
Scalable Desktop Grid System1

Peter Kacsuk1, Norbert Podhorszki1, Tamás Kiss2

1 MTA SZTAKI
Computer and Automation Research Institute of the

Hungarian Academy of Sciences
H-1518 Budapest, P.O. Box 63., Hungary

{kacsuk, pnorbert}@sztaki.hu

2 University of Westminster, Cavendish School of Computer Science
115 New Cavendish Street, London W1W 6UW, UK

T.Kiss@westminster.ac.uk

Abstract. Desktop grids are easy to install on large number of personal
computers, which is a prerequisite for the spread of grid technology. Current
desktop grids connect all PCs into a flat hierarchy, that is, all computers to a
central server. SZTAKI Desktop Grid starts from a standalone desktop grid, as
a building block. It is extended to include clusters as single powerful PCs, while
using their local resource management system. Such building blocks support
overtaking additional tasks from other desktop grids, enabling the set-up of a
hierarchy. Desktop grids with different owners thus can share resources,
although only in a hierarchical structure. This brings desktop grids closer to
other grid technologies where sharing resources by several users is the most
important feature.

Keywords. Desktop Grid, infrastructure, BOINC, cluster computing

1 Introduction

Originally, the aim of the researchers in the field of Grid was that anyone could offer
resources for a Grid system, and anyone can claim resources dynamically, according
to the actual needs, in order to solve a computationally intensive task. This twofold
aim has been, however, not fully achieved. Currently, we can observe two different
trends in the development of Grid systems, according to these aims.

Researchers and developers in the first trend are creating a Grid service, which can
be accessed by lots of users. A resource can become part of the Grid by installing a
predefined software set (middleware). The middleware is, however, so complex that it
needs a lot of effort to maintain. Therefore it is natural, that single persons do not
offer their resources but all resources are maintained by institutions, where

1 This research work was carried out under the FP6 Network of Excellence CoreGRID funded

by the European Commission (Contract IST-2002-004265) and by the Hungarian grants IHM
4671/1/2003, OTKA T042459.

professional system administrators take care of the hardware/middleware/software
environment and ensure the high-availability of the Grid. Examples of such Grid
infrastructures are the world’s largest Grid: EGEE (Enabling Grids for E-SciencE),
the NGS (National Grid Service) in the UK, the OSG (Open Science Grid) and
TeraGrid in the USA and NAREGI in Japan. The original aim of enabling anyone to
join the Grid with one’s resources has not been fulfilled. Nevertheless, anyone who is
registered at the Certificate Authority of such a Grid and has a valid certificate can
access the Grid and use the resources.

A complementary trend can also be observed for the other part of the original aim.
Here, anyone can bring resources into the Grid system, offering them for the common
goal of that Grid. Nonetheless, only some people can use those resources for
computation. The most well-know example, or better to say, the original distributed
computing facility example of such Grids is the SETI@home [1]. In Grids, similar to
the concepts of SETI@home, personal computers owned by individuals are connected
to some servers to form a large computing infrastructure. Such systems are called
with the terms: Internet-based distributed computing, public Internet computing or
desktop grid; we use the term desktop grid (DG) from now on. A PC owner should
just install one program package, register herself on the web page of the Grid system
and configure the program by simply giving the address of the central server.
Afterwards, the local software runs in background (e.g. as a screensaver) and the
owner does not need to take care of the Grid activity of her computer. In a desktop
grid, applications can be performed in the well-known master-worker paradigm. The
application is split up into many small subtasks (e.g. splitting input data into smaller,
independent data units) that can be processed independently. Subtasks are processed
by the individual PCs, running the same executable but processing different input
data. The central server of the Grid runs the master program, which creates the
subtasks and processes the incoming sub-results.

The main advantage of a desktop grid is its simplicity thus, allowing anyone to
join. The main disadvantage is that currently only problems computable by the
master-worker paradigm can be implemented on such a system. Desktop grids have
already been used at world-wide scales to solve very large computational tasks in
cancer research [2], in search for the sign of extraterrestrial intelligence [1], climate
predictions [3] and so on.

