
Scalable Cosmological Simulations
on Parallel Machines

Filippo Gioachin1, Amit Sharma1, Sayantan Chakravorty1, Celso L. Mendes1,
Laxmikant V. Kalé1, and Thomas Quinn2

1 Dept. of Computer Science, University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{gioachin, asharma6, schkrvrt, cmendes, kale}@uiuc.edu
2 Dept. of Astronomy, University of Washington

Seattle, WA 98105, USA
trq@astro.washington.edu

Abstract. Cosmological simulators are currently an important compo-
nent in the study of the formation of galaxies and planetary systems.
However, existing simulators do not scale effectively on more recent ma-
chines containing thousands of processors. In this paper, we introduce a
new parallel simulator called ParallelGravity. This simulator is based on
the Charm++ infrastructure, which provides a powerful runtime sys-
tem that automatically maps computation to physical processors. Using
Charm++ features, in particular its measurement-based load balancers,
we were able to scale the gravitational force calculation of ParallelGravity
on up to one thousand processors, with astronomical datasets containing
millions of particles. As we pursue the completion of a production version
of the code, our current experimental results show that ParallelGravity
may become a powerful resource for the astronomy community.

1 Introduction

Cosmological simulators are currently an important component in the study of
the formation of galaxies and planetary systems. Galaxies are the most distinc-
tive objects in the universe, containing almost all the luminous material. They
are remarkable dynamical systems, formed by non-linear collapse and a drawn-
out series of mergers and encounters. Galaxy formation is indeed a challenging
computational problem, requiring high resolutions and dynamic timescales. For
example, to form a stable Milky Way-like galaxy, tens of millions of resolution
elements must be simulated to the current epoch. Locally adaptive timesteps
may reduce the CPU work by orders of magnitude, but not evenly throughout
the computational volume, thus posing a considerable challenge for parallel load
balancing. No existing N-body/Hydro solver can handle this regime efficiently.

The scientific payback from such studies can be enormous. There are a num-
ber of outstanding fundamental questions about the origins of planetary systems
which these simulations would be able to answer.

Candidate to the Best Student Paper Award



2 Filippo Gioachin et al.

To address these issues, various cosmological simulators have been created
recently. PKDGRAV [1], developed at the University of Washington, can be con-
sidered among the state-of-the-art in that area. However, PKDGRAV does not
scale efficiently on newer machines with thousands of processors. In this work, we
present a new N-body cosmological simulator that utilizes the Barnes-Hut tree
topology to compute gravitational forces. Our new simulator, named Parallel-
Gravity, is based on the Charm++ runtime system [2]. We leverage the object
based virtualization [3] inherent in the Charm++ runtime system to obtain
automatic overlapping of communication and computation time, as well as to
perform automatic runtime measurement-based load balancing. ParallelGravity
advances the state-of-the-art in N-Body simulations by allowing the programmer
to achieve higher levels of resource utilization with moderate programming effort.
In addition, as confirmed by our experimental results, the use of Charm++ has
enabled ParallelGravity to efficiently scale on large machine configurations.

The remainder of this paper is organized as follows. In Section 2 we present
an overview of previous work in the development of parallel simulators for cos-
mology. Section 3 describes the major components of ParallelGravity. Section 4
presents a detailed view of the various optimizations that we have applied to
ParallelGravity, with the resulting improvement in performance measured for
each particular optimization. Finally, Section 5 contains our conclusions and the
future directions of our work.

2 Related Work

There have been numerous studies on the N-Body problem, which involves the
evolution of interacting particles that are under the effects of Newtonian gravita-
tional forces. One of the most widely used methods to address this problem was
proposed by Barnes and Hut [4]. In their scheme, the particles are associated to
a hierarchical structure comprising a tree. This tree is traversed and the forces
between particles are computed exactly or by approximations, depending on the
distance between the given particles. This approach achieves reduction in the
complexity of the problem from the original O(N2) to O(N log N), where N is
the number of particles.

