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Abstract. The spatial join is a computationally expensive operator to implement.  
The efficient implementation of the spatial join operator is, thus, desirable.  This 
paper discusses a new parallel algorithm that implements the spatial join in an 
efficient manner. The proposed algorithm is compared to an existing parallel spatial 
join algorithm, the clone join. Both algorithms have been implemented on a Beowulf 
cluster and compared using real datasets. An extensive experimental analysis reveals 
that the proposed algorithm exhibits superior performance both in declustering time 
as well as in the execution time of the spatial Join query.  
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1   Introduction and Related Work 

Geospatial data sets are often large and are being constantly gathered by numerous 
satellites and other data collection devices.  In order for the data collected to be useful, it 
needs to be processed and analyzed.  This data is typically stored in a spatial database to 
facilitate processing and analysis.  However, due to the massive amount of data being 
stored, several problems can arise.  The ability to store and query this enormous amount 
of data is critical but may lead to performance degradation.  Therefore, faster data 
retrieval and computation mechanisms are now required. 

Performance problems with large databases have been widely documented by 
researchers and several techniques [10,11] have been devised to cope with this.  Indeed, 
traditional database management architectures have difficulty meeting the I/O and 
compute performance levels needed to handle large volumes of geospatial data.  To 
achieve acceptable performance levels, database systems have been increasingly required 
to make use of Parallelism [10,11].  One form of parallelism involves the use of compute 
clusters. 

A cluster is simply a collection of compute nodes interconnected via some sort of 
network.  Clusters can improve the performance of geospatial queries by exploiting 



parallelism.  The most popular type of compute clusters in use today are based on the 
Beowulf paradigm.  Beowulf compute clusters are shared nothing machines in which all 
of the compute nodes, which are called slave nodes, are isolated on a high-speed private 
network that is not directly visible to the outside world.  A single computer connected to 
the outside world (called the master node) lets a user login to the cluster and submit jobs 
for processing i.e. by spawning processes that will execute on the slave nodes.  Beowulf 
clusters help speedup program execution time, which is made possible by splitting a task 
into several sub-tasks that can run in parallel on the slave nodes. 

Parallel Database Systems employ partitioning strategies to distribute database 
relations across multiple processing nodes.  Many schemes have been developed to 
distribute data across several databases (nodes) [5,6].  

Various spatial join algorithms have been proposed for evaluating the spatial join 
operator.  Most of the proposed algorithms decluster the relations into a number of 
fragments.  The spatial join is then performed by pair-wise joining of these small 
fragments.  Spatial partitioning functions for spatial Join algorithms are usually 
categorized into two types: static and dynamic declustering schemes. 

In the static declustering technique, the space is initially decomposed into regions. 
Each region is mapped to a disk and the features inside a region are stored on the disk the 
region corresponds to. The tiling technique of [3] is an example of a static declustering 
technique. Other static partitioning techniques for spatial join are investigated in [12].  

In the dynamic declustering technique, the features are inserted into a spatial index. 
The leaves of the spatial index are mapped to disks. In this method, the space is 
decomposed into regions recursively. There are a minimum and maximum number of 
features a region can have. Once a region exceeds the number of features specified, the 
region is split and the features are re-assigned to two new regions. This process is done 
recursively until all the features are inserted into a spatial index. In [4], a dynamic 
declustering technique based on the use of an R*-tree [9] for each of the two join relations 
is proposed. The algorithm starts from the roots of both trees and traverses both of the 
trees in a depth first order. For each intersecting pair of directory rectangles (minimum 
bounding rectangle of the data rectangles in the corresponding subtrees), the algorithm 
follows the corresponding references to the nodes in the lower level of the trees. Results 
are found when the leaf level is reached. 

The rest of this paper is organized as follows. Section II deals with the computationally 
expensive parallel join operator. The existing clone join parallel algorithm [3] is 
presented, including the tiling declustering method it uses. In the same section, a new 
parallel algorithm referred to as R*-tree based Semi Dynamic Parallel (RSDP) Join is 
presented. In section III, a comparative analysis of the two parallel join algorithms using 
real datasets is performed using a Beowulf cluster. The comparison of the proposed 
algorithm with the tiling-based Clone Join is motivated by the well-established fact that 
static declustering techniques perform better [3] than their dynamic counterparts. 

