Scalable Desktop Grid System:

Peter Kacsuk Norbert Podhorszki Tamas Kiss

1 MTA SZTAKI
Computer and Automation Research Institute of the
Hungarian Academy of Sciences
H-1518 Budapest, P.O. Box 63., Hungary
{kacsuk, pnorbert}@sztaki.hu

2 University of Westminster, Cavendish School of @ater Science
115 New Cavendish Street, London W1W 6UW, UK
T.Kiss@westminster.ac.uk

Abstract. Desktop grids are easy to install on large numbiempersonal
computers, which is a prerequisite for the sprefadriol technology. Current
desktop grids connect all PCs into a flat hierarchgt is, all computers to a
central server. SZTAKI Desktop Grid starts fromtanslalone desktop grid, as
a building block. It is extended to include clustas single powerful PCs, while
using their local resource management system. Budting blocks support
overtaking additional tasks from other desktop griehabling the set-up of a
hierarchy. Desktop grids with different owners thoan share resources,
although only in a hierarchical structure. Thisngs desktop grids closer to
other grid technologies where sharing resourcesdweral users is the most
important feature.

Keywords. Desktop Grid, infrastructure, BOINC, cluster cortipg

1 Introduction

Originally, the aim of the researchers in the fiefdsrid was that anyone could offer
resources for a Grid system, and anyone can clesources dynamically, according
to the actual needs, in order to solve a compurtalip intensive task. This twofold
aim has been, however, not fully achieved. Curyentie can observe two different
trends in the development of Grid systems, accgrtbrthese aims.

Researchers and developers in the first trendragging a Grid service, which can
be accessed by lots of users. A resource can bepamef the Grid by installing a
predefined software set (middleware). The middlewsy however, so complex that it
needs a lot of effort to maintain. Therefore itn@tural, that single persons do not
offer their resources but all resources are mairthi by institutions, where

1 This research work was carried out under the FBGvbdrk of Excellence CoreGRID funded

by the European Commission (Contract IST-2002-06%26d by the Hungarian grants IHM
4671/1/2003, OTKA T042459.

professional system administrators take care of hhware/middleware/software
environment and ensure the high-availability of taed. Examples of such Grid
infrastructures are the world’s largest Grid: EGEhabling Grids for E-SciencE),
the NGS (National Grid Service) in the UK, the O%Gpen Science Grid) and
TeraGrid in the USA and NAREGI in Japan. The ordjiaim of enabling anyone to
join the Grid with one’s resources has not beefillad. Nevertheless, anyone who is
registered at the Certificate Authority of such adGnd has a valid certificate can
access the Grid and use the resources.

A complementary trend can also be observed foother part of the original aim.
Here, anyone can bring resources into the Gricegysbffering them for the common
goal of that Grid. Nonetheless, only some peopla oae those resources for
computation. The most well-know example, or bettesay, the original distributed
computing facility example of such Grids is the $&home [1]. In Grids, similar to
the concepts of SETI@home, personal computers owpéadividuals are connected
to some servers to form a large computing infrastme. Such systems are called
with the terms: Internet-based distributed compytipublic Internet computing or
desktop grid; we use the term desktop grid (DGinfrmow on. A PC owner should
just install one program package, register hei@elthe web page of the Grid system
and configure the program by simply giving the a&ddr of the central server.
Afterwards, the local software runs in backgrouedy(as a screensaver) and the
owner does not need to take care of the Grid agtofi her computer. In a desktop
grid, applications can be performed in the wellaknomaster-worker paradigm. The
application is split up into many small subtaskg.(splitting input data into smaller,
independent data units) that can be processedéndeptly. Subtasks are processed
by the individual PCs, running the same executdile processing different input
data. The central server of the Grid runs the magstegram, which creates the
subtasks and processes the incoming sub-results.

The main advantage of a desktop grid is its sintglithus, allowing anyone to
join. The main disadvantage is that currently oplpblems computable by the
master-worker paradigm can be implemented on susystm. Desktop grids have
already been used at world-wide scales to solvg lage computational tasks in
cancer research [2], in search for the sign ofagetrestrial intelligence [1], climate
predictions [3] and so on.

