A Service Oriented System for On Demand
Dynamic Structural Analysis over
Computational Grids *

J. M. Alonso, V. Herndndez, R. Lépez, and G. Molté

Departamento de Sistemas Informaticos y Computacion.
Universidad Politécnica de Valencia. Camino de Vera s/n 46022 Valencia, Spain
{jmalonso,vhernand,rolopez,gmolto}@dsic.upv.es
Tel. +34963877356, Fax +34963877359

Abstract. In this paper we describe the implementation of a service ori-
ented environment that enables to couple a parallel application, which
performs the 3D linear dynamic structural analysis of high-rise build-
ings, to a Grid Computing infrastructure. The Grid service, developed
under Globus Toolkit 4, exposes the dynamic simulation as a service to
the structural scientific community. It employs the GMarte middleware,
a metascheduler that enables to perform the computationally intensive
simulations on the distributed resources of a Grid-based infrastructure.

Topics. Parallel and Distributed Computing, Cluster and Grid Computing,
Large Scale Simulations in All Areas of Engineering and Science.

1 Introduction

Traditionally, the dynamic analysis of large scale buildings has been limited to
simplifications with the purpose of reducing the computational and memory
requirements of the problem. Although these simplifications have been proved
to be valid for simple and symmetric structures, they have demonstrated to be
inappropriate for more complex buildings.

Nowadays, many buildings are asymmetric and the effects of torsion have
been identified as one of the main reasons that make a building collapse when an
earthquake occurs. Considering the dramatic effects of earthquakes, it is crucial
to investigate their impact before a building gets constructed. However, the
required memory and the computation involved in a 3D realistic analysis of
a large dimension building can be too intensive for a traditional PC.

This way, the authors have developed an MPI-based application that per-
forms the 3D linear dynamic analysis of structures using three different direct

* The authors wish to thank the financial support received from the Spanish Min-
istry of Science and Technology to develop the GRID-IT project (TIC2003-01318)
and the Conselleria de Empresa, Universidad y Ciencia - Generalitat Valenciana for
the GRID4BUILD project (GV04B-424). We wish also to thank Anshul Gupta for
providing us with a trial license of WSMP library for 16 CPUs.

time integration schemes. Typically, a structural designer works with different
preliminary alternatives when designing a building, considering distinct layouts
or applying multiple sections or dimensions to its members, requiring their si-
mulation under the influence of several dynamic loads. For example, the Spanish
Earthquake-Resistant Construction Standards (NCSE-02) demands a building to
be analysed with at least five different representative earthquakes. Obviously, this
situation largely increases the computational cost of the problem. However, al-
though the parallel application offers quite good parallel performance and carries
out a 3D realistic analysis, studios for engineering rarely own parallel platforms
to execute this software.

Therefore, we have implemented a service oriented system, based on Grid ser-
vices, that enables to perform on demand dynamic analysis over computational
Grids in a collaborative environment. It implies a two-fold strategy. Firstly, the
main objective of Grid technology is to share and use different resources available
in the network. Thus, it is possible to create a scientific and technical virtual
organisation where most of the members do not need to invest in computational
machines and software, and to be worried about licenses and new updates. It
would be enough to establish agreements for their usage. Secondly, the service
exploits, in a transparent way for the user, the computational capabilities of a
distributed Grid infrastructure which delivers enough power to satisfy the com-
putational requirements of the resource-starved dynamic structural simulations
of high-rise buildings.

The reminder of this paper is structured as follows: First, section 2 describes
the motion equation and the parallel application developed to simulate the be-
haviour of structures. One building has been also simulated to analyse the per-
formance of this HPC application. Next, section 3 shows the Grid service im-
plemented and the metascheduling approach to enable high-throughput when
multiple user requests are concurrently received. Section 4 presents the struc-
tural case study that has been executed to test the performance of the Grid ser-
vice, the computational resources employed and the task allocation performed.
Finally, section 5 concludes the paper.

2 Parallel 3D Linear Dynamic Analysis of Buildings

The second order differential equations in time that governs the motion of struc-
tural dynamic problems can be written as follows [1]:

Maf(t) + Co(t) + Kd(t) = f(t) (1)

where M, C' and K are the mass, damping and stiffness matrices respectively,
f(¢) is the applied dynamic load vector, and d(¢), v(t) and a(t) represent the
unknown displacement, velocity and acceleration vectors at the joints of the
structure. The initial conditions at ¢ = 0 are given by d(0) = d0 and v(0) = v0.

