
Evaluation of Several Variants of Explicitly
Restarted Lanczos Eigensolvers and their

Parallel Implementations?

V. Hernandez, J. E. Roman, and A. Tomas

D. Sistemas Informáticos y Computación, Universidad Politécnica de Valencia,
Camino de Vera, s/n, E-46022 Valencia, Spain.

Tel. +34-963877356, Fax +34-963877359
{vhernand,jroman,atomas}@itaca.upv.es

Abstract. It is well known that the Lanczos process suffers from loss
of orthogonality in the case of finite-precision arithmetic. Several ap-
proaches have been proposed in order to address this issue, thus en-
abling the successful computation of approximate eigensolutions. How-
ever, these techniques have been studied mainly in the context of long
Lanczos runs, but not for restarted Lanczos eigensolvers. Several vari-
ants of the explicitly restarted Lanczos algorithm employing different re-
orthogonalization strategies have been implemented in SLEPc, the Scal-
able Library for Eigenvalue Computations. The aim of this work is to
assess the numerical robustness of the proposed implementations as well
as to study the impact of reorthogonalization in parallel efficiency.

Topics. Numerical methods, parallel and distributed computing.

1 Introduction

The Lanczos method [1] is one of the most successful methods for approximating
a few eigenvalues of a large real symmetric (or complex Hermitian) matrix, A.
It computes a sequence of Lanczos vectors, vj , and scalars αj , βj as follows

Choose a unit-norm vector v1 and set β1 = 0
For j = 1, 2, . . .

uj+1 = Avj − βjvj−1

αj = v∗j uj+1

uj+1 = uj+1 − αjvj

βj+1 = ‖uj+1‖2 (if βj+1 = 0, stop)
vj+1 = uj+1/βj+1

end

Every iteration of the loop computes the following three-term recurrence

βj+1vj+1 = Avj − αjvj − βjvj−1 . (1)
? This work was supported in part by the Valencian Regional Administration, Direc-

torate of Research and Technology Transfer, under grant number GV06/091.

The first m iterations can be summarized in matrix notation as follows

AVm − VmTm = βm+1vm+1e
∗
m , (2)

where Vm = [v1, v2, . . . , vm], e∗m = [0, 0, . . . , 1], and

Tm =

α1 β2

β2 α2 β3

.
βm−1 αm−1 βm

βm αm

 (3)

It can be shown that the Lanczos vectors are mutually orthonormal, i.e. V ∗
mVm =

Im, where Im is the m × m identity matrix. As described in section 2, the
above procedure can be used as a basis for implementing a solver for symmetric
eigenvalue problems, because eigenvalues of Tm approximate eigenvalues of A.
However, practical implementations have to deal with many technical difficulties.
The two major issues to be addressed are:

1. The loss of orthogonality of Lanczos vectors in finite-precision arithmetic.
2. The convenience of eventually restarting the recurrence.

If loss of orthogonality is not treated appropriately, then duplicate as well as
spurious eigenvalues appear in the spectrum of Tj as the iteration progresses.
Loss of orthogonality is well understood since the work by Paige [2], who showed
that orthogonality is lost as soon as an eigenvalue has converged. This helped
researchers devise effective reorthogonalization strategies for preserving (semi-)
orthogonality, as described in section 2. These techniques make use of previously
computed Lanczos vectors, thus increasing the storage needs and computational
cost with respect to the original algorithm, growing as the iteration proceeds. For
this reason, practical implementations of Lanczos must generally be restarted,
especially in the case of very large-scale sparse problems. In a restarted version,
the number of Lanczos steps is limited to a maximum allowed value, after which
a new recurrence begins.

The simplest form of restart, usually called explicit restart, consists in com-
puting a new starting vector, v1, from the spectral information available before
the restart. Although this strategy is typically less effective than other techniques
such as implicit restart [3], it can still be competitive in some cases.

The motivation of this work is to provide a robust and efficient parallel im-
plementation of a Lanczos eigensolver in SLEPc, the Scalable Library for Eigen-
value Problem Computations [4]. Currently, only explicitly restarted symmetric
Lanczos versions are available in SLEPc, so the main objective of this work is
to analyze how different reorthogonalization techniques behave in this context,
both from the stability and efficiency viewpoints.