Desktop grids can be used efficiently and conveniently in smaller scales as well.
We believe that small scale desktop grids can be the building blocks of a larger Grid.
This is a new concept that can bring closer the two directions of Grid developments. It
is easy to deploy desktop grids in small scale organisations and to connect individual
PCs into it therefore we get a grid system that can spread much faster then heavy-
weight grid implementations. On the other hand, if such desktop grids can share the
resources and their owners can use others’ desktop grid resources, the many user
conception of the other trend is also realised. Steps towards the collaboration of
desktop grids are the support of clusters – so they are easy to include as a resource –,
the hierarchy of desktop grids within a large organisation with several levels of
hierarchy, and the resource sharing among independent desktop grids in different
organisations.

SZTAKI Desktop Grid (SZDG) starts with a standalone desktop grid, as a building
block. It is extended to include clusters as single powerful PCs, while using their local

resource management system. Such building blocks support overtaking additional
tasks from other desktop grids, enabling the set-up of a hierarchy of DGs. The final
dream of creating a large-scale Grid from DGs as building blocks will be investigated
in a forthcoming paper. In the current paper, the SZTAKI Desktop Grid is described,
from the basic single desktop grid to the support of clusters and to the hierarchy of
desktop grids.

1.1 Related work

Condor. Condor’s approach [4] is radically different from the DG concept. Condor
represents a push model by which jobs can be submitted into a local Grid (cluster) or
global Grid (friendly condor pools or Globus Grid [5]). The DG concept applies the
pull model whereby free resources can call for task units. The advantage of the DG
concept is that it is highly scalable (even millions of desktops can be handled by a DG
server) and extremely easy to install at the desktop level. The scalability of Condor is
not proven yet. Largest experiments are at the level of 10000 jobs in EGEE but it
requires an extremely complicated Grid middleware infrastructure that is difficult to
install and maintain at the desktop level.

BOINC (Berkeley Open Infrastructure for Network Computing, see [6,7]) is
developed by the SETI@home group in order to create an open infrastructure that
could be the base for all large-scale scientific projects that are attractive for public
interest and that can use millions of personal computers for processing their data. This
concept enables millions of PC owners to install single software (the BOINC client)
and then, each of them can decide what project they support with the empty cycles of
their computers. There is no need to delete, reinstall and maintain software packages
to change among the projects. Actually as of January 2005, the overall computational
power of the more than 80.000 participants of BOINC project is about 106
TeraFLOPS, providing the most powerful supercomputer of the world, which, in
contrast to the original SETI@home distributed computing facility, can run several
different distributed applications.

The properties of BOINC can be used for smaller scale, combining the power of
the computers at institutional level, or even at department level. The SZTAKI
Desktop Grid is based on BOINC since this is a well-established open source project
that already proved its feasibility and scalability. The basic infrastructure of SZTAKI
Desktop Grid is provided by a BOINC server installation and the connected PCs at a
given organisational level.

XtremWeb is a research project [8], which, similarly to BOINC, aims to serve as a
substrate for Global Computing experiments. Basically, it supports the centralised set-
up of servers and PCs as workers. In addition, it can also be used to build a peer-to-
peer system with centralised control, where any worker node can become a client that
submits jobs. It does not allow storing data, it allows only job submission.

Commercial Desktop Grids
There are several companies providing a Desktop Grid solution for enterprises
[9,10,11,12]. The most well-known examples are the Entropia Inc, and the United
Devices. Those systems support the desktops, clusters and database servers available
at an enterprise. However, their cluster connection solution is not known for the
research community and it is very likely that their model is based on the push model.
Our goal is to develop a pull model solution since it is consistent with the current
BOINC concept.

2 SZTAKI Desktop Grid

The basic idea of SZTAKI Desktop Grid is first, to provide a basic DG infrastructure
that is easy to install, to maintain and to use at an organisational level. This basic
infrastructure enables us to connect PCs within a department and to run (small)
distributed projects on it. Second, clusters are supported as they are increasingly
available at many departments of institutions and companies as well. Third, the
hierarchical structure of an organisation needs the possibility of connecting such
departmental desktop grids into an infrastructure where larger projects can use more
resources than available within one department. Fourth, more generally, to make
possible the resource sharing among desktop grids that are not related in a hierarchical
way. In this way, small-scale desktop grids, which are easy to install, can be the
building blocks of a large grid infrastructure.

