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Abstract. This work presents DWMiner, an association rules efficient mining 
tool to process data directly over a relational DBMS data warehouse. DWMiner 
executes the Apriori algorithm as SQL queries in parallel, using a database PC 
Cluster middleware developed for SQL query optimization in OLAP 
applications. DWMiner combines intra- and inter-query parallelism in order to 
reduce the total time needed to find frequent item sets directly from a data 
warehouse. DWMiner was tested using the BMS-Web-View1 database from 
KDD-Cup 2000 and obtained linear and super-linear speedups. 

1 Introduction 

The application of data mining tasks on huge databases requires an increasingly 
processor and memory capacity. Currently most data to be mined resides in Data Base 
Management Systems (DBMS). An increasing number of organizations are installing 
large data warehouses using relational database technology. There is a huge demand 
for nuggets of knowledge from these data warehouses [16]. Nevertheless, most of the 
mining algorithms do not operate directly over a data warehouse. The integration of 
Data Mining (DM) tools with DBMS is now more than a trend, it is a reality. The 
major DBMS vendors have already integrated DM solutions within their products. In 
addition, the main DM suites have also provided the integration of DM models into 
DBMS through modeling languages such as the Predictive Model Markup Language 
(PMML). It is thus a fact that solutions on new DM tools and methods must consider 
their integration with DBMS. 

In this paper, we present DWMiner, an efficient mining tool to process data 
directly over a relational DBMS data warehouse. Our solution takes advantage of a 
cluster of PCs running a Database Cluster middleware. 

DBMS query processing techniques have been optimized to take advantage of PC 
Clusters without having to do a new physical database design through Database 
Cluster solutions [11] [6] [5]. They preserve the application and DBMS autonomy 
while providing high performance query processing in PC clusters. The database 
cluster combines a low cost solution with an excellent performance. Briefly, a 
database cluster is a middleware between the application and the DBMS that runs on 



a set of PC servers interconnected by a dedicated high-speed network, each one 
having its own processors and hard disks, and running an off-the-shelf DBMS [5].   

This work addresses the mining of association rules task, more specifically, the 
search for frequent item sets. The procedure was based on the Apriori algorithm, 
developed by Agrawal and Srikant [4].  The Apriori algorithm for finding frequent 
item sets makes multiple passes over the data. Each pass consist of two phases. The 
first is the candidate generation phase where all the candidate item sets are generated. 
Then, data is scanned to count, for each transaction, the occurrences of a candidate 
item set in a transaction. Our implementation simply transforms every database search 
into an SQL query. 

Many parallel algorithms have been proposed based on Apriori. Count 
Distribution, Data Distribution and Candidate Distribution [3] are some examples. 
However, these algorithms do not work with a DBMS.  

The Apriori algorithm was modified in DWMiner to deal with SQL queries and a 
DBMS instead. DWMiner executes SQL queries in parallel using a database cluster 
middleware techniques proposed by Lima et al. [9] and [10]. Such middleware is 
based on parallel query processing techniques developed for SQL query optimization 
in OLAP (On-Line Analytical Processing) applications. This database cluster has 
become an open source solution named ParGRES [11], [13] and is publicly available 
at http:// forge.objectweb.org/projects/pargres/. Each cluster node can run any non 
parallel relational DBMS. In this work we use PostgreSQL [14] which is open source. 
DWMiner combines intra- and inter-query parallelism in order to reduce the total time 
needed to find frequent item sets directly from a data warehouse. We ran DWMiner 
using the BMS-Web-View1 database from KDD-Cup 2000 [8] and obtained linear 
and super-linear speedups in cases where the support threshold is small like, for 
instance 0.01. 

This paper is organized as follows. Section 2 describes the Apriori algorithm used 
as a basis for our implementation. Section 3 describes how we changed the Apriori 
algorithm to access a data warehouse and the parallel techniques used in DWMiner. 
Section 4 describes our prototype implementation and experimental results and 
Section 5 concludes. 

2 The Apriori Algorithm 

The problem of mining association rules was initially presented by Agrawal [1] and 
today is one of the most popular data mining algorithms. Association rule mining, 
also known as market basket analysis, finds interesting association relationships 
among a large set of data items. Typically, the data is a set of record where each 
record represents a transaction containing a set of items. The main goal of the 
algorithm is to find associations on items that are often present in the same 
transaction. 