Given the power of hierarchical methods for N-Body simulations, such meth-
ods have been adopted for quite some time by the astronomy community [5]. One
of the most popular codes currently in the astronomy area is PKDGRAV [1].
PKDGRAV is a parallel hierarchical tree-structured code used to conduct cos-
mological simulations on shared-memory and distributed-memory systems. It is
portable across different communication substrates (e.g. MPI, PVM, etc.), and
contains support for adaptive decomposition of work among the processors. In its
current production version, PKDGRAV has been used in simulations of systems
with millions of particles, and has been shown to scale well on up to hundreds
of processors. One restriction in PKDGRAV’s current version, however, arises
from its limited load-balancing capability. This effectively prevents scaling the
code efficiently on newer machines with thousands of processors.



Scalable Cosmological Simulations 3

Other cosmological simulators have been in use as well. Among these, two
of the major codes are GADGET [6], developed in Germany, and falcON [7],
developed at the University of Maryland. However, despite claiming a good scal-
ability with the number of particles, falcON is a serial simulator. Meanwhile,
GADGET originally had some of the same limitations of PKDGRAV when scal-
ing to a large number of processors. This has been addressed in a more recent
version of their code (GADGET-2), but there are not yet results reported with
more than around one hundred processors [8].

3 New ParallelGravity Code

In order to leverage the features that the Charm++ runtime system offers,
we decided to develop a new cosmological simulator called ParallelGravity. Our
goal in developing this new application is to create a full production cosmological
simulator that scales to thousands of processors.

This new simulator is capable of computing gravitational forces generated
by the interaction of a very large number of particles, integrating those forces
over time to calculate the movement of each particle. Since most of the running
time of the application is devoted to force computation, our focus has been in
optimizing this aspect of the code. The integration over time is typically easier
to parallelize, and is not the focus of our analysis in this paper.

Since the gravitation field is a long range force, the total force applied to a
given particle has contributions from all the other particles in the entire space.
The algorithm we applied is based on a Barnes-Hut tree topology [4], which en-
ables achieving an algorithmic performance of O(N log N). The tree generated by
this algorithm is constructed globally over all the particles, and distributed across
elements that are named TreePieces. This distribution is done according to the
particles contained in each internal tree node. Figure 1 shows an example of such
distribution. In this scheme, some of the internal nodes are replicated in more
than one element. At the leaves of the tree are the particles, which are grouped
by spatial proximity into buckets of a user-defined size. While walking the tree
to compute forces, a single walk is performed for all the particles contained in
a given bucket. The code allows the user to choose between different available
tree distributions. Currently, two types of distributions are implemented: SFC,
where a Space Filling Curve is used to impose a total ordering on the particles,
with a contiguous portion of the curve being assigned to each TreePiece; and
Oct, where particles are divided based on the nodes of an Octree covering the
entire space.

3.1 Charm++ Infrastructure

Our new ParallelGravity code is based on the Charm++ [2] infrastructure.
Charm++ is a parallel C++ library that implements the concept of processor
virtualization: an application programmer decomposes her problem into a large
number of components, or objects, and the interactions among those objects. The



4 Filippo Gioachin et al.

Fig. 1. Distribution of a tree across TreePieces (top levels). White nodes are owned by
one TreePiece, black nodes are placeholders for remote nodes, gray nodes are shared
among multiple TreePieces

objects, called chares in Charm++ nomenclature, are automatically mapped
to physical processors by the Charm++ runtime system. Typically, the number
of chares is much higher than the number of processors. By making the number
of chares independent of the number of existing processors, Charm++ enables
execution of the same code on different machine configurations. This separation
between logical and physical abstractions provides higher programmer produc-
tivity, and has allowed the creation of parallel applications that scale efficiently
to thousands of processors, such as the molecular dynamics NAMD code [9].

The Charm++ runtime system has the ability to migrate chares across pro-
cessors during execution of an application. This migration capability is used by
the powerful measurement-based load-balancing mechanism of Charm++ [10].
The runtime system can measure various parameters in the chares, such as com-
putational load or communication frequency and volume. Charm++ provides
a family of load balancers, targeting optimization of a variety of metrics. The
user simply needs to select her desired balancers at application launch. During
execution, the selected balancers will collect the measured chare values for the ap-
propriate metrics, and dynamically remap chares across the available processors
in a way that execution performance is optimized. This dynamic optimization
capability is critical for applications such as particle system simulators, where
particles can move in space and cause overloading on a given processor as the
simulation progresses, while other processors become underutilized.