The text is organized as follows. In section 2, the Lanczos method is de-
scribed in more detail, including the different strategies for coping with loss of
orthogonality. Implementation details such as how to efficiently parallelize the

orthogonalization operation are discussed as well. In section 3, the particular
implementations available in SLEPc are described. Sections 4 and 5 show the
analysis results with respect to numerical stability and parallel performance,
respectively. Finally, in section 6 some conclusions are given.

2 Description of the Method

This section provides an overview of the Lanczos method and some of its varia-
tions, including techniques for avoiding loss of orthogonality. For more detailed
background material the reader is referred to [5] and references therein.

2.1 Basic Lanczos Algorithm

Apart from viewing the Lanczos process from the perspective of the three-term
recurrence described in the previous section, it can also be seen as the com-
putation of the orthogonal projection of matrix A onto the Krylov subspace
Km(A, v1) ≡ span{v1, Av1, . . . , A

m−1v1}. From this perspective, the Lanczos
method is equivalent to the Arnoldi method, and can be described as follows.

Algorithm 1. Basic Lanczos
Input: Matrix A, number of steps m, and initial vector v1 of norm 1
Output: (Vm, Tm, vm+1, βm+1) so that AVm − VmTm = βm+1vm+1e

∗
m

For j = 1, 2, . . . ,m
uj+1 = Avj

Orthogonalize uj+1 with respect to Vj (obtaining αj)
βj+1 = ‖uj+1‖2

vj+1 = uj+1/βj+1

end

In the above algorithm, the second line in the loop performs a Gram-Schmidt pro-
cess in order to orthogonalize vector uj+1 with respect to the columns of Vj , that
is, the vectors v1, v2, . . . , vj (see subsection 2.4 for details about Gram-Schmidt).
In this operation, j Fourier coefficients are computed. In exact arithmetic, the
first j − 2 coefficients are zero, and therefore the corresponding operations need
not be carried out (orthogonality with respect to the first j − 2 vectors is au-
tomatic). The other two coefficients are βj and αj . According to Paige [6], the
βj computed in this operation should be discarded and, instead, use the value
‖uj‖2 computed in the previous iteration. As we will see in subsection 2.2, or-
thogonalization will be a key aspect of robust Lanczos variants that cope with
loss of orthogonality.

Since V ∗
mvm+1 = 0 by construction, then by premultiplying Eq. 2 by V ∗

m

V ∗
mAVm = Tm, (4)

that is, matrix Tm represents the orthogonal projection of A onto the Krylov
subspace spanned by the columns of Vm, and this fact allows us to compute

Rayleigh-Ritz approximations of the eigenpairs of A. Let (λi, yi) be an eigenpair
of matrix Tm, then the Ritz value, λi, and the Ritz vector, xi = Vmyi, can be
taken as approximations of an eigenpair of A. Typically, only a small percentage
of the m approximations are good. This can be assessed by means of the residual
norm for the Ritz pair, which turns out to be very easy to compute:

‖Axi−λixi‖2 = ‖AVmyi−λiVmyi‖2 = ‖(AVm−VmTm)yi‖2 = βm+1|e∗myi|. (5)

2.2 Lanczos in Finite Precision Arithmetic

When implemented in finite precision arithmetic, the Lanczos algorithm does
not behave as expected. The eigenvalues of the tridiagonal matrix Tj (the Ritz
values) converge very rapidly to well-separated eigenvalues of matrix A, typ-
ically those in the extreme of the spectrum. However, if enough iterations of
the algorithm are carried out, then multiple copies of these Ritz values appear,
beyond the multiplicity of the corresponding eigenvalue in A. In addition, the
process gives wrong Ritz values as converged, which are usually called spurious
eigenvalues. It can be observed that this unwanted behavior appears at the same
time that the Lanczos vectors start to lose mutual orthogonality. Lanczos was
already aware of this problem and suggested to explicitly reorthogonalize the
new Lanczos vector with respect to all the previous ones at each step. Although
effective, this costly operation seems to invalidate all the appealing properties of
the algorithm. Other alternatives, discussed below, have been proposed in order
to be able to deal with loss of orthogonality at less cost.

Full Orthogonalization. The simplest cure to loss of orthogonality is to orthogo-
nalize vector uj+1 explicitly with respect to all the previously computed Lanczos
vectors. That is, performing the computation for all vectors, including the first
j − 2 ones for which the Fourier coefficient is zero in exact arithmetic.