Desktop grids can be used efficiently and convehjidan smaller scales as well.
We believe that small scale desktop grids can eétliding blocks of a larger Grid.
This is a new concept that can bring closer thedimections of Grid developments. It
is easy to deploy desktop grids in small scale misgdions and to connect individual
PCs into it therefore we get a grid system that gfaread much faster then heavy-
weight grid implementations. On the other handsu€h desktop grids can share the
resources and their owners can use others’ degitidpresources, the many user
conception of the other trend is also realisedpsSt®wards the collaboration of
desktop grids are the support of clusters — so #éineyeasy to include as a resource —,
the hierarchy of desktop grids within a large oigation with several levels of
hierarchy, and the resource sharing among indepérasktop grids in different
organisations.

SZTAKI Desktop Grid (SZDG) starts with a standalafesktop grid, as a building
block. It is extended to include clusters as siqpglererful PCs, while using their local

resource management system. Such building blocgpast overtaking additional

tasks from other desktop grids, enabling the setfup hierarchy of DGs. The final

dream of creating a large-scale Grid from DGs aklimg blocks will be investigated

in a forthcoming paper. In the current paper, tdd &Kl Desktop Grid is described,

from the basic single desktop grid to the suppbrtlasters and to the hierarchy of
desktop grids.

1.1 Related work

Condor. Condor’s approach [4] is radically different frofmetDG concept. Condor
represents a push model by which jobs can be stdahiiito a local Grid (cluster) or
global Grid (friendly condor pools or Globus Gril). The DG concept applies the
pull model whereby free resources can call for tasiks. The advantage of the DG
concept is that it is highly scalable (even milsasf desktops can be handled by a DG
server) and extremely easy to install at the desldweel. The scalability of Condor is
not proven yet. Largest experiments are at thel lef/fd0000 jobs in EGEE but it
requires an extremely complicated Grid middlewanfeastructure that is difficult to
install and maintain at the desktop level.

BOINC (Berkeley Open Infrastructure for Network Computingee [6,7]) is
developed by the SETI@home group in order to craat®pen infrastructure that
could be the base for all large-scale scientifiojguts that are attractive for public
interest and that can use millions of personal agers for processing their data. This
concept enables millions of PC owners to instalble software (the BOINC client)
and then, each of them can decide what projectshpport with the empty cycles of
their computers. There is no need to delete, @irshd maintain software packages
to change among the projects. Actually as of Jan2@05, the overall computational
power of the more than 80.000 participants of BOINject is about 106
TeraFLOPS, providing the most powerful supercompuatethe world, which, in
contrast to the original SETI@home distributed catimg facility, can run several
different distributed applications.

The properties of BOINC can be used for smalletesaambining the power of
the computers at institutional level, or even apatament level. The SZTAKI
Desktop Grid is based on BOINC since this is awsthblished open source project
that already proved its feasibility and scalabilityhe basic infrastructure of SZTAKI
Desktop Grid is provided by a BOINC server instidia and the connected PCs at a
given organisational level.

XtremWeb is a research project [8], which, similarly to B, aims to serve as a

substrate for Global Computing experiments. Bakjicalsupports the centralised set-
up of servers and PCs as workers. In additiorarit @lso be used to build a peer-to-
peer system with centralised control, where anyketonode can become a client that
submits jobs. It does not allow storing data, linvas only job submission.

Commercial Desktop Grids

There are several companies providing a Desktoml Gdlution for enterprises
[9,10,11,12]. The most well-known examples are Emtropia Inc, and the United
Devices. Those systems support the desktops, dustel database servers available
at an enterprise. However, their cluster connecsolution is not known for the
research community and it is very likely that thmiodel is based on the push model.
Our goal is to develop a pull model solution siticés consistent with the current
BOINC concept.

2 SZTAKI Desktop Grid

The basic idea of SZTAKI Desktop Grid is first,gmovide a basic DG infrastructure

that is easy to install, to maintain and to usaratorganisational level. This basic
infrastructure enables us to connect PCs withinepadment and to run (small)

distributed projects on it. Second, clusters argpstted as they are increasingly
available at many departments of institutions anthganies as well. Third, the

hierarchical structure of an organisation needs gbssibility of connecting such

departmental desktop grids into an infrastructuhreng larger projects can use more
resources than available within one department.rtRpounore generally, to make

possible the resource sharing among desktop dradsate not related in a hierarchical
way. In this way, small-scale desktop grids, wharle easy to install, can be the
building blocks of a large grid infrastructure.