SZTAKI Desktop Grid is based on the BOINC infrastructure, as we believe that it
provides everything that is needed for a basic desktop grid with one (running on a
single machine or on multiple machines) server and many workers. The infrastructure
for executing computational tasks and for storing data sets is used only. Its support for
user credits, teams and the web-based discussion forums are not relevant for an
organisation but, of course, all these features are available if needed.

A desktop grid within an organisation (institution, or just a department) enables us

- to connect PCs in the organisation into the desktop grid,
- to install several distributed computing projects on the desktop grid, and
- to use the connected PCs to compute subtasks of those projects.

As Fig. 1 shows, there is a Scheduler Server and a Data Server in the BOINC
infrastructure, however, they can be simply installed on one computer but also they
can exist in multiple instances as well, depending on the central processing needs of a
project. Scheduler Server stores all information about available platforms, application
programs, subtasks, connected machines (and users) and results for subtasks. Data
Server stores all executables, input and output files. On each PC, a core client is
running that downloads application client executables, subtasks (describing actual
work) and input files to perform the subtasks. The main application on the top level
has to generate the sequential subtasks and to process subresults. BOINC gives tools
and support for generic distributed projects to do that, however, SZTAKI provides a
much simpler and easier-to-use API, the DC-API. The use of this API enables
scientist just concentrate on task generation and processing results without knowing

even what grid infrastructure is serving the processing needs. Of course, the use of the
API is not obligatory, one can use BOINC’s tools as well.

Application Main

App. Client App. Client

Scheduler
Server

Workunit
Queue

DC-API

Core client

Data Server

Core client

Application Main

App. Client App. Client

Scheduler
Server

Workunit
Queue

DC-API

Core client

Data Server

Core client

Fig. 1. BOINC-based Desktop Grid infrastructure

2.1 Supporting clusters within SZTAKI Desktop Grid

BOINC in itself does not provide any support for clusters. It has a server that
generates work and there are clients that do the work (actually several ones on an
SMP node, one subtask per CPU). The need for cluster support is clear. No one would
like to develop a sophisticated distributed application that uses partly the desktop grid
and partly a cluster, all with different concepts, APIs and syntaxes. Cluster’s job
management concept is more general than the execution of work units (subtasks)
within a desktop grid therefore, the latter one can be mapped onto the previous one.
There are five possibilities in extending the BOINC infrastructure for cluster support.

1. A desktop grid client is installed on all machines of the cluster and connected to

the server of the desktop grid of the given organisation, i.e. all machines of the
cluster participate individually, as a normal PC in the desktop grid.

2. A complete desktop grid is installed on the cluster, with the server on the front-end
node, and all machines connected to it. This way, the cluster can participate in a
larger desktop grid as one leaf element in a hierarchy, see section 2.2.

3. An independent, higher-level broker distributes work among clusters and desktop
grids.

4. The server of the desktop grid should be aware of the presence of a cluster and
submit jobs instead of work units,

5. An extended version of a single desktop grid client is installed onto the cluster’s
front-end, which converts desktop grid work units into traditional jobs and submits
them to the cluster’s job management.

The first possibility is easy to achieve, only the desktop grid client should be installed
on the machines, see Fig. 2. The configuration of BOINC core client consist of
defining a registered user’s ID and the project server URL. Settings for the user’s
preferences are defined on the project web server, and settings are propagated to all
clients with the same user ID. BOINC provides easy install on multiple machines
based on one installation therefore, the whole procedure is very easy. Compare this
with the installation and configuration of the LHC Grid middleware (of course, the
latter providing more functionality).

However, if the cluster is not a brand new one or the owners do not want to use it
exclusively for the desktop grid, a job manager is surely installed and used on that
cluster. This means, that the job manager and the desktop grid clients are competing
for the spare cycles of the computers. The job manager’s role is to coordinate the
resources within a cluster and to balance the load on it. Desktop grid clients and
subtasks coming from the desktop grid server are out of the view for the job manager
therefore, it is not able to function properly.