The main advantage of full orthogonalization is its robustness, since orthog-
onality is maintained to full machine precision. (Note that for this to be true it
may be necessary to resort to double orthogonalization, see subsection 2.4.) The
main drawback of this technique is that the cost of orthogonalization is high
and grows as more Lanczos steps are carried out. This recommends a restarted
version, in which the number of Lanczos vectors is bounded, see section 2.3.

Local Orthogonalization. The quest for more efficient solutions to the problem of
loss of orthogonality started with a better theoretical understanding of the Lanc-
zos process in finite precision arithmetic, unveiled by Paige’s work [6, 2, 7]. One
key aspect of Paige’s analysis is that Lanczos vectors start to lose orthogonality
as soon as an eigenvalue of Tj stabilizes or, in other words, when a Ritz value is
close to convergence, causing the subsequent Lanczos vectors to contain a non-
negligible component in the direction of the corresponding Ritz vector. Until
this situation occurs, the Lanczos algorithm with local orthogonalization (that
is, if vector uj+1 is orthogonalized only with respect to vj and vj−1) computes
the same quantities as the variant with full orthogonalization. This fact suggests

that an algorithm could proceed with local orthogonalization until an eigenvalue
of Tj has stabilized, then either start a new Lanczos process with a different
initial vector, or continue the Lanczos process with the introduction of some
kind of reorthogonalization. The latter approach gave way to the development
of semiorthogonal Lanczos methods, discussed below.

A completely different approach is to simply ignore loss of orthogonality
and perform only local orthogonalization at every Lanczos step. This technique
is obviously the cheapest one, but has several important drawbacks. For one
thing, convergence of new Ritz values is much slower since multiple copies of
already converged ones keep on appearing again and again. This makes it neces-
sary to carry out many Lanczos steps to obtain the desired eigenvalues. On the
other hand, there is the problem of determining the correct multiplicity of the
computed eigenvalues as well as discarding those which are spurious. A clever
technique for doing this was proposed in [8]. An eigenvalue of Tj is identified as
being spurious if it is also an eigenvalue of the matrix T ′

j , which is constructed
by deleting the first row and column of Tj . Furthermore, good eigenvalues are
accepted only after they have been replicated at least once.

Semiorthogonal Techniques. As mentioned above, the idea of these techniques is
to perform explicit orthogonalization only when loss of orthogonality is detected.
Two aspects are basic in this context:
1. How to carry out the orthogonalization so that the overall cost is small.
2. How to determine when an eigenvalue has stabilized or, in other words, how

to monitor loss of orthogonality, without incurring a high cost.

With respect to the first aspect, several different approaches have been pro-
posed: selective [9], periodic [10], and partial [11] reorthogonalization. In brief,
they consist, respectively, in: orthogonalizing every Lanczos vectors with respect
to all nearly converged Ritz vectors; orthogonalizing uj+1 and uj+2 with respect
to all the Lanczos vectors; and orthogonalizing uj+1 and uj+2 with respect to a
subset of the Lanczos vectors.

The second aspect can be addressed in two ways, basically. One is to compute
the error bounds associated to the Ritz pairs at each iteration, and the other is
to use a recurrence for estimating a bound of the level of orthogonality, such as
the one proposed by Simon in [11]. If we define the level of orthogonality at the
j-th Lanczos step as

ωj ≡ max
1≤k<j

|ωj,k| , with ωj,k ≡ v∗j vk , (6)

then the full reorthogonalization technique keeps it at roundoff level in each step,
ωj ≈ εM . However, all that effort is not necessary since, as shown in [11, 12],
maintaining semiorthogonality, i.e. ωj ≈

√
εM , is sufficient so that properties of

the Rayleigh-Ritz projection are still valid.

2.3 Explicit Restart

As mentioned above, restarting is intended for reducing the storage requirements
and, more importantly, reducing the computational cost of orthogonalization,

which grows as more Lanczos vectors become available. Restart can be accom-
plished in several ways. The idea of explicit restart is to iteratively compute
different m-step Lanczos factorizations (Eq. 2) with successively “better” initial
vectors. The initial vector for the next Lanczos run is computed from the in-
formation available in the most recent factorization. The simplest way to select
the new initial vector is to take the Ritz vector associated to the first wanted,
non-converged Ritz value.