Because of their inherent advantages, direct time integration algorithms have
been widely employed for the numerical solution of this computationally demand-
ing equation [2]. In this way, an MPI-based parallel application for the 3D lin-

ear dynamic analysis of high-rise buildings has been implemented, where all the
nodes of the structure are taking into account and six degrees of freedom per joint
are considered. Node condensation techniques have not been assumed. All these
resultant computational burden implies the need of using HPC strategies able
to tackle large dimension problems and reduce the time spent on the analysis. In
the application, the following three well-known time integration methods have
been parallelised, providing comprehensive results in very reasonable response
times: Newmark [3], Generalized-a [4] and SDIRK [5]. Consistent-mass matrix
has been assumed, and Rayleigh damping has been employed, what means that
C = aM + K. Besides, the standard implementation of MPI-2 I/0O by ROMIO
has been used to guarantee good performance on secondary storage device ac-
cesses. The application is highly portable and it can be easily migrated to a wide
variety of parallel platforms.

Regarding the parallelisation of the problem, each processor is assigned firstly
a group of N/p consecutive nodes and another one of B/p consecutive structural
elements, being IV and B the total number of nodes and beams in the building,
respectively, and p the number of processors employed. Then, each processor gen-
erates and assemblies in parallel its local part of the stiffness, mass and damping
matrices, according to their nodes assigned. In this way, all the matrices of the
problem, together with the different resulting vectors, will be partitioned among
the processors following a row-wise block stripped distribution. Consistent-mass
matrices have been considered, a more realistic alternative than lumped (diag-
onal) mass matrix. However, the dynamic analysis of a consistent-mass system
requires more considerable computational effort and memory requirements than
a lumped-mass system does.

Next, the effective stiffness matrix K, or coefficient matrix of the problem,
is obtained in parallel by means of a linear combination of K, M and C' ma-
trices. Different functions for summing sparse matrices in parallel have been
implemented in order to generate these C' and K matrices. Finally, the initial
conditions are imposed in the system. Displacements and velocities at ¢t = 0 will
be usually known, and initial accelerations will be computed by solving the re-
sulting system of linear equations when the Equation (1) is evaluated at ¢ = 0,
where M matrix constitutes the coefficient matrix.

Then, for each time step (t = At,2At,3AL,...,nAt) different numerical
phases must be also carried out. Firstly, the movement, velocity and accelera-
tion vectors at the joints of the structure are computed in parallel by means of
the chosen time integration method. More in detail, movements are worked out
by solving a system of linear equations where the K coefficient matrix is large,
sparse, symmetric and positive definite. Fortunately, the K, M and C matri-
ces are constant, along the time, in a linear analysis. Thus, the K coefficient
matrix does not change during the simulation process, and it just need to be
factorized once if a direct method is employed to compute the linear systems. In
this way, one forward-backward substitution will be carried out, for each time
step, for computing the nodal movements. Parallel direct and iterative methods
implemented in WSMP [6], MUMPS [7] and PETSc [8] public domain numerical

libraries have been used for solving these linear systems. These three libraries
have been chosen due to its availability, good performance and state-of-the-art
capabilities. WSMP and MUMPS are MPI-based numerical libraries for solv-
ing large sparse symmetric and non-symmetric systems of linear equations. The
parallel symmetric numerical factorization implemented in WSMP is based on
Cholesky Multifrontal algorithm. MUMPS uses a Multifrontal technique which
is a direct method based on LU or LDLT factorization of the matrix. On the
other hand, PETSc provides parallel matrix and vector assembly routines, basic
linear algebra operations and parallel linear, nonlinear equation solvers and time
integrators. The combination of a Krylov subspace method and a preconditioner
is the heart of the parallel iterative methods implemented in PETSc. Besides,
PETSc provides and efficient access to different external numerical libraries that
implement direct methods, such as MUMPS, or preconditioners.