Two collections of datasets were used in the experimental analysis.  Each collection 
has two datasets. The first collection’s two geospatial data sets were obtained from the 
Bureau of Transportation Statistics (BTS) [7]: the 2002 National Transportation Data 



Hydrographic (Hydrolin) and Railway network (rail) Features of a collection of adjacent 
States (Louisiana, Kansas, Mississippi, Arkansas, Texas, Oklahoma, and Missouri).  Two 
datasets from the second collection were obtained from BTS as well: the 2002 National 
Transportation Data Hydrographic Features of Louisiana State and the 2002 National 
Transportation Data Railway network of Louisiana State. These datasets are obtained as 
compressed ESRI Shapefile format files.  When imported into a database, the sizes of 
these datasets are given in Tables 1 &2.  

 
Table 1. Louisiana TIGER data information 

Datasets # of Features Total size Type of Features 

Hydrolin 31400 20.1MB MULTILINESTRING 

Rail 3543 1.8MB MULTILINESTRING 

 

Table 2. TIGER data of a collection of adjacent States (Louisiana, Kansas,  
 Mississippi, Arkansas, Texas, Oklahoma, and Missouri) in the US 

Datasets  # of Features Total Size Type of Features 

Hydrolin 99737 65MB MULTILINESTRING 

Rail 35492 19MB MULTILINESTRING 

2   Parallel Spatial Join 

Consider the two relations hydrolin and rail.  Each of these relations has the geometry 
column: the_geom of type: MULTILINESTRING.  “Find all the railways which are going 
across a river” is an example of a spatial join query.  This example uses a spatial distance 
function as the join condition. The following SQL statement implements the previously 
defined query: 

SELECT h.gid, r.gid FROM hydrolin as h, rail as r 
WHERE distance (h.the_geom, r.the_geom) = 0 

Spatial Joins typically operate in two steps: filter and refinement steps. In the filter 
step, an approximation of each spatial object (the Minimum Bounding Rectangle (MBR)) 
is used to eliminate those tuples that cannot be part of the result; this produces a set of 
candidate pairs for the spatial join. The plane sweep algorithm [8] is a typical algorithm 
used to implement the filtering step. In the refinement step, each candidate is examined to 



check if it part of the result; this is a CPU-intensive computation geometry algorithm since 
it has to be checked with the exact geometry. 

In the case of parallel join, the two relations to be joined are declustered by the master 
node into smaller fragments.  The spatial join is then performed in parallel (in the slave 
nodes) by pair wise joining of the smaller partitions.  

2.1   The Clone Join Algorithm  

The Clone Join Algorithm [3] uses a declustering method referred to as tiling. The two 
join inputs are declustered using the tiling scheme. A round robin methodology is utilized 
to map tiles onto nodes, and then the filter and refinement steps are applied as explained 
in the previous section. 
 

 
 

Fig. 1. Tiling declustering technique 

 
In the tiling declustering method, the universe1 of the relation to be distributed is 

divided into a number of tiles of the same size. Each tile is mapped to a node according to 
a round robin hashing function. Spatial objects within a tile are stored on the node that tile 
is mapped to. Spatial objects which overlap multiple tiles are stored on the nodes that 
correspond to these tiles. If a spatial object overlaps more than one tile, it is stored in all 
nodes that map to these tiles. The number of tiles chosen should be no less than the 
number of nodes. Data distribution skew is usually decreased by increasing the number of 
tiles. However, because the universe is divided into more tiles, many features may overlap 
more than one tile resulting in increased replication. 

The example of Figure 1 assumes 5 nodes and a universe composed of 16 tiles. A 
relation is being declustered across 5 nodes using 16 tiles. In the Figure, 1, 2, 3, 4 & 5 

                                                           
1 Minimum Bounding Rectangle (MBR) that covers all the spatial attributes of the relation. 



represent the 5 features of the relation.  Using round robin as a mapping function, features 
are assigned to nodes as shown in Table 3. 

As it can be seen from Table 3, there is both data replication and data distribution 
skew. Feature 4 is stored on nodes 0, 3 & 4. Also Feature 1 is stored on node 0 and node 
1, which shows a feature is replicated on more than one node. Also, node 0 has three 
features whereas node 2 has just one feature which shows some level of data distribution 
skew.  