In order for a restarted method to be effective, it is necessary to keep track of
already converged eigenpairs and perform a deflation, by locking converged Ritz
vectors. Suppose that after a Lanczos run, the first k eigenpairs have already
converged to the desired accuracy, and write Vm as

Vm =
[
V

(l)
1:k V

(a)
k+1:m

]
, (7)

where the (l) superscript indicates locked vectors and the (a) superscript indi-
cates active vectors. In the next Lanczos run, only m− k Lanczos vectors must
be computed, the active ones, and in doing this the first k vectors have to be
deflated. This can be done simply by orthogonalizing every new Lanczos vector
also with respect to the locked ones. Therefore, deflation can be incorporated
to Algorithm 1 simply by explicitly including the locked vectors in the orthog-
onalization operation. With this change, a restarted Lanczos method can be
described as in Algorithm 2.

Algorithm 2. Explicitly Restarted Lanczos
Input: Matrix A, initial vector v1 of norm 1, and dimension of the subspace m
Output: A partial eigendecomposition AVk = VkΘk, with Θk = diag(θ1, . . . , θk)

Initialize k = 0
Restart loop

Perform m− k steps of Lanczos (Algorithm 1) with initial vector vk+1

Compute eigenpairs of Tm, Tmyi = yiθi

Compute residual norm estimates, τi = βm+1|e∗myi|
Lock converged eigenpairs
Vm = VmY

end

In a restarted Lanczos method, it is also necessary to deal with loss of or-
thogonality. In the case of the simple explicit restart scheme, it is safe to use any
of the techniques described in the previous subsection, since full orthogonality
of the Lanczos vectors is not required for the restart to work correctly. Only in
the case of local orthogonalization, the following considerations should be made:

– The restart vector has to be orthogonalized with respect to locked vectors.
– Since the value of m (the largest allowable subspace dimension) is usually

very small compared to n (the matrix dimension), then the heuristics sug-
gested in [8] cannot be applied. Therefore, another technique should be used
in order to discard spurious eigenvalues as well as redundant duplicates.

– The computed eigenvectors are not orthogonal, although they satisfy the
eigenvalue-eigenvector relation to the specified precision.

2.4 Gram-Schmidt Orthogonalization

Gram-Schmidt procedures are used for orthogonalizing a vector uj+1 with re-
spect to a set of vectors Vj . In finite precision arithmetic, simple versions of
Gram-Schmidt such as CGS or MGS, will not be reliable enough in some cases,
which may produce numerical instability in the context of Lanczos eigensolvers.
This problem can be solved by introducing reorthogonalization, that is, to take
the resulting vector and perform a second orthogonalization.

In exact arithmetic, the Fourier coefficients of the second orthogonalization
(c1:j,j) are zero and therefore it has no effect. However, this is not the case in finite
precision arithmetic, where those coefficients can be thought of as a correction to
coefficients of the first orthogonalization (h1:j,j), which is not necessarily small.

In cases where large rounding errors have not occurred in first place, reorthog-
onalization is superfluous and could be avoided. In order to determine whether
the computed vector is good enough or requires a refinement, it is possible to
use a simple criterion such as

βj+1 < η ρ (8)

for some constant parameter η < 1 (a safe value is η = 1/
√

2). This criterion
compares the norm of uj+1 before (ρ) and after (βj+1) orthogonalization. An
orthogonalization procedure based on this scheme is illustrated in Algorithm 3.
For further details about iterative Gram-Schmidt procedures, see [13, 14].

Algorithm 3. CGS with selective refinement and estimated norm
h1:j,j = V ∗

j uj+1

ρ = ‖uj+1‖2

uj+1 = uj+1 − Vjh1:j,j

βj+1 =
√

ρ2 −
∑j

i=1 h2
i,j

if βj+1 < η ρ
c1:j,j = V ∗

j uj+1

σ = ‖uj+1‖2

uj+1 = uj+1 − Vjc1:j,j

βj+1 =
√

σ2 −
∑j

i=1 c2
i,j

end

A similar orthogonalization scheme might be considered for the Modified
Gram-Schmidt variant. However, the resulting numerical quality is about the
same, as pointed out in [13]. In this work, we do not consider MGS variants
since they lead to poor parallel performance.