Before solving the linear system, the effective dynamic load vector, i.e. the
right hand-size vector, must be evaluated in parallel. Again, each processor just
computes and assembles the load vector corresponding to its group of nodes
assigned. Sparse matrix-vector products, a constant times a vector and sums
of vectors are the basic lineal algebra operations than take place in this phase.
Therefore, different functions that carry out these mentioned linear algebra oper-
ations in parallel have been programmed and they will be used when employing
WSMP, but not when using PETSc or MUMPS, since PETSc already provides
routines for these functionalities.

Notice that parallel sparse matrix-vector product has a crucial importance
for each time step, where the performance achieved could be severely degraded if
an efficient implementation is not developed. Having in mind this consideration,
communications have been tried to be minimised. For that, the processor i just
sends the processor j those elements of its local vector that the processor j needs
to carry out the matrix-vector product. Remember two things: (1) the vector is
initially partitioned into the processors by means of a row-wise block-striped
distribution and (2) the matrix is sparse and so not all the vector elements
belonging to other processors will be needed. Considering the non-zero structure
of problem matrices, each processor computes just once, at the beginning of the
simulation and in a very fast way, which elements belonging to itself must be sent
for each time step to every other processor. As a consequence, each processor
just receives from the others the vector elements that it strictly needs during the
simulation.

Once joint displacements have been computed, velocity and acceleration val-
ues are updated by taking advantage of the implemented routines of sum of
vectors. In contradistinction to Newmark and Generalized-a methods, SDIRK
procedure requires to solve two linear systems for each time step. The first one,
for K coefficient matrix, is composed of s right hand-size vectors, being s the
number of stages employed in the method. Solution vectors of this system will
be employed for updating displacement and velocity vectors. In the second one,
M represents the coefficient matrix and the acceleration vector is computed.

Obviously, both matrices will be factorized once if a direct method is used, and
multiple forward-backwards substitutions will be required for each time step.

Finally, each processor evaluates in parallel, for its structural elements ini-
tially assigned, the member end forces and the reactions at the points attached
to the rigid foundation. Bending moments and deformations at the predefined
division points of the members will be evaluated in parallel, with the same data
distribution, to check that they do not exceed the established design limits.

A building composes of 68,800 nodes (412,800 degrees of freedom) and 137,390
structural elements has been chosen to show the performance achieved in the par-
allel application. The behaviour of the building was dynamically analysed under
the influence of an earthquake applied during 6 seconds, with time steps equals
to 0.01 seconds.

Tables 1, 2 and 3 show the time (in minutes) and the efficiencies spent on the
whole structural analysis, for the different integration methods parallelized, em-
ploying up to 16 processors, for WSMP, MUMPS and PETSc numerical libraries.
MUMPS was employed thanks to the interface provided by PETSc. This time
does not include the initial one corresponding to the generation of the stiffness,
mass, damping and effective stiffness matrices, or the imposition of initial con-
ditions or the factorization of effective stiffness matrices. The simulations have
been run on a cluster of 20 dual Pentium Xeon@2GHz, with 1 GByte of RAM
and interconnected by a SCI network.

Proc.] WSMP _ [MUMPS (QAMD)|MUMPS (MND)[PETSc
1 - - 53.94| 100.00% - - 2087.06/100.00%
2 [32.16/100.00%|27.33| 98.28% |26.72| 100.00% [1119.20|93.23%
4]17.91|89.80% |16.04| 84.07% |14.82| 90.15% | 581.91 | 89.66%
8 [11.32| 71.00% |10.33| 65.27% 9.24| 72.29% |305.64 | 85.36%
16 | 7.97 | 50.41% | 7.52 44.83% 6.45| 51.78% |165.84 | 78.65%
Table 1. Simulation time (in minutes) and efficiencies (%) for Newmark method.

Proc.] WSMP |[MUMPS (QAMD)|MUMPS (MND)| PETSc
1 - - 54.99| 100.00% - - 2205.38/100.00%
2 [32.85/100.00%|(27.73| 99.15% |27.17| 100.00% [1182.03|93.29%
4]18.12(90.55% [16.31| 84.29% |15.03| 90.39% | 618.89 | 89.09%
8 [11.42|71.84% |10.76| 63.88% 9.56 | 71.05% |324.98 | 84.83%
16 |8.01|51.21% | 7.63 45.04% 6.71| 50.61% |173.17 | 79.60%
Table 2. Simulation time (in minutes) and efficiencies (%) for Generalized a-method.