3.2 Major ParallelGravity Features

One of the early decisions in the design of ParallelGravity was to select where to
compute the forces applied to a particle. Historically, there has been two main
methods for that: (a) distributing the computation of the forces on that particle
across all processors, with each processor computing the portion of the forces
given by its subtrees, or (b) gathering at the processor owning that particle all the
data needed to compute the forces on it. We decided to adopt the second scheme,
since the capabilities of Charm++ could be further exploited, as explained later
in this section.

In our implementation of ParallelGravity, each TreePiece from Figure 1 is a
Charm++ chare. Thus, TreePieces are dynamically mapped to physical proces-



Scalable Cosmological Simulations 5

Fig. 2. Control flow of the execution of an iteration of force calculation

sors by the Charm++ runtime system. The overall structure of how the code
works is shown in Figure 2, and described in the next paragraphs.

To perform the computation of the forces on its particles, a TreePiece pro-
cesses its buckets independently. For each bucket, the TreePiece must walk the
overall tree and compute the forces due to all other particles. During the walk,
visited nodes may be local (i.e. owned by this TreePiece) or non-local. For local
nodes, the force computation can proceed immediately. For non-local nodes, a
retrieval must be carried out, to bring the corresponding data into the TreePiece.
A non-local node may reside either at another TreePiece of the same processor,
or at a remote processor. In the first case, we use a direct data transfer between
chares. In the second case, data must be requested to the remote processor. While
waiting for remote data to arrive, the TreePiece can process other buckets.

Instead of repeating fetches of the same remote node for different bucket
walks, we can use the property that buckets close in space will require similar
remote portions of data. Therefore, we can buffer the imported data and have it
used by all buckets in the TreePiece before discarding it. Because in Charm++
we may have more than one chare in a single processor, we implemented this
optimization at the processor level. This has been realized using a Charm++
group, which we call CacheManager.

The purpose of the CacheManager is to serve all requests made by the
TreePieces, and provide a caching mechanism to hide the latency of interpro-
cessor data fetching. The CacheManager implements a random access to the
cached data through the use of a hash table. To reduce the overhead of table
lookup, the imported data is reconstructed into a local tree. Thus, once entering
a subtree, TreePieces can iterate over direct pointers, until another cache miss
occurs. Upon detecting a miss, the CacheManager will fetch the remote data and
use callbacks to notify the requesting TreePiece when the data arrives. More ad-
vanced features provided by the CacheManager are presented in the next section,
together with the observed experimental results.



6 Filippo Gioachin et al.

Table 1. Characteristics of the parallel systems used in the experiments

System Number of Processors CPU CPU Memory Type of
Name Location Processors per Node Type Clock per Node Network

Tungsten NCSA 2,560 2 Xeon 3.2 GHz 3 GB Myrinet
BlueGene/L EPCC 2,048 2 Power440 700 MHz 512 MB Torus

HPCx HPC-UK 1,536 16 Power5 1.5 GHz 32 GB Federation

Because Charm++ executes chare methods in a non-preemptive fashion, a
long sequence of consecutive tree walks might potentially prevent a processor
from serving incoming data requests from other processors. In order to provide
good responsiveness to incoming requests, we partitioned the processing of tree
walks with a fine granularity. The grainsize is a runtime option, and corresponds
to the number of buckets that will walk the tree without interruption. After that
number of walks is performed, the TreePiece will yield the processor, enabling
the handling of existing incoming data requests.

While dividing the computation into fine grains, we also distinguish between
local and global computation. Local computation is defined as the interaction
with the particles present in the same TreePiece. In contrast, global computa-
tion is defined as the interaction with the rest of the tree, i.e. the computation
that involves non-local nodes. In particular, because this global computation is
performed on the imported sections of the tree, it is on the more critical path.
To express this different criticality, we utilized the prioritization mechanism em-
bedded into Charm++. This mechanism allows establishing a total order of
priority for the different operations performed by a TreePiece: the highest pri-
ority is assigned to accepting requests arriving from other processors, followed
by sending replies to such requests, and finally the two types of computation
(local and global), with the local one having the lowest priority. The Charm++
runtime system will schedule these operations according to such priorities.