SZTAKI Desktop Grid is based on the BOINC infrasture, as we believe that it
provides everything that is needed for a basic tdgsirid with one (running on a
single machine or on multiple machines) serverraady workers. The infrastructure
for executing computational tasks and for storiatpdsets is used only. Its support for
user credits, teams and the web-based discussiom$oare not relevant for an
organisation but, of course, all these featureseadable if needed.

A desktop grid within an organisation (institutian,just a department) enables us

- toconnect PCs in the organisation into the desgtah
- toinstall several distributed computing projeatstioe desktop grid, and
- to use the connected PCs to compute subtasks s firojects.

As Fig. 1 shows, there is a Scheduler Server aridata Server in the BOINC
infrastructure, however, they can be simply insthlbn one computer but also they
can exist in multiple instances as well, dependinghe central processing needs of a
project. Scheduler Server stores all informatioalatavailable platforms, application
programs, subtasks, connected machines (and wmedsjesults for subtasks. Data
Server stores all executables, input and outpas.fiOn each PC, a core client is
running that downloads application client execwgablsubtasks (describing actual
work) and input files to perform the subtasks. Tiein application on the top level
has to generate the sequential subtasks and tegwacibresults. BOINC gives tools
and support for generic distributed projects tatltht, however, SZTAKI provides a
much simpler and easier-to-use API, the DC-API. Tse of this APl enables
scientist just concentrate on task generation andegsing results without knowing

even what grid infrastructure is serving the preoegneeds. Of course, the use of the
APl is not obligatory, one can use BOINC’s toolsnasl.

DC-API
/ \\\\A
Scheduler Workunlt
Data Server
Server Queue -

1
i
1
1
1
1
1
,!
i

Core client Core client

Fig. 1. BOINC-based Desktop Grid infrastructure

2.1 Supporting clusterswithin SZTAKI Desktop Grid

BOINC in itself does not provide any support fousters. It has a server that
generates work and there are clients that do thd \factually several ones on an
SMP node, one subtask per CPU). The need for clsspport is clear. No one would
like to develop a sophisticated distributed appiicathat uses partly the desktop grid
and partly a cluster, all with different concept?ls and syntaxes. Cluster’s job
management concept is more general than the ewmacafi work units (subtasks)

within a desktop grid therefore, the latter one barmapped onto the previous one.
There are five possibilities in extending the BOIM@astructure for cluster support.

1. A desktop grid client is installed on all machirgfsthe cluster and connected to
the server of the desktop grid of the given orgaios, i.e. all machines of the
cluster participate individually, as a normal PQGhHa desktop grid.

2. A complete desktop grid is installed on the clystéth the server on the front-end
node, and all machines connected to it. This wWag,duster can participate in a
larger desktop grid as one leaf element in a hibrgrsee section 2.2.

3. An independent, higher-level broker distributes kvamong clusters and desktop
grids.

4. The server of the desktop grid should be awareéhefpgresence of a cluster and
submit jobs instead of work units,

5. An extended version of a single desktop grid clisninstalled onto the cluster’s
front-end, which converts desktop grid work unit®itraditional jobs and submits
them to the cluster’'s job management.

Thefirst possibilityis easy to achieve, only the desktop grid cliénautd be installed
on the machines, see Fig. 2. The configuration GfINBC core client consist of
defining a registered user's ID and the projecveetJRL. Settings for the user’s
preferences are defined on the project web seavef,settings are propagated to all
clients with the same user ID. BOINC provides eastall on multiple machines
based on one installation therefore, the whole gntace is very easy. Compare this
with the installation and configuration of the LH&id middleware (of course, the
latter providing more functionality).