Association rules are considered interesting if they satisfy both a minimum support 
threshold and a minimum confidence threshold. But before describing the procedures 
that generate association rules we first need to formally define the terms item set, 
confidence, support and an association rule. According to Agrawal [2] an association 



rule is an implication of the form X => Y where X and Y are sets of items. The 
intuitive meaning of such a rule is that transactions of the database which contains X 
tend to contain Y. An item set is a set of items in a lexicographic order. A k-itemset is 
an item that contains k items. Support and confidence are the two measures most used 
in association rules. The support or the occurrence frequency of an item set is the 
number of transactions that contains the item set. This is taken to be the probability, 
P(A ∪  B). A frequent item set is an item set with a support value higher than a 
minimum threshold. The confidence of a rule X => Y is the percentage of transactions 
that contains X and also contains Y. This is taken to be the conditional probability, 
P(B | A), i.e.: 

 
Support (X => Y) = P(A ∪  B) 
 
Confidence (X => Y) = P(B | A) 
 
The algorithm of mining association rules can be divided in two sub problems: (i) 

find all the combinations of items whose support are higher than the minimum 
support, called frequent item sets; and (ii) find the association rules with confidence 
greater than or equal to the minimum confidence, based on frequent item sets 
generated earlier. We are particularly interested in the first sub problem: finding the 
frequent item sets. There are many algorithms to generate frequent item sets such as 
the AIS [1], the SETM [7] and the AprioriTid [4]. Among these algorithms the 
Apriori is considered one of the most important and widely used. So, we chose 
Apriori to be the basis of our implementation. The pseudo-code for the Apriori 
algorithm is as follows. 

Input: Database,D, of transactions; minimum support threshold 
min_sup 

Output: frequent item sets in D 

C
k
: Candidate item set of size k; 

L
k
: frequent item set of size k; 

 

1.  L
1
 = {frequent 1-itemsets}; 

2.  for (k = 2; L
k-1
 !=∅; k++) { 

3.     C
k
 = candidates generated from L

k-1
; 

4.      for each transaction t in database do{ 

5.        increment the count of all candidates in C
k
        

6.        that are contained in t 

7.      }
 

8.    L
k
 = candidates in C

k
 with min_sup 

9.  } 

10. return ∪k Lk; 
 



Step 1 of Apriori finds L1, the frequent 1-itemsets (line 1). In the next step the 
frequent item set Lk-1 is used to generate the candidate k-itemsets Ck (line 3). Then, 
the dataset is scanned to find the support values for candidates (lines 4 to 7). Finally, 
the frequent k-itemsets are determined (line 8). The final solution is the union of the 
frequent k-itemsets (line 10). 

3 Apriori implementation in DWMiner 

Discovery of association rules is an important Data Mining problem. Parallel 
algorithms are required [3] to cope with the databases to be mined which are often 
very large (measured in gigabytes or even in petabytes). However, most of the parallel 
solutions do not deal with a DBMS. In DWMiner we combine parallel techniques 
with DBMS advantages to efficiently mine frequent item sets from large databases. In 
this section we present how we adapted Apriori to issue queries to run in a database 
cluster. 

3.1 Database Clusters 

Database Cluster is a middleware that provides parallel query processing in 
applications that use a sequential DBMS [15]. In a database cluster, each node of the 
cluster runs its own sequential DBMS as a black-box component. Clients submit 
transactions to the middleware which is responsible to distribute queries through the 
cluster nodes. 

Parallel query processing of database clusters is based on two techniques known as 
intra-query and inter-query parallelism. In intra-query parallelism, a query is 
decomposed in sub-queries that scan different subsets of the data. The sub-queries are 
executed in parallel in the cluster nodes. Fig. 1 (a) shows an example of intra-query 
parallelism where the query Q1 is decomposed in n sub-queries. The database is 
replicated at all nodes involved with the intra-query processing. Each sub-query is 
responsible to process a different range of data at each node in parallel. Finally the 
sub-results are combined to produce the final query result. This technique aims to 
reduce the execution time of heavy-weight queries, i.e., queries that access large 
amounts of data and may perform complex operations, thus taking a long time to be 
processed. In the inter-query technique, queries are executed as they are really, which 
means no decomposition. Distinct queries are distributed and executed concurrently in 
the cluster nodes to enhance database system throughput. Fig. 1 (b) shows an example 
of inter-query parallelism where queries Q1 to Qn are distinct and distributed over the 
cluster nodes to be executed in parallel. 