Cluster

Desktop
Grid

Scheduler
Server

Cluster

Desktop
Grid

Scheduler
Server

Fig. 2. Clusters 1. All machines are clients

Scheduler
ServerDesktop

Grid

Scheduler
Server

Scheduler
ServerDesktop

Grid

Scheduler
Server

Fig. 3. Clusters 2: stand-alone desktop grid

The second possibility (see Fig. 3) by-passes the job manager as well, having the
same drawback and therefore, it is not recommended. However, if the hierarchy of
desktop grids are a reality, this option can be considered as a free solution for
connecting a cluster into an existing desktop grid.

Usually, we may think at first that if different things are to be connected and to
work together, there is a need for a higher-level actor that distributes work among

those things and takes care of the good balance, as in the third possibility. That is, in
our case, an appropriate broker is needed that is able to gather information about the
status of the different entities (desktop grids and clusters), to decide where to send the
next piece of work and to convert subtasks into work units or jobs according to the
target system, see Fig. 4. Such an approach is followed in the Lattice project [13],
which is developing a community-based Grid system that integrates Grid middleware
technologies and widely used life science applications. This system deals with
traditional jobs, i.e. executables, input data and definition of requirements and
preferences. Jobs are submitted to a modified version of the Condor-G broker [14]
that sends a job either to a Globus-based grid or to a BOINC-based desktop grid.

In this case, a desktop grid is just one element among others. Different grid
implementations can be connected together this way if appropriate conversion
between the different concepts, representations and syntaxes can be managed.

Cluster

Desktop
Grid

Scheduler
Server

Broker

job

work
unit

Job manager

Cluster

Desktop
Grid

Scheduler
Server

Broker

job

work
unit

Job manager

Fig. 4. Cluster 3: High-level brokering of jobs

The fourth possibility keeps the leading role of the desktop grid server, see Fig. 5. In
this scenario, there is a desktop grid as “the grid”, in which clusters are connected
from “below”. The server should be configured in a way that it knows about the
cluster, its static status information (size, benchmark information) and its dynamic
status information (number of available machines) – the same way, as the broker of
the third option should do. As in the basic desktop grid, work is distributed by the
server; however, it can decide to send some work to the cluster. In this case, the work
unit representation should be converted to the job representation, which can be
submitted to the job manager of the cluster.

This solution needs lot of development of the server’s implementation. A
monitoring system should be used to get status information about the cluster, such
information should be stored and handled somehow, decision logic should be altered

– all these tasks are also part of the third option. Besides that, the internal work unit
should be converted into a traditional job and the server should be able to contact the
job manager of the cluster remotely and submit jobs. As we mentioned, work unit
representations can be mapped onto job representations therefore, this is quite a
simple task.

The fifth possibility is the most elegant way of including clusters into the desktop grid,
see Fig. 6. In a desktop grid, client machines are connecting to the server and ask for
work; this is called pull-mode. In contrast, job managers and grids of the first trend
mentioned in the introduction submit work (jobs) to selected resources (push-mode).
In this option, clusters can participate in the pull-mode execution of the desktop grid.
A desktop grid client originally asks for a given amount of work to be processed on
the given machine. However, with some modification, it can ask for many work units,
transform them into jobs and submit them into a cluster. The desktop grid server can
see it as a normal, but somewhat very powerful client. In this solution, only the client
should be modified, and since it is running on the front-end node of the cluster,
information gathering and job submission are easy to perform.

Cluster

Desktop
Grid

Scheduler
Server

job

Job manager

Cluster

Desktop
Grid

Scheduler
Server

job

Job manager

Fig. 5. Clusters 4: Submit jobs from server

Cluster

Desktop
Grid

Scheduler
Server

DG client

Job manager

Cluster

Desktop
Grid

Scheduler
Server

DG client

Job manager

Fig. 6. Clusters 5: Special DG client on
the front-end

We have chosen the fifth possibility for SZTAKI Desktop Grid, because this way
clusters are seamlessly integrated into it. This concept keeps the role of the job
manager of the cluster and it requires less number of modifications than the others.
The current implementation can connect clusters managed by the Condor job
manager. The cluster extended version of SZDG is currently used for education
purposes at the University of Miskolc and is under installation at the University of
Westminster for speeding-up the execution of large DSP applications.