Proc.] WSMP _ [MUMPS (QAMD)[MUMPS (MND)| PETSc
1 - - - - - - 7201.76|100.00%
2 - - 49.90, 100.00% - - 3903.79| 92.24%
4 142.29(100.00%33.56| 74.34% |30.01| 100.00% |2127.92|84.61%
8 [28.3|74.19% (23.08| 54.05% |20.53| 73.31% |1158.86|77.68%
16 [22.11|47.81% (18.43| 33.84% |16.25| 46.31% | 594.80 | 75.69%
Table 3. Simulation time (in minutes) and efficiencies (%) for SDIRK method.

The shortest response times were achieved with MUMPS library, together
with these ordering algorithms: MND (Multilevel Nested Dissection), imple-
mented in METIS package [9], and QAMD (Approximate Minimum Degree Or-
dering with Automatic Quasi Dense Row Detection). WSMP achieved excellent
results as well, with similar efficiencies than MUMPS with MND. WSMP or-
dering is also based on MND. Simulations with 1 processor overcame the RAM
memory available in the approaches employing WSMP and MUMPS with MND.
Clearly, the number of non-zero elements of the coefficient matrix, after numeri-
cal factorization, in MND is superior to QAMD. Therefore, the efficiency values
appearing in Tables 1 and 2 for WSMP, and MUMPS with MND, are obtained
with respect to 2 processors, or with respect to 4 processors at Table 3.

Regarding PETSc libraries, best results have been achieved by means of the
combination of Conjugate Gradient as iterative method with block Jacobi pre-
conditioning, where Incomplete Cholesky factorization is also applied as subblock
preconditioner. Structural coefficient matrices are usually ill-conditioning, what
explains that iterative methods have been much slower than direct methods. It
should be noticed that the main drawback of Block Jacobi preconditioner is that
the number of iterations can rise when the number of processors is increased,
what obviously has influence on the simulation times and efficiencies obtained.
Anyway, direct methods just need to carry out a forward-backward substitution
for each time step, what is much more efficient than solving the whole linear
system as the iterative methods do.

While Newmark and Generalized-a methods offer second-order accuracy on
the results, stage parameter was set to four in the SDIRK method, trying to
achieve third-order accuracy. As expected, it increased dramatically the simula-
tion times, since two linear systems (the first one composed of four right-hand
size vectors) must be solved. In spite of acceleration values were not calculated
in this case, with the aim to avoid the factorization of the mass matrix, memory
requirements of WSMP and MUMPS with MND ordering exceeded the available
RAM even with two processors.

3 Service Oriented Dynamic Structural Analysis

Web services have emerged as the standard framework in distributed system
development. They provide flexible and extensible mechanisms for describing,

discovering, and invoking public network services by means of XML-based pro-
tocols. Globus Toolkit 4 (GT4)[10], the latest version of the current standard
in Grid middleware systems, has performed a natural evolution to Web services
technology, adopting them to define its architecture and interfaces. The result is
the so-called Grid services, i.e. enhanced Web services that extend their conven-
tional functionality into the Grid domain.

In this work, we have developed and deployed under GT4 middleware a Struc-
tural Dynamic Analysis Grid Service (SDAGS) for the 3D dynamic simulation
of large-scale buildings. Figure 1 exposes the Grid service architecture proposed.
The diagram shows some of the principal parts involved, such as the GUI client,
the SDAGS itself and the Globus-based computational infrastructure.

Send New Structural Dynamic

8 Task Analysis Grid Service
| &—Task Status, 5
Caleulate Stricture < T~ | Noifier
“Notify Task £ Daemon
Status Change g Gat i
5 > Request Task arallel
Gel Resulis & Status Structural @
Simulator >
Delefe ata Response s Gredts A
ervice e Emplay
Manager Simulation Task
Execute
/,,,/ Simulation