In the context of parallel implementations, orthogonalization is usually the
operation that introduces more performance penalty. In order to reduce this
effect, the number of synchronizations should be reduced whenever possible. One
possibility for this is to defer the normalization of the vector to the next Lanczos
step, as proposed in [15]. Algorithm 3 tries to optimize parallel performance by
means of estimation of the norm. The main objective of this technique is to
avoid the explicit computation of the Euclidean norm of uj+1 and, instead, use an

estimation based on the original norm (prior to the orthogonalization), by simply
applying the Pythagorean theorem. The original norm is already available, since
it is required for the selective reorthogonalization criterion, and can be computed
more efficiently in parallel since its associated reduction is susceptible of being
integrated in a previous reduction (that is, with one synchronization less). More
details about these techniques can be found in [16].

3 Lanczos Methods in SLEPc

SLEPc, the Scalable Library for Eigenvalue Problem Computations [4], is a
software library for the solution of large, sparse eigenvalue problems on parallel
computers. It can be used for the solution of problems formulated in either
standard or generalized form, both Hermitian and non-Hermitian, with either
real or complex arithmetic. SLEPc provides a collection of eigensolvers such as
Arnoldi, Lanczos, Subspace Iteration and Power/RQI. It also provides built-in
support for different types of problems and spectral transformations such as the
shift-and-invert technique.

SLEPc is built on top of PETSc (Portable, Extensible Toolkit for Scientific
Computation, [17]), a parallel framework for the numerical solution of partial dif-
ferential equations, whose approach is to encapsulate mathematical algorithms
using object-oriented programming techniques in order to be able to manage
the complexity of efficient numerical message-passing codes. In PETSc, the ap-
plication programmer works directly with objects such as vectors and matrices,
rather than concentrating on the underlying data structures. Built on top of
this foundation are various classes of solver objects, including linear, nonlinear
and time-stepping solvers. SLEPc extends PETSc with all the functionality nec-
essary for the solution of eigenvalue problems, and thus inherits all the good
properties of PETSc, including portability, scalability, efficiency and flexibility.
SLEPc also leverages well-established eigensolver packages such as ARPACK,
integrating them seamlessly.

As of version 2.3.0, SLEPc provides a symmetric Lanczos eigensolver, which
is based on explicit restart and allows the user to select among several types
of reorthogonalization strategies. In SLEPc, these strategies are referred to as
local, full, selective, periodic, and partial, and are related to the tech-
niques described in section 2. However, the implementations slightly differ from
the originally proposed techniques due to the implications of having a restarted
algorithm.

In the case of local reorthogonalization, the post-processing technique pro-
posed in [8] cannot be used in the context of a restarted method, because of
the relatively small size of matrix Tm. The approach taken in SLEPc is to ex-
plicitly compute the residual norm for every converged eigenpair, then from the
correct values accept only the first replica. Although this may seem a very costly
strategy, results show that the incurred overhead is small (see section 5).

In the case of selective orthogonalization, there are two possible approaches
in the context of a restarted method. One approach, used in [18], is to exit

the Lanczos loop as soon as an eigenvalue has converged. This provokes the
computation of the corresponding Ritz vector which will be used for deflation in
subsequent restarts. The other approach is to run the Lanczos process completely
up to the maximum subspace dimension, managing the loss of orthogonality with
the selective orthogonalization technique. This is the approach implemented in
SLEPc since, to our experience, it is faster in terms of overall convergence.

With respect to periodic and partial reorthogonalization, in both cases we
use Simon’s recurrence for monitoring loss of orthogonality [11]. The difference
with a non-restarted method is that in our implementation in all Lanczos steps
the current vector is orthogonalized explicitly with respect to locked vectors,
that is, the vectors used for deflation are not considered in the recurrence for
monitoring loss of orthogonality. A better approach would be to do this explicit
deflation only when necessary, as in [19]. This issue is proposed as future work.

4 Numerical Results

In this section, we consider an empirical test with a battery of real-problem ma-
trices using the implementation referred to in section 3 with standard double
precision arithmetic. The analysis consists in measuring the level of orthogonal-
ity and the residual norm when computing the 10 largest eigenvalues of every
symmetric matrix from the Harwell-Boeing collection [20]. These 67 matrices
come from a variety of real problems and some of them are particularly chal-
lenging for eigenvalue computation. For this test, the solvers are configured with
tolerance equal to 10−7 and a maximum of 50 basis vectors.

The level of orthogonality is defined as the maximum value of ‖I − V ∗
mVm‖F

at each restart, and the residual norm is computed as the maximum of ‖Ax −
λx‖2/‖λx‖2 for every converged eigenvalue.