 



 
Fig. 1. Parallel query processing techniques 

 
These two techniques are not exclusive, but most database clusters provide either 

inter-query [6], [15] or intra-query [5] parallelism. However, they have been 
successfully combined in [10] and [11], so in DWMiner both inter and intra-query 
parallelism are explored. When receiving a heavy weight query we can use intra-
query parallelism, and, in the case of simple queries, the inter-query parallelism 
should be more appropriate. In addition, a query being processed by intra-query 
parallelism can run concurrently with other queries through inter or intra-query 
parallel processing. 

3.2 Adapting Apriori to DBMS Access 

Now we describe how we changed the Apriori algorithm to generate SQL queries, 
instead of reading data from a flat file to main memory. First of all we name a set of 
items which contains k items as a k-item set. Hence, the first step of the algorithm 
(k=1) is to generate the 1-itemset and find the support for each element. Thus, we 
simply have to scan all the transactions in order to count the number of occurrences of 
each item. In our case, the table was called bmswebview1 with two attributes: a_item 
and a_tid, where a_item is the item identification and a_tid the transaction 
identification. The SQL query generated by our implementation is Q1, described as 
follows. This query corresponds to the line 1 of the pseudo-code described earlier. 

Q1: Select   a_item, count(*) as total 

    from     bmswebview1 

    group by a_item 

    having count(*) >= minimum_support 
 
In Figure 2, we show the architecture of the typical Apriori algorithm and 

DWMiner with Apriori accessing data to be mined directly from the data warehouse 
through a DBMS driver interface.  
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Fig. 2. Apriori data access and DWMiner database cluster access 

 
The next step is to generate the candidate 2-item sets from which we will find the 

frequent 2-itemset. In this case the SQL query Q2 generated by DWMiner is 
described as follows. 

Q2: Select count(a_tid)  

    from   bmswebview1 

    where  a_item = item1 

    and exists (select a_tid  

                from   bmswebview1 

                where  a_item = item2) 

 
This query Q2 corresponds to the steps 4 to 6 in the Apriori pseudo-code. So, we 

are counting the transactions that contain both item1 and item2. The number of 
queries generated is equal to the number of candidate 2-item sets. This process 
continues until there is no more candidate item sets left. Every query generated in this 
loop corresponds to the steps 4 to 6 in the Apriori pseudo-code. They will be different 
depending on the value of k, from the current k-itemset being analyzed. Thus, to 
generate the query to find the 3-itemset support we just need to add one more level of 
nested select in Q2 generating the following query.  

Q3: Select count(a_tid)  

  from   bmswebview1 

  where  a_item = item1 

  and exists (select a_tid  

              from   bmswebview1 

              where  a_item = item2 

              and exists (select a_tid  

                          from bmswebview1 

                          where a_item = item3) 

 
Then, the number of nested selects is directly related to the item set being 

analyzed. If we are analyzing the k-item set then we will have k levels of nested 
selects.  Once a candidate item set is created we can build SQL queries for each 
element and process them in parallel because they are independent.  



3.3 Adapting Apriori to Database Clusters 

The main goal of DWMiner is to reduce the total time of database searching. In order 
to do that, DWMiner adopts inter and intra-query parallelism available in ParGRES 
database cluster. Intra-query parallelism is obtained by using a virtual partition 
technique (VP) [10]. This technique breaks one heavy weight query into sub-queries 
by adding selection predicates as proposed in [5]. Each DBMS receives a sub-query 
and is forced to process a different subset of data items. Each subset is called a 
“virtual partition”.  

The SQL Q1 query generated in the first step of the Apriori algorithm to find the 
frequent 1-itemset involves a group by and a having operation. Such operations are 
time consuming since a full scan on a large relation is needed. To overcome this 
problem at this point DWMiner takes advantage of intra-query parallelism involving 
all of the cluster nodes. Thus, the Q1 generated for the first step would be rewritten by 
the database cluster as the following Q1i sub-queries, where i varies from 1 to n being 
the number of nodes involved on the intra-query processing. 