2.2 Hierarchical Desktop Grid

Departments can be satisfied by using the basic SZTAKI Desktop Grid with cluster
support. All PCs and clusters of a department can be connected into one local
(department level) DG system and distributed projects can use all these resources. It is
natural to ask, what if there are several departments using their own resources
independently but there is an important project at a higher organisational level (e.g. at
a school or campus level of a university or at university level). Having the previous
set-up in the departments, only one of the departments can be selected to run the
project. Of course, the ideal would be to use all departments’ resources for that
project. Besides again developing something new component (e.g. a broker) to control
over the different desktop grids, there is the possibility to build a hierarchy of desktop
grids – if the building blocks can enable it as shown in Fig. 7. In such a hierarchy,
desktop grids on the lower level can ask for work from higher level (pull mode), or
vice versa, desktop grids on the higher level can send work to the lower levels (push
mode).

Desktop Grid

Scheduler
Server

Desktop Grid

Scheduler
Server

Desktop Grid

Scheduler
Server

Desktop Grid

Scheduler
Server

Desktop Grid

Scheduler
Server

Desktop Grid

Scheduler
Server

Desktop Grid

Scheduler
Server

Desktop Grid

Scheduler
Server

Desktop Grid

Scheduler
Server

Fig. 7. Hierarchy of desktop grids

SZTAKI Desktop Grid supports the pull mode, as this is the original way how
desktop grids work. The control of important work on the higher level can be realised
with priority handling on the lower level. A basic SZTAKI Desktop Grid can be
configured to participate in a hierarchy, that is, to connect to a higher-level instance of
SZTAKI Desktop Grid (parent node in the tree of the hierarchy). When the child node
(a stand-alone desktop grid) has less work than resources available, it asks for work
from the parent. The parent node can see the child as one powerful client, exactly as
in the case of a cluster, which asks for work units.

Of course, the BOINC-based server has to be extended to ask for work from
somewhere else (i.e., behave similarly as a client) when there is not enough work
locally. Fortunately, this can be done separately in the case of BOINC. Work units are
generated by the running applications and they are put into a database of the BOINC
server. Whether a work unit arrives from outside or from a local application, it does
not matter. Therefore, it is enough to create a new daemon on the server machine that
observes the status of the desktop grid. When client machines’ requests for work are
rejected – or when the daemon predicts that this will happen soon – the daemon can
turn to the parent desktop grid and ask for work units. The daemon behaves towards
the parent as a BOINC client, asking for work and reporting results. However, it puts
all those work units into the database of the local server thus, client machines will
process them and give the results. The daemon should also wait and look for the
incoming results and send them back to the parent.

However, there is the issue of applications when we want to connect two BOINC-
based desktop grids. In the BOINC infrastructure, application executables should be
registered in the server and signed with a private key (of the project). Clients always
check if the downloaded executable is registered and valid thus, avoiding the
possibility of spreading arbitrary code by hackers. A parent desktop grid is an alien to
the child in this sense; executables registered in the parent desktop grid should be
registered before work units using that executables can be processed.

In BOINC, for security reasons, the private key of a project should be stored on a
machine that is separated from the network. Application client executables should be
signed by the administrator of the projects and only the signature should be copied
from that separated machine. The signature is checked by using the public key at the
client level. If a client machine receives work units from projects belonging to
different levels of the DG hierarchy, the client should know the public keys of all the
servers placed above it in the DG hierarchy. When a work unit arrives it should
contain the source level’s identifier based on which the desktop will know which
public key to use for checking the signature of the code.

The prototype version of the hierarchical SZDG has been developed and tested.
However, the prototype can support only one level of the hierarchy and hence current
work aims at solving the problem of multi-level hierarchy.

2.3 The SZTAKI Desktop Grid Service

In order to demonstrate the strength and usability of the DG concept for Hungarian
institutes SZTAKI has created the global version of SZTAKI Desktop Grid [15] that
is a new BOINC-like DG service. SZDG has been running since July 2005 and
extracted more than 7 500 participants and more than 18 000 machines from all over
the world. The sustained performance of SZDG is about 800 GFlops. The task to be
solved by SZDG is a math problem of generating 11- and 12-dimension binary
number systems. These can contribute to develop new encryption algorithms for safer
security systems.