Scheduler

Computational Grid

Insert Structural

| Get Simuiation .
Foank i Results Reviein
Simulation Data Results™|

Get Simulation
Input Files

Clearr Sava Result Files

Data
Collector

[Structural

Repository

Fig. 1. Diagram of the implemented Grid service architecture

3.1 The GUI Client

The structural engineers can simulate the structures in the SDAGS thanks to
an advanced graphical user interface (GUI) program. This software enables the
user to perform the pre-processing phase, where the different properties are as-
signed to the structural members of the building (i.e. initial conditions, sections,
external loads, etc.) in a user-friendly way. Using the Java 3D libraries, this
highly portable application shows a 3D scene in which the user can interact with
the building by means of different functionalities such as rotations, translations,
zooming, selections, etc., employing the wired or solid modes of visualisation.
The GUI client interacts with the SDAGS, via its public interface, to analyse
the structures. For this, the client sends, via a SOAP request, a XML file with
the properties of the building to be simulated, together with different param-
eters related to the dynamic analysis. Then, the status of the simulation task
is periodically received, and once the structure has been remotely analysed, the

output data are retrieved in a SOAP message, and then deleted in the machine
that runs the Grid service. Finally, the post-processing phase takes place and
the results obtained are automatically mapped onto the graphical display and
easily interpreted.

This GUI client incorporates a fault-tolerant procedure with the SDAGS
for the data transfers. It should be clear that client and service are decoupled,
what allows to recover later the analysis results in case of client, service or
communication failure. In a dynamic analysis, all the result data successfully
received by the client will not be sent again by the SDAGS.

3.2 Structural Dynamic Analysis Grid Service

The SDAGS is a flexible and extensible Grid service implementation that en-
ables to remotely employ the previously mentioned HPC-based dynamic struc-
tural simulator. This service publishes a set of methods, by means of standard
XML-based protocols, that are invoked via SOAP requests. On one hand, this
enables to implement heterogeneous clients, developed in different programming
languages and over a wide variety of platforms, to interact with the service. To
include all the input and output binary simulation data in the XML messages,
a hexadecimal encode schema has been employed. The SDAGS is composed of
the following main components: the Service Manager, the Scheduler, the Data
Collector Daemon, the Parallel Structural Simulator and the Task Notifier Dae-
mon.

The Service Manager represents the core of the SDAGS and it is in charge
of satisfying the requests from the clients. It acts as the front end, receiving
the client requests as well as interconnecting all the system components. The
Task Notifier Daemon is responsible of performing the notification process of
the state changes of the tasks, thus enabling the users to permanently know the
state of their simulations. The structures are analysed on the Grid resources by
the Parallel Structural Simulator, which is able to perform efficiently and in a
realistic way static and dynamic analyses.

The Scheduler agent executes the structural simulations in the available Grid
infrastructure. Currently, we are employing several cost-effective cluster of PCs
located at our research center. Firstly, the Scheduler involves the resource dis-
covery to obtain a list of candidate execution machines. After that, a resource
selection phase is carried out in order to select the best available computational
machine for each structural simulation. Finally, the different phases related to
achieve remote task execution, such as data stage and job monitor to detect
failures, will be also performed by this component.

Input and output simulation data will be stored in a Structural Repository,
implementing a data persistence schema and enabling the use of the system also
as a Storage Service. Finally, the Data Collector Daemon component inspects
periodically the Structural Repository and cleans the old simulation files.

3.3 The Structural Analysis Process

The implementation details of the Grid Service developed are exposed in the
next paragraphs, by means of the sequence of steps to be followed to simulate
a building. First, the client submits the request, sending the corresponding files
that define the structure, such as its structural and geometric properties, the
different external load hypotheses to be evaluated and the needed parameters to
define the type of analysis.

This request is received in the SDAGS by the Service Manager, which pro-
cesses all the input data, storing them in the Structural Repository, returns to the
client a simulation identifier, which will be used in later invocations to identify
the simulation, and generates the appropriate binary input file for the parallel
simulator. Then, the Service Manager creates an execution task that contains all
the required properties to execute it in the computational Grid. Next, this task
is added to the Scheduler module, which, in a transparent way, performs the re-
source selection and the simulation execution management. A resource selection
policy has been defined addressed to optimize the throughput and reduce the
execution time of the each analysis. The simulation type, static or dynamic, the
dimension of the structure and the user privileges will be values used to decide
the number of processors involved in each execution.

For each simulation request, the SDAGS creates and publishes a notification
item that is in charge of informing the client about its evolution. After subscrib-
ing to this item, the Task Notifier Daemon notifies the user any change that
takes place in the analysis process. In this way, the client is perfectly aware of
the status of the simulations: waiting, in execution, failed, finalized, etc. This
approach dramatically reduces the overhead that would appear in the system if
the clients periodically queried the service about the status of every simulation.