Q1i: Select a_item, count(*) as total 

    from bmswebview1 

    and  bmswebview1_key > :v1 and bmswebview1_key <= :v2 

    group by a_item 

    having count(*) >= minimum_support 
 
The difference between Q1 and Q1i is the range predicate “bmswebview1_key > :v1 

and bmswebview1_key <= :v2”. We call virtual partitioning attribute (VPA), the 
attribute chosen to virtually partition the data. Usually the VPA is the primary key of 
the table being selected, in this case bmswebview1_key. The values used for 
parameters v1 and v2 vary from node to node and are computed according to the total 
range of the VPA and the number of nodes. Let us assume that the interval of values 
of bmswebview1_key is [1; 6,000,000] and we have 4 nodes, then, 4 sub-queries must 
be generated. The intervals covered by each sub-query are the following: Q11: v1=0 
and v2=1,500,000; Q12: v1=1,500,000 and v2=3,000,000; and so on. In spite of each 
node having the same replica of bmswebview1 table, virtual partitioning forces each 
one to process a different data subset of bmswebview1. Besides, full replication 
makes it possible to allocate any node to process any sub-query. After sub-query 
execution, it is necessary to compose the partial counting produced by each one in 
order to have the final result. 

In Fig. 3, we show the architecture of the Apriori algorithm and DWMiner with 
respect to accessing data to be mined through a database cluster middleware. In this 
case DWMiner is issuing query Q1 to the database cluster, which decides to process it 
through intra-query parallelism. Thus Q1 is decomposed as Q1i sub-queries to access n 
different virtual partitions of table bmswebview1. Such middleware can be C-JDBC 
or ParGRES or any other database cluster. However, if C-JDBC is used, Q1 cannot be 
processed through intra-query parallelism.  

For the queries of the following steps of Apriori, DWMiner tries to find a balance 
between inter and intra-query parallelism. For example, once the k-item set is 
analyzed, a candidate item set is created. Each element query can be processed 



independently in parallel through inter-query. Therefore, DWMiner sends each query 
to a cluster node. However, the time needed to process one such query may be 
relatively large. In this case, the query is decomposed and its sub queries are 
processed in parallel. 

 

 
Fig. 3. DWMiner using Apriori accessing a database cluster  

 

4 Experimental Results 

To evaluate DWMiner techniques we have used a Linux based PC cluster and 
PostgreSQL 8.0 DBMS [14]. The dataset used in our experiment is the BMS-Web-
View1 which contains several months’ worth of click stream data from an e-
commerce web site. A portion of their data was used in KDD-Cup 2000 competition 
[8]. This dataset has a total of 56,902 transactions and 497 distinct items, its 
maximum transaction size is 267 and the average transaction size is 2.5. Our 
experiments run on top of the cluster system of the Paris team at INRIA [12]. Our 
tests have used up to 32 nodes of this cluster system, each node configured with dual 



2.2 GHz Opteron processors with 2 GB of main memory. The cluster is 
interconnected by a standard Ethernet network.  

The results from our experiments are shown in Fig. 4. We plot times taken by our 
implementation for values of support ranging from 0.1% to 2% using only inter-query 
parallelism. We ran DWMiner varying the number of nodes from 1 to 32 for each 
support value. In order to improve reading and analysis, we use logarithmic scale. 
Although, DWMiner implements its own inter-query mechanism we also used C-
JDBC[6] to perform inter-query parallelism as an alternative successful open source 
database cluster solution.  

 

 
Fig. 4. Execution times for DWMiner 

 
Most of the results in Fig. 4 present linear speedup as we increase the number of 

nodes, since queries sent to the database cluster are independent from each other. But, 
analyzing the higher support curves like 0.02 (2%) and 0.015 (1.5%) we note that the 
results are worse than linear. This happens because the number of candidates 
generated and, consequently, the number of queries is not enough to compensate the 
time spent to distribute these queries over the cluster nodes and receive the results. 
Still, DWMiner does not experience slow down factors. Table 1 gives a more accurate 
view of the graphic shown in Fig. 4. In the worst case, using 32 nodes is 4 times faster 
than using 1 node. 