Though SZDG works the same way as the other global DG systems its basic role is
to provide an experimental system for Hungarian institutes and companies to learn the
technology and its possible usage as local DG system. We have found that institutes

are very cautious with the usage of Grid technology and hence in order to convince
them about the usefulness and safety of the DG systems they can test the DG
technology in three phases:

Phase 1: Test the client side. Staff members of institutes can connect their PCs to

the demo project thus, participating in one large-scale computing project;
similarly, as people all over the world participate in BOINC, XtremWeb and
Grid.org based projects. In this way they can be convinced that the client
components of SZDG are safe enough and do not cause any harm to their
desktop machines.

Phase 2: Test the server side with their own application. If an institute has a
problem that needs large computing power to solve, SZTAKI helps to create
a new project on SZDG and provides the central server for that project. The
institute can provide the PCs and clusters for SZDG to work on that project.
In this way the desktops of the institute will work on the institute’s project
separated from other projects running on the SZDG.

Phase 3: Finally, if the institute is convinced on the usefulness of the SZDG
concept SZTAKI can help them to set-up and maintain their own local DG
system based on the SZDG concept.

3 Applications of SZTAKI Desktop Grid

The success of the SZDG concept is proven by several applications. One of the
basic issues of modern drug discovery is the exclusion of chemically unstable,
biologically inactive and toxic compounds from the research process in the early
stages, thereby reducing the cost and the time period of the drug development. The
main purpose of the ADMEToxGrid project [16] is to develop an enterprise Grid
system that is suitable for predicting these chemical parameters of millions of
compounds in a short time and in a secure manner, while also exploiting the free
capacity of the office computers located at the different site of the company. In this
project the local version of SZTAKI Desktop Grid serves as the base of the enterprise
Grid framework deployed in Comgenex company.

A Hungarian data mining Grid project [17] aims at the development of the
prototype of data mining software using SZTAKI Desktop Grid technology. The
software enables the user to select the algorithm and to make scheduling decisions, as
well as the generation of higher quality data mining models by automating these
permits. The innovative element of the project is the optimization in the scheduling of
data mining algorithms enabled by meta-level learning. The prototype supports the
documentation and verification of data mining projects, while it remains expandable
thanks to its architecture. Special attention is paid to data privacy issues. After the
termination of the project, the prototype and its subsequent versions will be available
for non-profit research purposes. Following up on the results of the project, the
members will consider the commercial deployment of a data mining grid-based
product.

One of the goals of the Hungarian climate modeling Grid project [18] is to
elaborate a new generation of Desktop Grid systems based on the achievements of
SZTAKI Desktop Grid and to provide a Grid execution environment for numerical
weather prediction and climate models developed by the Hungarian Meteorological
Service. Participants are about to create a so-called Global Desktop Grid (GDG)
environment in Hungary, which is the first attempt to apply the Desktop Grid
technology not only for academic/research purposes, but using the intranet
infrastructure of companies. In the project, a GDG system will be built involving
large amount of computational resources from three sites: SZTAKI, Hungarian
Meteorological Service and econet.hu. Later, this GDG will be the prototype for a
national GDG service which aims to integrate home PC owners, whose interest will
be challenged in financial manner. In this way, a service provider based Hungarian
Grid market will be born, which leads to a new kind of internet service in the long-
term.

The WestFocus GridAlliance between Brunel University and the University of
Westminster is dedicated to raising the profile of Grid computing in the West London
region and to facilitate real Grid-solutions in the industry. One of their application
deals with designing periodic non-uniform sampling sequences for digital alias free
signal processing [19]. This is a computationally intensive problem, in which
sequential (single computer based) solutions could easily run for weeks or even
months. In order to reduce computation time, the sequential algorithm was
parallelized, making it possible to execute parts of the calculations on different nodes
of computational Grids at the same time. This in turn reduces the overall runtime of
the application. The SZTAKI Desktop Grid based version of the DSP application has
been demonstrated with 100 PCs located at the two universities in London. The
typically one-month computation time was reduced to two days by the local SZDG.