In a static analysis, and once the task execution has finished, the output
results are automatically saved into the Structural Repository by the Scheduler,
and the user is informed about their availability thanks to the Task Notifier.
However, a dynamic analysis is performed by means of an iterative process that
implies the generation of output data for each simulation time step. With the
purpose of reducing the waiting time, the client is informed by the Task Notifer
when there are enough results to be sent, thus submitting it different retrieval
requests. In this way, the simulation and data retrieval phases are overlapped,
what implies a clear benefit for the user who can begin to process the results
before the analysis is completed.

The result retrieval procedure is performed by the Service Manager, which
processes and analyses all the output files in order to generate a XML file that is
sent to the client in a SOAP message. One of the main problems related to the
use of this type of messages, being based on XML, is their size, thus introducing
a communication overhead between the client and the Grid service. In our case,
the solution adopted has lied in the use of a hexadecimal codification schema for
including binary data, instead of inserting all of them in a text-based format. This
approximation enables to reduce substantially the message dimension, which has
a direct impact on the data transfer times.

An erase method that deletes all the simulation data is also available. Notwith-
standing, the client is not required to invoke it, thus taking advantage of a Data
Storage Service that can be employed during a certain period of time. Neverthe-
less, due to the fact that there are users with different privileges in the system,
a component called Data Collector Daemon will be in charge of periodically
erasing the simulation results of those lowest level clients.

Several fault tolerance levels have been implemented in the system, including
the service itself, the task scheduling and execution, and the client, what guar-
antees that all the simulations submitted will be successfully attended. On one
hand, the SDAGS implements a persistence schema that stores a description of
all the tasks in course or waiting for execution, and those finalised simulations
that still have results to be recovered by the client. Therefore, in case of service
failure, all the non-finished tasks would be launched later, and the identifiers
of those having pending results would be registered again. On the other hand,
the fault tolerance level included in the Scheduler ensures that a failed execu-
tion will be transparently migrated to another Grid resource. Failures in the
communication data between the service and the client, or the service and the
computational resources, are also supported.

A robust security system has been integrated in the service, including user
authorization and authentication, and privacy and integrity of results. On one
hand, the user authorization and authentication capability establishes an access
control to the published services, enabling to register all the actions performed
by the clients. The authorization system employs a configuration file that con-
tains all the users authorized to interact with the service. All the requests from
users not registered will be directly rejected. The authentication process is imple-
mented by means of a X.509 certificate that identifies the user. This certificate
is sent to the service when the communication begins. The data privacy and
integrity has been achieved using a private-public key approach. It employs the
same certificate X.509 to perform the encryption and signature of all the data
exchanged between the service and the client.

3.4 Interacting with the Computational Grid via GMarte

The SDAGS execute the Parallel Structural Simulator over a computational Grid
by using the functionality of the GMarte middleware [11]. GMarte is a software
abstraction layer, developed on top of the Java CoG Kit 1.2 [12], which provides
an object-oriented API for the description of simulation tasks and computational
resources. It provides all the required software infrastructure to perform the
fault-tolerant allocation of tasks to machines based on the Globus Toolkit.

In order to achieve remote task execution, GMarte enables the user to focus
on what should be executed, instead of messing around with all the implemen-
tation details of the underlying Grid middleware. For that, GMarte first intro-
duces an abstraction layer over the information provided by the computational
resources of a Grid infrastructure. This enables the user to access computa-
tional information of the resources, such as the number of available processors

or RAM, in the same manner, regardless the underlying differences of the Grid
middleware.

Resource
Filtering

Resource

Structural Dynamic €
Discovery

Analysis Grid Service

Use:
Service
T File Stage I
GMarte Task Uses '—__ Execution, ’
i / File Stage Out

Scheduler)
Y Remote Machine

Resource
Selection

Selects Computational Grid

Fig. 2. Usage of GMarte within the Grid service

Figure 2 describes how GMarte fits in the service proposed. The Service
Manager, in Figure 1, uses the GMarte API to provide the description of the
computational tasks, which are assigned to a daemon Scheduler that waits for
new tasks to be executed.