However, if the cluster is not a brand new oneher dwners do not want to use it
exclusively for the desktop grid, a job managesusely installed and used on that
cluster. This means, that the job manager and ¢ls&tdp grid clients are competing
for the spare cycles of the computers. The job mearis role is to coordinate the
resources within a cluster and to balance the lmadt. Desktop grid clients and
subtasks coming from the desktop grid server at@btine view for the job manager
therefore, it is not able to function properly.

Scheduler
Server

Scheduler

Scheduler [
Server

Fig. 2. Clusters 1. All machines are clients Fig. 3. Clusters 2: stand-alone desktop grid

The second possibilitsee Fig. 3) by-passes the job manager as welindgahe
same drawback and therefore, it is not recommenidedever, if the hierarchy of
desktop grids are a reality, this option can besmmred as a free solution for
connecting a cluster into an existing desktop grid.

Usually, we may think at first that if differentitiys are to be connected and to
work together, there is a need for a higher-lewtbrathat distributes work among

those things and takes care of the good balande, taethird possibility That is, in
our case, an appropriate broker is needed thdtlésta gather information about the
status of the different entities (desktop grids aludters), to decide where to send the
next piece of work and to convert subtasks intokwarmits or jobs according to the
target system, see Fig. 4. Such an approach iewiet in the Lattice project [13],
which is developing a community-based Grid systkat integrates Grid middleware
technologies and widely used life science applicesi This system deals with
traditional jobs, i.e. executables, input data afefinition of requirements and
preferences. Jobs are submitted to a modified aersf the Condor-G broker [14]
that sends a job either to a Globus-based grid arBOINC-based desktop grid.

In this case, a desktop grid is just one elementrgmothers. Different grid
implementations can be connected together this Wagppropriate conversion
between the different concepts, representationsgmiixes can be managed.

ﬁ Scheduler
—_— Desktop Server
work
unit
Broker

Cluster

A\ 4

Job manager

Fig. 4. Cluster 3: High-level brokering of jobs

Thefourth possibilitykeeps the leading role of the desktop grid sersee, Fig. 5. In
this scenario, there is a desktop grid as “the"giidwhich clusters are connected
from “below”. The server should be configured invay that it knows about the
cluster, its static status information (size, benatk information) and its dynamic
status information (number of available machineshe-same way, as the broker of
the third option should do. As in the basic deskgojol, work is distributed by the
server; however, it can decide to send some wothkdaluster. In this case, the work
unit representation should be converted to the rtresentation, which can be
submitted to the job manager of the cluster.

This solution needs lot of development of the seésvémplementation. A
monitoring system should be used to get statugrnmdton about the cluster, such
information should be stored and handled somehewisibn logic should be altered

— all these tasks are also part of the third optResides that, the internal work unit
should be converted into a traditional job andgéerer should be able to contact the
job manager of the cluster remotely and submit.jdss we mentioned, work unit
representations can be mapped onto job represmmgatherefore, this is quite a
simple task.

Thefifth possibilityis the most elegant way of including clusters i@ desktop grid,
see Fig. 6. In a desktop grid, client machinescaremecting to the server and ask for
work; this is called pull-mode. In contrast, job magers and grids of the first trend
mentioned in the introduction submit work (jobs)selected resources (push-mode).
In this option, clusters can participate in thelqpubde execution of the desktop grid.
A desktop grid client originally asks for a givemaunt of work to be processed on
the given machine. However, with some modificatibean ask for many work units,
transform them into jobs and submit them into astelu The desktop grid server can
see it as a normal, but somewhat very powerfuhtliin this solution, only the client
should be modified, and since it is running on frant-end node of the cluster,
information gathering and job submission are eagetform.

Scheduler Scheduler
Desktop Server Server

Cluster Cluster /
Y DG client
[11 [

Job manager

Fig. 5. Clusters 4: Submit jobs from server Fig. 6. Clusters 5: Special DG client on
the front-end

Job manager

)

We have chosen the fifth possibility for SZTAKI D#sp Grid, because this way
clusters are seamlessly integrated into it. Thiscept keeps the role of the job
manager of the cluster and it requires less nurobenodifications than the others.
The current implementation can connect clusters aged by the Condor job
manager. The cluster extended version of SZDG isently used for education
purposes at the University of Miskolc and is unohstallation at the University of
Westminster for speeding-up the execution of |&& applications.