 
Table 3. Tiling scheme data distribution 

Nodes Features 
0 1,2,4 
1 1,2 
2 3 
3 4,5 
4 4 

 
The above steps are performed to decluster one relation. For spatial join, each of the 

two relations to be joined is declustered using the previously described method. In this 
case, the universe should now be the MBR that covers all the spatial features of both the 
relations.  

In the next section, two variants of the clone join algorithm are investigated. 
 

2.1   Clone Join, Variant 1 (CJV1) 

The master node distributes the data to the slave nodes according to the tiling technique 
described previously. The filter step is performed on each node. The output of the filter 
step is a set of Object Identifier (OID) pairs. Each OID pair contains the Object Identifier 
(Feature-id) of the feature in the first relation and the OID of the feature in the second 
relation. This output is sent to the master node which removes the duplicate OID pairs. 
The duplicate OID pairs are removed from all the nodes which have the OID pair, except 
from one node. The resulting OID pairs, which are retained on each node after removing 
the duplicates, are sent back to the respective node to perform the refinement step. The 
refinement step is performed on each node and is intended to remove the false hits. The 
output, which is again a set of OID pairs, is sent to the master node.   

In this method, before the refinement step, the master node has to remove the 
duplicate OID pairs in the slave nodes and send back the remaining OID pairs to the 
respective nodes. Therefore, the master node should maintain information about which 
OID pair belongs to which node.  



2.2   Clone Join, Variant 2 (CJV2) 

After receiving each database fragment obtained (via tiling) from the master node, each 
slave node performs the filter step locally. The refinement step is performed on each slave 
node and then the resulting candidate pairs are sent to the master node which removes the 
duplicates. 

In this method, the master node doesn’t have to remember which OID pair belongs to 
which node, but the problem with this method is that the refinement step is performed on 
all the OID pairs prior to removing duplicates.    

2.3   R*-tree Based Semi Dynamic Parallel  (RSDP) Join   

The RSDP join algorithm builds an R*-tree on one of the two relations to be joined. The 
leaves of this R*-tree are distributed using one of two hashing functions described below. 
The features of the second relation are distributed statically using a tiling like approach. 
The leaves of the R*-tree built on the first relation are treated as tiles and, thus, the 
features of the second relation that overlap the leaves are stored on the nodes 
corresponding to the leaves. Since the leaves of an R*-tree do not overlap, there would not 
be any replication for the first relation, though there would be some replication for the 
second relation. It is emphasized that for the second relation, only the features overlapping 
the leaves of the R*-tree structure of the first relation are distributed since such features 
are the only candidates for the Join.  

Two hashing functions are used to map the leaf of the R*-tree onto compute nodes. 
For the first hash function, k (where k = �Total leaves/ # of Nodes�) successive leaves are 
taken and stored on each compute node. Consider an R*-tree built on a relation that has 21 
leaf nodes. The number of compute nodes the data has to be distributed onto is 3. Then k 
=7 successive leaves are stored on each compute node. For the second hash function, each 
leaf is stored on a node in a round robin fashion. For example, leaf number p is stored on 
the node (p mod n), where n is the number of compute nodes. 

The examples of Figures 2 & 3 assume that Relation 1 has 8 features (1, 2, 3 … 8), 
and Relation 2 has 7 features (1, 2, 3 …7). Figure 2 shows the R*-tree built on the first 
relation: it has 4 leaves: a, b, c and d. It also shows the features numbered from 1 through 
8. Each leaf is mapped to a node according to the hash functions as described above. 

So for the first hash function, the features which are contained in leaves a and b are 
stored on the first node. The features contained in the leaves c and d are stored on the  

 
 
 
 
 
 



 
 
 

 
 

Fig. 2. R*-tree built on the first relation 

 
 

second node. For the second hash function, the features in leaves a and c are stored on the 
first node and the features which are stored on leaves b and d are stored on the second 
node. 

The R*-tree structure of the first relation is used to decluster the second relation. 
According to the first hash function, the features that overlap the leaves a and b are stored 
on the first node and the features that overlap leaves c and d are stored on the second 
node. For the second hash function, features that overlap a and c are stored on first node 
and features that overlap b and d are stored on second node. Figure 3 illustrates the 
declustering for the second relation based on the R*-tree built on the first relation. 