The implemented GMarte-based Scheduler is in charge of performing a se-
quence of steps in order to achieve successful execution of the tasks. This pro-
cedure involves, when the Grid service starts, the Resource Discovery and the
Resource Filtering phases to obtain a list of currently available machines to host
executions. Then, for each structural analysis request, the Resource Selection
phase selects the current best computational resource to execute it. Later, all
the needed input files are automatically transferred to the remote machine, be-
fore the remote parallel execution is started. When the simulation has finished,
all the generated output files are moved to the machine hosting the SDAGS.

GMarte implements a multi-threaded metascheduler that enables to concur-
rently carry out the resource selection phase for the different simulations that
have to be executed. This notably reduces the start-up time of the metaschedul-
ing procedure, when compared with other traditional single-threaded metasched-
ulers, what enables to notably increase the service productivity when it is con-
currently used by multiple users. The metascheduling policy implemented in
GMarte considers the application requirements specified by SDGAS, as well as
the dynamic state of computational resources to select the most appropriate
resource.

A multilevel fault-tolerance scheme is enforced to cope with the errors arising
both during data transfers and remote execution. This ensures that executions
will proceed as long as there are living resources in the Grid Computing infras-
tructure. The use of this proposed SDAGS, that uses a computational Grid for
executions, enables to increase the productivity when the service is concurrently
used by multiple users. In this way, preliminary results have shown that this
approach is notably faster than simulations carried out in a sequential computer
or in a parallel machine.

4 Multiuser Structural Case Study

In order to test the performance of the SDAGS in a multiuser environment, a
structural case study composed of several simulations has been simulated on a
Grid infrastructure.

The case study proposed, addressed to reproduce the Grid service availability
with different clients, is composed of 30 user simulations, which must be concur-
rently managed. Each simulation represents the dynamic analysis of a building
whose structural features (68,800 nodes and 137,390 beams) were described in
section 2.

Different representative earthquakes, according to the geographical location
of the building, have been applied. The accelerograms employed had an duration
between 5 and 10 seconds and they include an equally-spaced ground acceler-
ation every 0.01 seconds. Due to the accelerograms duration variability and in
order to employ an homogeneous case study, the simulation time was fixed to
5 seconds using a time step of 0.01 seconds. The Newmark method was the
chosen direct time integration procedure, and the Parallel Structural Simulator
was configured to use the WSMP library. The output data contains information
about the stresses and deformations at multiple predefined intermediate points
of all the structural elements that compose the building. This was configured to
be stored every 0.5 seconds. This resulted in an output data of 646 MBytes for
simulation resulting in a total of 19 GBytes.

The execution of the case study was performed in a Grid infrastructure com-
posed of computational resources which belong to our research group. It consists
of 2 clusters of PCs, whose principal characteristics are detailed in Table 4. Both
machines are interconnected via a local area network delivering 100 Mbits/sec.
with the service host. The Globus Toolkit version 2.4 was previously installed
on each machine of the Grid deployment. Due to the high volume of data to be
transferred between the service and the Grid resources, we decided to rely only
on our local resources, which offer bandwidth enough to cope with this problem.

Following the policy of selecting the number of processors according to the
features of the structure, the service estimated a number of two processors in-
volved in each parallel execution. This decision enabled to efficiently share the
limited available computational resources, as many executions could be pro-
ceeded simultaneously.

Machine Processors Memory|Tasks Allocated
Kefren |20 dual Intel Pentium Xeon@2.0 Ghz| 1 GByte 16
Odin |55 dual Intel Pentium Xeon@2.8 Ghz|2 GBytes 14

Table 4. Detailed machine characteristics of the Grid infrastructure.

4.1 Execution results

Table 4 shows that a similar number of simulations were allocated to each com-
putational resource. In fact, the GMarte resource selection component imple-
ments a policy that distributes the workload on the different resources of a Grid,
trying to minimise the impact in case of failure in a determined host. Clearly,
resource selection is a fundamental key in the whole task allocation procedure.
Fine-tuning this phase, by allocating more executions to Odin, could probably
have obtained better results.

The execution of the structural case study on the proposed infrastructure
required a total of 38 minutes, since the scheduling procedure started until the
output data of the last simulation was retrieved to the Grid service machine.
On one hand, executing all the simulations using a sequential platform, one
execution after another and employing 1 PC of Odin, the faster cluster, required
566 minutes. On the other hand, using a High Performance Computing approach,
assuming a typical cluster of 8 CPUs, and performing 2-processor executions on
cluster Odin (4 simultaneous simulations) required a total of 105 minutes.