2.2 Hierarchical Desktop Grid

Departments can be satisfied by using the basicABZ Desktop Grid with cluster
support. All PCs and clusters of a department cancbnnected into one local
(department level) DG system and distributed ptsjean use all these resources. It is
natural to ask, what if there are several departsneising their own resources
independently but there is an important proje@ higher organisational level (e.g. at
a school or campus level of a university or at arsity level). Having the previous
set-up in the departments, only one of the departsnean be selected to run the
project. Of course, the ideal would be to use @alpaitments’ resources for that
project. Besides again developing something newpoorant (e.g. a broker) to control
over the different desktop grids, there is the ibilgy to build a hierarchy of desktop
grids — if the building blocks can enable it aswghan Fig. 7. In such a hierarchy,
desktop grids on the lower level can ask for wodaf higher level (pull mode), or
vice versa, desktop grids on the higher level eardsvork to the lower levels (push
mode).

Scheduler

Scheduler
Server

Desktop Grid

Scheduler
Server

Desktop Grid

Fig. 7. Hierarchy of desktop grids

SZTAKI Desktop Grid supports the pull mode, as thisthe original way how
desktop grids work. The control of important workthe higher level can be realised
with priority handling on the lower level. A basBZTAKI Desktop Grid can be
configured to participate in a hierarchy, thatésconnect to a higher-level instance of
SZTAKI Desktop Grid (parent node in the tree of kierarchy). When the child node
(a stand-alone desktop grid) has less work thaouress available, it asks for work
from the parent. The parent node can see the ahilohe powerful client, exactly as
in the case of a cluster, which asks for work units

Of course, the BOINC-based server has to be extetdeask for work from
somewhere else (i.e., behave similarly as a cliesign there is not enough work
locally. Fortunately, this can be done separateyé case of BOINC. Work units are
generated by the running applications and theypatento a database of the BOINC
server. Whether a work unit arrives from outsiddrom a local application, it does
not matter. Therefore, it is enough to create a da@mon on the server machine that
observes the status of the desktop grid. Whentcirerthines’ requests for work are
rejected — or when the daemon predicts that thishappen soon — the daemon can
turn to the parent desktop grid and ask for woritsunThe daemon behaves towards
the parent as a BOINC client, asking for work agplarting results. However, it puts
all those work units into the database of the ls=ler thus, client machines will
process them and give the results. The daemon ¢shadsd wait and look for the
incoming results and send them back to the parent.

However, there is the issue of applications whenwaat to connect two BOINC-
based desktop grids. In the BOINC infrastructuppliaation executables should be
registered in the server and signed with a prikate (of the project). Clients always
check if the downloaded executable is registered walid thus, avoiding the
possibility of spreading arbitrary code by hackérparent desktop grid is an alien to
the child in this sense; executables registerethénparent desktop grid should be
registered before work units using that executatéesbe processed.

In BOINC, for security reasons, the private keyagbroject should be stored on a
machine that is separated from the network. Appboaclient executables should be
signed by the administrator of the projects and/dhé signature should be copied
from that separated machine. The signature is ettebk using the public key at the
client level. If a client machine receives work tsnfrom projects belonging to
different levels of the DG hierarchy, the clienbsld know the public keys of all the
servers placed above it in the DG hierarchy. Whenoak unit arrives it should
contain the source level's identifier based on Wwhibe desktop will know which
public key to use for checking the signature ofcbde.

The prototype version of the hierarchical SZDG bhaen developed and tested.
However, the prototype can support only one le¥ehe hierarchy and hence current
work aims at solving the problem of multi-level fgechy.

2.3 TheSZTAKI Desktop Grid Service

In order to demonstrate the strength and usahifitthe DG concept for Hungarian
institutes SZTAKI has created the global versiorS&TAKI Desktop Grid [15] that
is a new BOINC-like DG service. SZDG has been rognsince July 2005 and
extracted more than 7 500 participants and mone 182000 machines from all over
the world. The sustained performance of SZDG iuaB60 GFlops. The task to be
solved by SZDG is a math problem of generating ddd 12-dimension binary
number systems. These can contribute to developenmevwption algorithms for safer
security systems.