The results of these tests are shown in Figures 1 and 2, where each dot cor-
responds to one matrix from the collection. As expected, the algorithm with full
reorthogonalization maintains the orthogonality level close to full machine pre-
cision and the algorithm with local reorthogonalization does not guarantee the
orthogonality among Lanczos vectors. The semiorthogonal methods (selective,
periodic and partial) have a good level of orthogonality, in all cases between full
and half machine precision. Another remarkable conclusion that can be drawn
from these results is that the Gram-Schmidt procedure with iterative refinement
and estimated norm described in subsection 2.4 is a well-suited orthogonalization
scheme for these algorithms.

5 Performance analysis

In order to compare the parallel efficiency of the proposed Lanczos variants,
several test cases were analyzed in a cluster platform. This machine consists of 55
biprocessor nodes with Pentium Xeon processors at 2.8 GHz interconnected with
an SCI network in a 2-D torus configuration. Only one processor per node was

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Level of orthogonality

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Residual norm

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Level of orthogonality

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Residual norm

Fig. 1. Level of orthogonality and residual norm for the Lanczos algorithm with full
(top) and local (bottom) orthogonalization.

used in the tests reported in this section. The solver was requested to compute
10 eigenvalues with tolerance equal to 10−7 using a maximum of 50 basis vectors.

Two types of tests were considered. On one hand, matrices arising from real
applications were used for measuring the parallel speed-up. These matrices are
listed in Table 1 and are taken from the University of Florida Sparse Matrix
Collection [21]. This speed-up is calculated as the ratio of elapsed time with p
processors to the elapsed time with one processor corresponding to the fastest
algorithm. This latter time always corresponds to the local reorthogonalization
variant (including the post-process) as Table 1 shows. On the other hand, a syn-
thetic test case was used for analyzing the scalability of the algorithms, measur-
ing the scaled speed-up (with variable problem size) and Mflop/s per processor.
For this analysis, a tridiagonal matrix was used, with a dimension of 10, 000×p,
where p is the number of processors.

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Level of orthogonality

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Residual norm

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Level of orthogonality

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Residual norm

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Level of orthogonality

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Residual norm

Fig. 2. Level of orthogonality and residual norm for the Lanczos algorithm with selec-
tive (top), periodic (center) and partial (bottom) reorthogonalization.

Table 1. Properties of test matrices and elapsed time in seconds with one processor.

Test matrix Elapsed time

Name Order Non-zeros Full Local Selective Periodic Partial

NASASRB 54,870 2,677,324 29.19 17.49 18.64 27.52 26.85

SHIPSEC8 114,919 3,303,553 6.79 4.28 5.49 5.63 5.58

AF SHELL1 504,855 17,562,051 126.89 76.03 82.08 117.18 116.97

AUDIKW 1 943,695 77,651,847 55.87 43.90 61.29 51.21 51.03

As Figure 3 illustrates, all algorithms show overall good parallel performance.
However, the selective reorthogonalization algorithm has poorer performance
with a large number of processor than the rest. This is due to the extra synchro-
nizations needed to perform the deflation against converged Ritz vectors in each
iteration, which cannot be combined with the other orthogonalizations. Also,
because of the deflation against locked vectors needed by the explicit restart
scheme, the partial and periodic algorithms have no practical advantage over
the full reorthogonalization variant. The local reorthogonalization scheme has
the best performance in these tests in spite of having a post-processing phase
and an additional reorthogonalization at each restart.

The results in Figure 4 show overall good speed-up in all alternatives. The
selective reorthogonalization algorithm has the lowest Mflops/s rate due to the
extra synchronizations needed. In the rest of algorithms, the Mflops/s rate im-
proves as the average number of vectors involved in the orthogonalization grows.

6 Conclusions

In this work, an explicit restarting scheme has been applied to different Lanczos
variants. The orthogonalization of vectors in these algorithms is done with an
optimized version of Classical Gram-Schmidt with selective refinement. All the
implemented algorithms are numerically robust for the considered test cases.

The performance results presented in section 5 show that the algorithms
achieve good parallel efficiency in all the test cases analyzed, and scale well
when increasing the number of processors. The best algorithm will depend on
the application, so testing different alternatives is often useful. Thanks to the
object-oriented structure of SLEPc, the user can try different Lanczos variants
without even having to recompile the application.