Therefore, the Grid Computing approach delivered an speedup of 14.89 with
respect to the sequential execution and 2.76 compared to the HPC approach.
Obviously, this improvement in speed depends on the amount of computational
resources employed in the Grid deployment. Anyway, it is important to point
out that the Grid approach introduces an overhead, both at the scheduling level
(for the resource selection) and the data transfers involved in the stage in and
the stage out phases.

5 Conclusions

In this paper, we have developed a Grid service oriented system, based on GT4,
that enables to perform high performance and realistic 3D dynamic structural
simulations of large dimension buildings on a Grid infrastructure. For that, an
MPI-based structural application has been previously implemented, where 3 dif-
ferent direct time integration methods have been parallelised. Underlying linear
systems of equations have been solved by means of WSMP, MUMPS and PETSc
numerical libraries. The parallelisation strategy of the different stages that com-
pose the parallel structural simulator has been discussed, as well as the parallel
performance, in terms of speed-up and efficiency, in the dynamic analysis of a
building, considering the time integration algorithms and the distinct numerical
libraries employed.

Besides, the architecture of the Grid service has been described, emphasizing
its design and implementation. GMarte framework has been presented as an
appropriate metascheduler to carry out the remote task simulation in a Grid
infrastructure. Finally, the behaviour of the Grid service has been tested when
multiple clients try to analyse, at the same time, different structures, with the
purpose of evaluating the needed high-throughput of the system. Simulation
times corresponding to the analysis of all these buildings have been provided,

comparing them with different computational approaches. From our point of
view, the system presents an acceptable development level to begin to be tested
by end-users.

References

10.

11.

12.

Clough, R., Penzien, J.: Dynamics of Structures. Second edn. McGraw-Hill, Inc
(1993)

. Fung, T.: Numerical Dissipation in Time-Step Integration Algorithms for Struc-

tural Dynamic Analysis. Progress in Structural Engineering and Materials 5 (2003)
167-180

Wilson, E.L.: A Computer Program for the Dynamic Stress Analysis of Under-
ground Structures. Technical Report SESM Report 68-1, Division of Structural
Engineering and Structural Mechanics, University of California, Berkeley (1968)
Chung, J., Hulbert, G.: A Time Integration Algorithm for Structural Dynam-
ics with Improved Numerical Dissipation: the Generalized a-Method. Journal of
Applied Mechanics 60 (1993) 371-376

Owren, B., Simonsen, H.: Alternative Integration Methods for Problems in Struc-
tural Dynamics. Computer Methods in Applied Mechanics and Engineering 122(1-
2) (1995) 1-10

Gupta, A.: WSMP: Watson Sparse Matrix Package Part I - Direct Solution of
Symmetric Sparse Systems. Technical Report Technical Report IBM Research
Report RC 21886(98462), IBM (2000)

Amestoy, P., Duff, I., I’Excellent, J., Koster, J.: MUItifrontal Massively Parallel
Solver (MUMPS Version 4.6.1) Users Guide. Technical report, IBM (2006)
Balay, S., Buschelman, K., Gropp, W., Kaushik, D., Knepley, M., Curfman-
Mclnnes, L., Smith, B., Zhang, H.: PETSc Users Manual. Technical Report Tech-
nical Report ANL-95/11 - Revision 2.3.1, Argonne National Laboratory (2006)
Karypis, G., Kumar, V.: METIS: A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse
Matrices. Technical Report Version 4.0, University of Minnesota, Department of
Computer Science /Army HPC Research Center (1998)

Foster, I.: Globus Toolkit Version 4: Software for Service-Oriented Systems. In:
IFIP International Conference on Network and Parallel Computing, Springer-
Verlag LNCS. Volume 3779. (2005) 2-13

Alonso, J., Herndndez, V., Molté, G.: An Object-Oriented View of Grid Com-
puting Technologies to Abstract Remote Task Execution. In: Proceedings of the
Euromicro 2005 International Conference. (2005) 235-242

von Laszewski, G., Foster, 1., Gawor, J., Lane, P.: A Java Commodity Grid Kit.
Concurrency and Computation-Practice & Experience 13(8-9) (2001) 645-662