Though SZDG works the same way as the other gloBabystems its basic role is
to provide an experimental system for Hungariatitutes and companies to learn the
technology and its possible usage as local DG sysfée have found that institutes

are very cautious with the usage of Grid technolaggl hence in order to convince
them about the usefulness and safety of the DGemwstthey can test the DG
technology in three phases:

Phase 1: Test the client side. Staff members d¢ituimss can connect their PCs to
the demo project thus, participating in one largales computing project;
similarly, as people all over the world participateBOINC, XtremWeb and
Grid.org based projects. In this way they can beviwed that the client
components of SZDG are safe enough and do not ausd&arm to their
desktop machines.

Phase 2: Test the server side with their own agfitin. If an institute has a
problem that needs large computing power to s@Z& AKI helps to create
a new project on SZDG and provides the centraleseior that project. The
institute can provide the PCs and clusters for SZB@ork on that project.
In this way the desktops of the institute will wavk the institute’s project
separated from other projects running on the SZDG.

Phase 3: Finally, if the institute is convinced thie usefulness of the SZDG
concept SZTAKI can help them to set-up and mainta@r own local DG
system based on the SZDG concept.

3 Applications of SZTAKI Desktop Grid

The success of the SZDG concept is proven by seapmpications. One of the
basic issues of modern drug discovery is the eimu®f chemically unstable,
biologically inactive and toxic compounds from thesearch process in the early
stages, thereby reducing the cost and the timegeaf the drug development. The
main purpose of the ADMEToxGrid project [16] is develop an enterprise Grid
system that is suitable for predicting these chamgarameters of millions of
compounds in a short time and in a secure manniite valso exploiting the free
capacity of the office computers located at théedint site of the company. In this
project the local version of SZTAKI Desktop Gridhaes as the base of the enterprise
Grid framework deployed in Comgenex company.

A Hungarian data mining Grid project [17] aims &tk tdevelopment of the
prototype of data mining software using SZTAKI Degk Grid technology. The
software enables the user to select the algorithenta make scheduling decisions, as
well as the generation of higher quality data ngnimodels by automating these
permits. The innovative element of the projechis optimization in the scheduling of
data mining algorithms enabled by meta-level leagniThe prototype supports the
documentation and verification of data mining petge while it remains expandable
thanks to its architecture. Special attention i&l pa data privacy issues. After the
termination of the project, the prototype and itbsequent versions will be available
for non-profit research purposes. Following up be tesults of the project, the
members will consider the commercial deploymentaofiata mining grid-based
product.

One of the goals of the Hungarian climate modelidgd project [18] is to
elaborate a new generation of Desktop Grid systeased on the achievements of
SZTAKI Desktop Grid and to provide a Grid executienvironment for numerical
weather prediction and climate models developedheyHungarian Meteorological
Service. Participants are about to create a seddBlobal Desktop Grid (GDG)
environment in Hungary, which is the first attermpt apply the Desktop Grid
technology not only for academic/research purpodas, using the intranet
infrastructure of companies. In the project, a GByGtem will be built involving
large amount of computational resources from thsges: SZTAKI, Hungarian
Meteorological Service and econet.hu. Later, thi3GGwill be the prototype for a
national GDG service which aims to integrate hor@edwners, whose interest will
be challenged in financial manner. In this wayeaviee provider based Hungarian
Grid market will be born, which leads to a new kiofdinternet service in the long-
term.

The WestFocus GridAlliance between Brunel Univgrgind the University of
Westminster is dedicated to raising the profilé&ofd computing in the West London
region and to facilitate real Grid-solutions in timelustry. One of their application
deals with designing periodic non-uniform samplseguences for digital alias free
signal processing [19]. This is a computationalhtensive problem, in which
sequential (single computer based) solutions caasily run for weeks or even
months. In order to reduce computation time, theusstial algorithm was
parallelized, making it possible to execute paftthe calculations on different nodes
of computational Grids at the same time. This im tteduces the overall runtime of
the application. The SZTAKI Desktop Grid based i@rf the DSP application has
been demonstrated with 100 PCs located at the tweersities in London. The
typically one-month computation time was reducetiwo days by the local SZDG.