References

1. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. J. Res. Nat. Bur. Standards 45 (1950)
255–282

2. Paige, C.C.: Error analysis of the Lanczos algorithm for tridiagonalizing a sym-
metric matrix. J. Inst. Math. Appl. 18(3) (1976) 341–349

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

Number of processors

NASASRB

Ideal
Full

Local
Selective
Periodic

Partial

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

Number of processors

SHIPSEC8

Ideal
Full

Local
Selective
Periodic

Partial

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

Number of processors

AF_SHELL1

Ideal
Full

Local
Selective
Periodic

Partial

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

Number of processors

AUDIKW_1

Ideal
Full

Local
Selective
Periodic

Partial

Fig. 3. Measured speed-up for test matrices.

3. Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi
method. SIAM J. Matrix Anal. Appl. 13 (1992) 357–385

4. Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: A scalable and flexible toolkit for
the solution of eigenvalue problems. ACM Trans. Math. Software 31(3) (2005)
351–362

5. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H., eds.: Templates
for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA (2000)

6. Paige, C.C.: Computational variants of the Lanczos method for the eigenproblem.
J. Inst. Math. Appl. 10 (1972) 373–381

7. Paige, C.C.: Accuracy and effectiveness of the Lanczos algorithm for the symmetric
eigenproblem. Linear Algebra Appl. 34 (1980) 235–258

8. Cullum, J.K., Willoughby, R.A.: Lanczos Algorithms for Large Symmetric Eigen-
value Computations. Vol. 1: Theory. Birkhaüser, Boston, MA (1985) Reissued by

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35 40 45 50

S
ca

le
d

sp
ee

d-
up

Number of processors

Ideal
Full

Local
Selective
Periodic

Partial

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 5 10 15 20 25 30 35 40 45 50

M
flo

p/
s

pe
r

pr
oc

es
so

r

Number of processors

Full
Local

Selective
Periodic

Partial

Fig. 4. Measured scaled speed-up and Mflop/s for synthetic matrix.

SIAM, Philadelphia, 2002.
9. Parlett, B.N., Scott, D.S.: The Lanczos algorithm with selective orthogonalization.

Math. Comp. 33 (1979) 217–238
10. Grcar, J.F.: Analyses of the Lanczos algorithm and of the approximation problem

in Richardson’s method. Technical Report 1074, Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, Illinois (1981)

11. Simon, H.D.: The Lanczos algorithm with partial reorthogonalization. Math.
Comp. 42(165) (1984) 115–142

12. Simon, H.D.: Analysis of the symmetric Lanczos algorithm with reorthogonaliza-
tion methods. Linear Algebra Appl. 61 (1984) 101–132

13. Hoffmann, W.: Iterative algorithms for Gram-Schmidt orthogonalization. Com-
puting 41(4) (1989) 335–348

14. Björck, Å.: Numerical Methods for Least Squares Problems. Society for Industrial
and Applied Mathematics, Philadelphia (1996)

15. Kim, S.K., Chronopoulos, A.T.: A class of Lanczos-like algorithms implemented
on parallel computers. Parallel Comput. 17(6–7) (1991) 763–778

16. Hernandez, V., Roman, J.E., Tomas, A.: Parallel Arnoldi eigensolvers with en-
hanced scalability via global communications rearrangement. submitted (2006)

17. Balay, S., Buschelman, K., Gropp, W., Kaushik, D., Knepley, M., McInnes, L.C.,
Smith, B., Zhang, H.: PETSc users manual. Technical Report ANL-95/11 - Revi-
sion 2.3.1, Argonne National Laboratory (2006)

18. Szularz, M., Weston, J., Clint, M.: Explicitly restarted Lanczos algorithms in an
MPP environment. Parallel Comput. 25(5) (1999) 613–631

19. Cooper, A., Szularz, M., Weston, J.: External selective orthogonalization for the
Lanczos algorithm in distributed memory environments. Parallel Comput. 27(7)
(2001) 913–923

20. Duff, I.S., Grimes, R.G., Lewis, J.G.: Sparse matrix test problems. ACM Trans.
Math. Software 15(1) (1989) 1–14

21. Davis, T.: University of Florida Sparse Matrix Collection. NA Digest (1992)
Available at http://www.cise.ufl.edu/research/sparse/matrices.