As we can see in Table 1, by using two nodes the execution time of DWMiner is 
reduced by almost 50% for the support 0.02 (2%).  However, when 4 nodes are used 
the time reduction is linear and the execution time remains almost the same until 32 



nodes. This happens because when we use 4 nodes we get too close to the situation 
where the time spent to distribute the queries and wait for the results is the main 
factor in the total time of execution. However, as the support threshold decreases, the 
time reduction continues to improve the performance and it is often super-linear.   

Table 1. Query Execution times for DWMiner 

 Number of Nodes 
Support 1 2 4 8 16 32 

0.0200 11,354 6,842 4,959 4,034 3,672 3,867 
0.0150 22,581 11,991 7,618 5,328 5,274 4,648 
0.0100 67,707 32,651 17,878 10,821 7,653 7,952 
0.0075 132,153 60,715 31,801 17,989 11,678 8,355 
0.0050 238,717 105,636 55,043 29,326 18,722 12,891 
0.0033 411,360 177,668 90,894 47,575 29,724 15,564 
0.0025 540,933 234,830 119,517 61,941 38,767 20,246 
0.0010 1,291,949 555,865 282,049 144,623 88,928 41,662 

 
Table 2 shows the performance improvement we obtained in each case.  We can 

see in Table 2 that most results are quasi-linear or super-linear. When we use 2 nodes 
and the supports going from 0.01 (1.0 %) to 0.001 (0.1%) the support is lower enough 
to generate a relatively large number of candidate item sets. For these support 
thresholds, a large number of queries are generated and sent to the nodes. When many 
queries are sent to a node the database cluster makes a wise use of the system cache 
instead of reading data from disk. Thus, many queries process data from memory 
reducing considerably the query execution time achieving, this way, super-linear 
speedups.  

Table 2. Perfomance evaluation of DWMiner 

 Number of Nodes  (Linear Speedup) 
Support 2 (50.00%) 4 (25.00%) 8 (12.50%) 16 (6.25%) 32 (3.13%) 

0.0200 60.26% 43.68% 35.53% 32.34% 34.06% 
0.0150 53.10% 33.74% 23.60% 23.36% 20.58% 
0.0100 48.22% 26.40% 15.98% 11.30% 11.74% 
0.0075 45.94% 24.06% 13.61% 8.84% 6.32% 
0.0050 44.25% 23.06% 12.28% 7.84% 5.40% 
0.0033 43.19% 22.10% 11.57% 7.23% 3.78% 
0.0025 43.41% 22.09% 11.45% 7.17% 3.74% 
0.0010 43.03% 21.83% 11.19% 6.88% 3.22% 

 
The graphic in Fig. 5 compares the results of inter-query only by using C-JDBC 

with the results of intra-query combined with inter-query through ParGRES. We also 
compared inter-query only using C-JDBC and inter-query only using ParGRES. In 
both implementations queries are distributed to cluster nodes in a round robin fashion. 
We obtained very similar results in both database clusters. Therefore, in Fig. 5 we 



kept the legend as inter versus inter/intra rather than C-JDBC versus ParGRES. In the 
combination case, intra-query was implemented using only two nodes. Queries were 
decomposed in two sub-queries and executed in parallel in the cluster concurrently 
with other queries. So, when running with 32 nodes, it means that 16 different queries 
can be executed in parallel. However, intra-query demands an aggregation phase for 
each query to compose the two partial results.  

 
Fig. 5. Inter-query versus (inter + intra) query 

 
As shown in Fig. 5, the inter-query parallelism alone is better than the combination 

between inter and intra-query parallelism. Since we are using a relatively small 
database, individual queries could not be considered to be heavy weight queries. So, 
the time needed to aggregate the partial results of the sub-queries was relevant with 
respect to overall query reduction. Nevertheless, the combination of inter with intra-
query achieved linear and super-linear speedups.  

5 Conclusions and Future Work 

One of the best advantages in using a DBMS is that it already provides efficient 
techniques to deal with large datasets. These techniques need to be re-implemented in 
part if we want to work with flat files that do not fit in the available memory. 

Most of the mining algorithms demand a flat file to be in a special format. These 
algorithms need an extra step to extract the information they need to a flat file. Since 



we can have data warehouses with dozens of gigabytes or even petabytes, to generate 
a file from these data may require a lot of extra storage. DWMiner solution is DBMS 
vendor independent, thus it can be applied directly over a data warehouse system 
using techniques that take advantage of a low cost high performance scenario such as 
database clusters.  