4 Conclusion

In this paper, SZTAKI Desktop Grid’'s structure isegented, discussing the
possibilities of the support of clusters within esktop grid. SZTAKI Desktop Grid
uses the BOINC infrastructure as a basic buildileglbfor connecting PCs to solve
large scale distributed programs. It is extendetheysupport of clusters by installing
a modified version of the PC client that convertsoiming subtasks into traditional
jobs and submits them to the cluster’s job mana§ech a desktop grid, as a building
block, is then used to build a hierarchy of DG&minstitute or company to provide
individual desktop grids to the lower level orgatisnal units but also to provide a
larger infrastructure to solve problems on the biglevel. The ability to propagate
work from one desktop grid to the other (but omlyai hierarchy) is a step towards a
grid infrastructure that is easy to install and kBaseral users that share resources.
This means that in the future DG based grid systdmse two features will not
exclude each others as they currently do in todgtssystems.

5

10.
11.

12.
13.

14.

15.
16.
17.
18.

19.

References

D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, Werthimer: SETI@home: An
Experiment in Public-Resource Computing, Commuiocat of the ACM, Vol. 45 No.
11, November 2002, pp. 56-61

United Devices Cancer Research Project: http://vgnid.org/projects/cancer

D. A. Stainforth et al.: Uncertainty in the predicts of the climate response to rising
levels of greenhouse gases, Nature, 27 January 200%33.

D. Thain, T. Tannenbaum and M. Livny: Condor arel @rid.

Grid Computing — Making the Global InfrastructureRaality.Ed. F. Berman, A. Hey and
G. Fox. John-Wiley & Sons, Ltd. Chapter 11. 2003

Foster, C. Kesselman: Globus: A Metacomputing Biftacture Toolkit.

Intl J. Supercomputer Applications, 11(2):115-12897.

D. P. Anderson: BOINC: A System for Public-Resouf@emputing and Storage. 5th
IEEE/ACM International Workshop on Grid Computingovember 8, 2004, Pittsburgh,
USA. Available at: http://boinc.berkeley.edu/grigger_04.pdf

BOINC Home Page: http://boinc.berkeley.edu

G. Fedak, C. Germain, V. Néri and F. Cappello: Xiéeb: A Generic Global Computing
System. CCGRID2001 Workshop on Global Computing®ensonal Devices, May 2001,
IEEE Press.

Grid MP, United Devices Inc. http://www.ud.com

Platform LSF, Platform Computing. http://www.platfie.com

A. Chien: Architecture of a commercial enterprigsktop Grid: the Entropia systefarid
Computing — Making the Global Infrastructure a RigalEd. F. Berman, A. Hey and G.
Fox. John-Wiley & Sons, Ltd. Chapter 12. 2003

DeskGrid, Info Design Inc. http://www.deskgrid.com

Myers, D. S., and M. P. Cummings. Necessity isrttather of invention: a simple grid
computing system using commodity tools. JourndPafallel and Distributed Computing,
Volume 63, Issue 5, May 2003, pp. 578-589.

James Frey, Todd Tannenbaum, lan Foster, Mirony..ignd Steven Tuecke: Condor-G:
A Computation Management Agent for Multi-Instituted Grids, Proceedings of the Tenth
IEEE Symposium on High Performance Distributed Cotimg (HPDC10) San Francisco,
California, August 7-9, 2001.

SZTAKI Desktop Gridhttp://szdg.lpds.sztaki.hu/szdg/

ADMEToxGrid project www.admetoxgrid.hu

Data mining Grid project:
http://www.sztaki.hu/search/projects/project_infation/?uid=00025

Climate modeling Grid project:
http://www.sztaki.hu/search/projects/project_infation/?uid=00188

A. Tarczynski, T.Kiss, D. Qu, G. Terstyanszky, Tel&@ittre, S. Winter, Application of
Grid Computing for Designing a Class of Optimal iBdic Nonuniform Sampling
Sequences, Conf. Proc. of the Grid-Enabling Legapplications and Supporting End
Users Workshopwithin the framework of the 15th IEEE Internatiorymposium on
High Performance Distributed Computing , HPDC'1&(i®, France, June 19-23, 2006.