Based on Figures 2 & 3, the features of the two relations are distributed among two 
nodes as shown in Tables 4 and 5. It can be observed from the two tables that there is no 
replication for the first relation, but there is replication for the second relation. Indeed, for 
the second relation in Table 5, feature 5 is stored on both node 1 and node 2.  Also for the 
second relation in Table 4, feature 4 is stored on both nodes. 

With the first hashing function, if the answers of the spatial join request are 
concentrated geographically on one part of the universe, then these answers will be 
computed by fewer compute nodes, leading to data distribution skew. This disadvantage is 
reduced with the second hashing function. 
  



 
Table 4. First hash function 
 

Relation/ Node Node1 Node 2 

       Relation1 1,3,6,8 2,4,5,7 

Relation 2 1,4,5,7 2,3,4 

 
 
 

 
 
Table 5. Second hash function 
 

Relation/ 
Node 

Node 1 Node 2 

Relation 1 1,2,3,5 4,6,7,8 

Relation 2 1,3,4,5,7 2,5 

The data is first distributed using the R*-tree based semi-dynamic declustering scheme 
described above. Then, the RSDP join algorithm performs the filter and refinement steps 
on each compute node. The resulting OID pairs from all the nodes are merged by the 
master node which also removes duplicate OID pairs. 
 

 
 

Fig. 3. Declustering the second relation based on the R*-tree structure of the first relation 

3   Experimental Analysis 

Two collections of data sets (dataset1 and dataset2 in Table1/Table2) were used in the 
comparative performance study. The data obtained as compressed ESRI shapefiles were 
loaded into PostgreSQL [2] using the PostGIS [1] extension.  The Beowulf cluster used 
consists of slave nodes which are 2.2Ghz Intel Pentium systems with 1 GB of memory, 
and a master node that has dual 2.2GHz Intel Xeon processors and 2 GB of memory.   
 
 



 
Fig. 4.1. CV vs. tiles for dataset1 

 

 
Fig. 4.2. CV vs. tiles for dataset2

 
Figures 4.1 and 4.2 show the Coefficient of Variation2 (CV) of the number of features 

per node versus the number of tiles generated by the tiling declustering scheme. The x-
axis represents the number of tiles and the y-axis represents the coefficient of variation. In 
both figures, each curve represents the graph generated for a specified set of compute 
nodes. Each curve represents the number of nodes the data was distributed across. Nodes-
4 means that the result was taken when the number of compute nodes used was 4. 

When the number of tiles is low, the CV is high reflecting the fact that data on 
different nodes varies greatly in size. As the number of tiles increases, the distribution 
becomes nearly uniform. 

For a fixed number of tiles, the CV is less when fewer compute nodes are used. This 
is because the distribution of tiles that cover dense regions is better with a smaller number 
of nodes.  Also, it is seen that the curves generated are not smooth. The irregularities on 
the curves were due to the limitations of the round-robin hashing function used. Indeed, 
when the number of columns was a multiple of the number of nodes, all tiles which have 
the same column number were stored on the same node; this is equivalent to having less 
tiles. These findings are in line with results obtained in [3] using different datasets. 

                                                           
2 The ratio of the standard deviation and the mean. 



Figures 5.1 and 5.2 show the effect of increasing the number of tiles (when using the 
tiling declustering scheme) on the replication of features. The x-axis represents the 
number of tiles, and the y-axis represents the percentage of replication. As the number of 
tiles increases, spatial features, which overlap many tiles, are replicated on many nodes. 
Therefore, as the number of tiles increases, the percentage of replication grows. The 
irregularities in the two curves are due to the same reason explained previously. 

The two versions of clone join algorithms (CJAV1, CJAV2) are compared. The 
performance of these algorithms is tested using dataset1 and dataset2. The spatial join is 
performed on the Hydrolin and the Rail relations. From Figures 6.1 and 6.2, it is seen that 
for CJAV2, the time taken for the Join of Hydrolin and Rail starts decreasing as the 
number of tiles increases, due to a decrease in the coefficient of variation. The time then 
starts increasing as the number of tiles gets much higher due to an increase in replication. 
A similar trend was observed with different compute node configurations. The CJAV1 
algorithm exhibits a similar behavior. 