In this work we showed that by using such techniques we acquire significant 
improvement in the process of mining data directly from a DBMS. We can efficiently 
mine frequent item sets from a data warehouse by sending queries to be processed in 
parallel by the database cluster. In our experiments, we have used one representative 
dataset – BMS-Web-View1 – and as future work we intend to test DWMiner against 
some larger databases where we expect to explore the combination of inter and intra-
query parallelism and take more advantage of the intra-query parallelism. 
Nevertheless, we achieved linear and super-linear results working with a relatively 
small dataset comparing to a real data warehouse. 

The techniques adopted in DWMiner are not difficult to implement and maintain 
since they are based on SQL and take advantage of simple parallel techniques found 
in database clusters. In addition, DWMiner solution is all based on open-source 
software and commodity hardware. Such techniques can also be applied in tasks 
different from mining frequent item sets inside the data mining context. 

Acknowledgements 

The authors are grateful to the Brazilian research agencies CNPq, CAPES and FINEP 
for the financial support of the work. We are also grateful to the Paris team at INRIA 
for providing the PC cluster environment. 

References 

1. Agrawal, R., Imielinsk, T., Swami, A. N., 1993, "Mining association rules between 
sets of items in large databases". In: 1993 ACM SIGMOD International Conference 
on Management of Data, pp.207-216. 

2. Agrawal, R., Mannila, H., Srikant, R., et al, 1996, "Fast discovery of association 
rules". In U.M.Fayyad, G.Piatetsky-Shapiro, P.Smyth, and R.Uthurusamy, Advances 
in Knowledge Discovery and Data Mining, chapter 12, AAAI/MIT Press. 

3. Agrawal, R.,Shafer, J., 1996, "Parallel Mining of Association Rules", IEEE 
Trans.Knowledge and Data Engineering,v.8, pp.962-969. 

4. Agrawal, R.,Srikant, R., 1994, "Fast algorithms for mining association rules". In: 
20th International Conference on Very Large Databases (VLDB), pp.487-499. 

5. Akal F., Böhm, K., Schek, H. J., 2002, "OLAP Query Evaluation in a Database 
Cluster: a Performance Study on Intra-Query Parallelism". In: East-European 
Conference on Advances in Databases and Information Systems (ADBIS), Bratislava, 
Slovakia. 

6. C-JDBC. In: http://c-jdbc.objectweb.org/, Accessed in 2005. 
7. Houtsma, M.,Swami, A., 1995, "Set-oriented mining of association rules". In: 11th 

Conference on Data Engineering, Taipei, Taiwan. 



8. Kohavi, R., Brodley, C. E., Frasca, B., et al., 2000, "KDD Cup 2000 Organizers' 
Report: Peeling the Onion", In: SIGKDD Exploration 2 (2), pp.86-98. 

9. Lima, A. A. B., Mattoso, M., Valduriez, P., 2004, "OLAP Query Processing in a 
Database Cluster". In: 10th Euro-Par Conference, pp. 355-362. 

10. Lima, A. A. B., Mattoso, M., Valduriez, P., 2005, "Adaptive Virtual Partitioning for 
OLAP Query Processing in a Database Cluster". In: 19th SBBD, pp.92-105. 

11. Mattoso, M., Zimbrão, G., Lima, A. A. B., Almentero, B.K. et al., 2005, "ParGRES: 
a middleware for executing OLAP queries in parallel". In: COPPE/UFRJ Technical 
Report ES-690, http://pargres.nacad.ufrj.br/Documentos/ES-690.pdf. 

12. Paris Project. In: http://www.irisa.fr/paris/General/cluster.htm. 
13. ParGRES In: http://pargres.nacad.ufrj.br/, Accessed in 2005. 
14. PostgreSQL. In: http://www.postgresql.org, Accessed in 2005. 
15. Röhm, U., Böhm, K., Schek, H. J., 2002, "FAS - A Freshness-Sensitive Coordination 

Middleware for a Cluster of OLAP Components". In: 28th International Conference 
on Very Large Data Bases (VLDB2002), pp.754-765. 

16. Sarawagi, S., Thomas, S., Agrawal, R., 1998, "Integrating Association Rule Mining 
with Relational Database Systems: Alternatives and Implications". In: 1998 ACM 
SIGMOD International Conference on Management of Data, pp.343-355. 

 
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