4 Conclusion

In this paper, SZTAKI Desktop Grid’s structure is presented, discussing the
possibilities of the support of clusters within a desktop grid. SZTAKI Desktop Grid
uses the BOINC infrastructure as a basic building block for connecting PCs to solve
large scale distributed programs. It is extended by the support of clusters by installing
a modified version of the PC client that converts incoming subtasks into traditional
jobs and submits them to the cluster’s job manager. Such a desktop grid, as a building
block, is then used to build a hierarchy of DGs in an institute or company to provide
individual desktop grids to the lower level organisational units but also to provide a
larger infrastructure to solve problems on the higher level. The ability to propagate
work from one desktop grid to the other (but only in a hierarchy) is a step towards a
grid infrastructure that is easy to install and has several users that share resources.
This means that in the future DG based grid systems these two features will not
exclude each others as they currently do in today’s grid systems.

5 References

1. D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, D. Werthimer: SETI@home: An
Experiment in Public-Resource Computing, Communications of the ACM, Vol. 45 No.
11, November 2002, pp. 56-61

2. United Devices Cancer Research Project: http://www.grid.org/projects/cancer
3. D. A. Stainforth et al.: Uncertainty in the predictions of the climate response to rising

levels of greenhouse gases, Nature, 27 January 2005, vol 433.
4. D. Thain, T. Tannenbaum and M. Livny: Condor and the Grid.

Grid Computing – Making the Global Infrastructure a Reality. Ed. F. Berman, A. Hey and
G. Fox. John-Wiley & Sons, Ltd. Chapter 11. 2003

5. Foster, C. Kesselman: Globus: A Metacomputing Infrastructure Toolkit.
Intl J. Supercomputer Applications, 11(2):115-128, 1997.

6. D. P. Anderson: BOINC: A System for Public-Resource Computing and Storage. 5th
IEEE/ACM International Workshop on Grid Computing, November 8, 2004, Pittsburgh,
USA. Available at: http://boinc.berkeley.edu/grid_paper_04.pdf

7. BOINC Home Page: http://boinc.berkeley.edu
8. G. Fedak, C. Germain, V. Néri and F. Cappello: XtremWeb: A Generic Global Computing

System. CCGRID2001 Workshop on Global Computing on Personal Devices, May 2001,
IEEE Press.

9. Grid MP, United Devices Inc. http://www.ud.com
10. Platform LSF, Platform Computing. http://www.platform.com
11. A. Chien: Architecture of a commercial enterprise desktop Grid: the Entropia system. Grid

Computing – Making the Global Infrastructure a Reality. Ed. F. Berman, A. Hey and G.
Fox. John-Wiley & Sons, Ltd. Chapter 12. 2003

12. DeskGrid, Info Design Inc. http://www.deskgrid.com
13. Myers, D. S., and M. P. Cummings. Necessity is the mother of invention: a simple grid

computing system using commodity tools. Journal of Parallel and Distributed Computing,
Volume 63, Issue 5, May 2003, pp. 578-589.

14. James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steven Tuecke: Condor-G:
A Computation Management Agent for Multi-Institutional Grids, Proceedings of the Tenth
IEEE Symposium on High Performance Distributed Computing (HPDC10) San Francisco,
California, August 7-9, 2001.

15. SZTAKI Desktop Grid: http://szdg.lpds.sztaki.hu/szdg/
16. ADMEToxGrid project: www.admetoxgrid.hu
17. Data mining Grid project:

http://www.sztaki.hu/search/projects/project_information/?uid=00025
18. Climate modeling Grid project:

http://www.sztaki.hu/search/projects/project_information/?uid=00188
19. A. Tarczynski, T.Kiss, D. Qu, G. Terstyanszky, T. Delaittre, S. Winter, Application of

Grid Computing for Designing a Class of Optimal Periodic Nonuniform Sampling
Sequences, Conf. Proc. of the Grid-Enabling Legacy Applications and Supporting End
Users Workshop, within the framework of the 15th IEEE International Symposium on
High Performance Distributed Computing , HPDC’15, Paris, France, June 19-23, 2006.