Next, CJAV1 and CJAV2 are compared using a varying number of compute nodes. 
The number of tiles was kept constant (3,600 and 8,100 for dataset1 & dataset2 
respectively).  The join query was tested under four different cluster configurations: 4, 8, 
16, and 32 slave nodes for both dataset1 and dataset2. The datasets were also loaded onto 
one slave node (reference system) and tested.  

From Table 6, it is observed that with dataset1, CJAV2 outperforms CJAV1. The 
performance gain becomes more pronounced as the number of compute nodes is 
increased. Table 7 shows the same experiment with the larger dataset, dataset2. A similar 
trend is observed except that the performance gain of CJAV2 over CJAV1 is higher with 
this larger dataset. 

The R*-tree was built on the hydrolin, the larger of the two relations. This R*-tree 
structure was used to distribute the rail dataset. This approach was tested with various 
values for the R*-tree’s fan out to find the best set of parameters. The same process is 
repeated with an R*-tree on the rail, the smaller of the two relations. It was observed that 
building an R*-tree on the smaller relation, rail, reduces replication of data. In addition, 
the declustering time is reduced by building an R*-tree on the smaller relation. 

From Tables 8 & 9, the tiling declustering technique takes considerably more time 
than the proposed declustering method. The performance advantage of the proposed 
clustering method becomes more pronounced as the size of the data set is increased. 

The spatial join query was tested under the following cluster configurations: 1, 4, 8, 
16, and 32 slave nodes for each of the two datasets. As previously done, both algorithms 
were run under their most favorable parameters values. 

It is noted from Tables 10 and 11 that RSDP outperforms CJAV2 for all cluster 
configurations, but as the number of compute nodes increases, the performance gap tends 
to decrease. It is also observed that round-robin performs better than the range hash 
function in almost all cases. 

The RSDP algorithm is compared to CJAV2, as this algorithm performs better than 
CJAV1 for both dataset1 and dataset2. It should be noted that in the experiment, both 
algorithms (Tiling and the RSDP declustering methods) have been run under their most 



favorable parameter values. Indeed, as shown previously, the tiling method performs best 
when 3,600 (8,100) tiles are used with dataset1 (dataset2). Similarly, the R*-tree based 
semi-dynamic approach performs best when rail is declustered using an R*-tree with a fan 
out M= 40 and 90 (280) for dataset1 (dataset2).  

4   Conclusion 

This paper proposes a new declustering strategy using a semi-dynamic approach. The 
proposed scheme builds an R*-tree on one of the two relations to be joined. The leaves of 
this R*-tree are mapped onto compute nodes. The features of the second relation are 
distributed statically using a tiling like approach. The leaves of the R*-tree built on the 
first relation are treated as tiles, and thus, the features of the second relation that overlap 
the leaves are stored on the nodes corresponding to the leaves. Based on this declustering 
strategy, a new R*-tree based semi-dynamic parallel join algorithm and two versions of 
the existing clone join algorithm were investigated. A comparative performance analysis 
of these algorithms was done using real datasets. These algorithms were implemented and 
run on a Beowulf cluster. The experimental results show that the proposed algorithm 
outperforms the clone join algorithm. Its performance is superior both in declustering time 
as well as in the execution time of the spatial Join query. Future work includes the design 
and implementation of adaptive parallel algorithms for both single scan and multiple scan 
spatial queries. These algorithms are expected to take into account the size of the datasets, 
the distribution of features, the main memory size of each slave node and other parameters 
(to be determined) to determine the best execution strategy.  These algorithms are 
expected to form the basis of an adaptive parallel query processor. 
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Fig. 5.1. Replication vs. tiles for           Fig. 5.2. Replication vs. tiles for dataset2 
dataset1    
   

      

Fig. 6.1.  Time vs. # of Tiles for dataset1        Fig. 6.2.  Time vs. # of Tiles for   
CJAV2 using 16 nodes                                     dataset2- CJAV2 using 16 nodes 
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Table 8.  Declustering time –              
dataset1 

 

 
 

 
Table 9. Declustering time –dataset2 

 

 
 
 
 

 
Table 10. RSDP vs. CJAV2 – dataset1                   Table 11. RSDP vs. CJAV2 – dataset2 
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