reflected in lower efficiency in the
vector execution.

The microprocessor based systems offered lower peak performance and gen-
erally lower efficiency than the NEC vector systems. The Opteron, however,
offered impressive efficiency as well as peak performance in comparison to the
Power3 and the Itanium2. Unlike the Power3, the Opteron maintains its perfor-
mance even for the larger problem size. The relatively low scalar performance
on the microprocessor-based systems is partially due to register spilling, which
is caused by the large number of variables in the main loop of the BSSN cal-
culation. However, the much lower memory latency of the Opteron and higher
effective memory bandwidth relative to its peak performance allow it to maintain
higher efficiency than most of the other processors. The Power5 shows much im-
proved performance over the Power3 for the larger problem size thanks to much
improved memory bandwidth and through more advanced prefetch features. For
the large case, it approaches the efficiency of the Opteron and is the highest
performing superscalar system.

Table 5. Cactus performance in GFlop/s (per processor) on 80x80x80 and 250x64x64
grids shown for a range of concurrencies. Percentage of peak is shown in parenthesis.

P Size Power3 Power5 Itanium2 Opteron X1 ES SX-8

16 803 0.31 (21) 1.12 (15) 0.60 (11) 0.98 (22) 0.54 (4) 1.47 (18) 1.86 (12)
64 803 0.22 (14) 1.04 (14) 0.58 (10) 0.81 (18) 0.43 (3) 1.36 (17) 1.81 (11)

256 803 0.22 (14) 1.12 (15) 0.58 (10) 0.76 (17) 0.41 (3) 1.35 (17) 1.75 (11)
16 250x642 0.10 (6) 1.07 (14) 0.58 (10) 0.82 (19) 0.81 (6) 2.83 (35) 4.27 (27)
64 250x642 0.08 (6) 0.95 (13) 0.57 (10) 0.92 (21) 0.72 (6) 2.70 (34) 4.04 (25)

256 250x642 0.07 (5) 0.95 (13) 0.55 (10) 0.68 (16) 0.68 (5) 2.70 (34) 3.87 (24)



5 Conclusions

This study examined three scientific codes on the parallel vector architectures
of the X1/X1E, ES and SX-8, and four superscalar platforms, Power3, Power5,
Itanium2, and Opteron. Overall results show that the SX-8 achieved the high-
est performance of any architecture tested to date, demonstrating the tremen-
dous potential of modern parallel vector systems. However, the SX-8 could not
match the computational efficiency of the ES, due in part, to a relatively higher
memory latency and higher overhead for irregular data accesses. Both the SX-8
and ES also consistently achieved a significantly higher fraction of peak than
the X1/X1E, due to superior scalar processor performance, memory bandwidth,
and network bisection bandwidth relative to the peak vector flop rate. Finally,
a comparison of the superscalar platforms shows the Power5 having the best
absolute performance overall, sometimes overtaking the X1. However, it is of-
ten less efficient than the Opteron processor, which consistently outperforms
the Itanium2 and Power3 in terms of both raw speed and efficiency. Itanium2
exceeds the performance of the older Power3 processor, however its obtained
percentage of peak often falls below that of Power3. Our study also shows that
the slide in the sustained performance of microprocessor cores is not irreversible
if microprocessor architects are willing to invest the effort to make architectural
decisions that eliminate bottlenecks in scientific applications. For instance, the
Power5 shows some improvement over its predecessors (the Power3 and Power4)
in the execution efficiency for the all the applications, thanks to dramatically
improved memory bandwidth and increased attention to latency hiding through
advanced prefetch features. Future work will expand our study to include addi-
tional areas of computational sciences, while examining the latest generation of
supercomputing platforms, including BG/L, X1E, and XT3.
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