4 Optimizations and Experimental Evaluation

After having a basic version of ParallelGravity in place, we studied its perfor-
mance and added a number of optimizations to the code. Some of these optimiza-
tions were designed to exploit Charm++ aspects that enable high performance,
whereas others were aimed at specific characteristics of particle codes. In this
section, we describe the various optimizations that we have added, and present,
in each case, the performance improvement that we obtained by applying such
techniques to real cosmological datasets. Although the following subsections de-
scribe the effect of each optimization technique separately, our integrated version
of ParallelGravity contains all the optimizations. It is this integrated, fully op-
timized version that we use in the last subsection, to show how the current
code scales with increasing system size. In our experiments, we used the parallel
systems described in Table 1, and the following particle datasets:



Scalable Cosmological Simulations 7

– lambs: Final state of a simulation of a 71Mpc3 volume of the Universe
with 30% dark matter and 70% dark energy. 1443 particles, i.e. nearly three
million particles, are used (3M). Three subsets of this dataset are obtained
by taking random subsamples of size thirty thousand (30K), three hundred
thousand (300K), and one million particles (1M), respectively.

– dwarf: A snapshot at z = .3 of a multi-resolution simulation of a dwarf
galaxy forming in a 28.5Mpc3 volume of the Universe with 30% dark mat-
ter and 70% dark energy. The effective resolution in the central regions is
equivalent to 20483 particles in the entire volume. The total dataset size is
nearly five million particles.

4.1 Uniprocessor Performance

While developing a parallel application like ParallelGravity, we are concerned not
only with scalability, but also with performance (i.e. execution time). Hence, it
is important to evaluate the single processor performance as well. To do this,
we compared the serial performances of ParallelGravity and PKDGRAV, on
different subsets of the lambs dataset.

Table 2 shows the execution times for the gravitational force calculation
phase of the two simulators, running on one Xeon processor of Tungsten. As the
table shows, ParallelGravity’s serial performance is comparable to the perfor-
mance of PKDGRAV, even for the larger datasets. The slightly greater times for
ParallelGravity (increase of less than 6%) are due to the overheads caused by
optimizations aimed at improving parallel performance. As the next subsections
will demonstrate, this overhead is a very small price to pay in view of the large
gains that we can achieve with those optimizations in the parallel case.

4.2 Software Cache Mechanism

As mentioned in Section 3.2, the CacheManager not only reduces the number of
messages exchanged to fetch remote data, but also hides the latency of fetching
data from other processors. We evaluated the effectiveness of the CacheManager
on the 1 million subset of the lambs dataset running on varying numbers of
HPCx processors. Table 3 shows that the CacheManager dramatically reduces
the number of messages exchanged. The performance improvement due to send-
ing a much lower number of messages, combined with the latency-hiding effects
of the CacheManager, produces a sharp reduction in the execution time, as seen
in Table 3. Thus, the software cache mechanism is absolutely necessary to obtain
good parallel performance.

Table 2. Time, in seconds, for one step of force calculation in serial execution

Number of Particles
Simulator 30,000 300,000 1 million 3 million

PKDGRAV 0.83 12.0 48.5 170.0
ParallelGravity 0.83 13.2 53.6 180.6



8 Filippo Gioachin et al.

Table 3. CacheManager effects in terms of number of messages and iteration time

Number of Processors
4 8 16 32 64

Number of Messages No Cache 48,723 59,115 59,116 68,937 78,086
(×103) With Cache 72 115 169 265 397

Time No Cache 730.7 453.9 289.1 67.4 42.1
(seconds) With Cache 39.0 20.4 11.3 6.0 3.3

4.3 Data Prefetching

As in PKDGRAV, we can take the principle of the software cache one step
further by fetching not only the node requested by a TreePiece, but proactively
also part of the subtree rooted at that node. The user can specify the cache depth
(analogous to the concept of cache line in hardware) as the number of levels in
the tree to recursively prefetch. The rationale for this is that if a node is visited,
most probably its children will be visited as well. This mechanism of prefetching
more data than initially requested helps to reduce the total number of messages
exchanged during the computation. Since every message has both a fixed and
a variable cost, prefetching reduces the total fixed cost of communication. On
the other hand, a cache depth of more than zero might cause some data to be
transferred but never used, thus increasing the variable part of the cost.

If a TreePiece requested data to the CacheManager only when required by the
tree-walk computation, the CacheManager might not have it. This would trigger
a fetch of the data from the remote node, but at the same time it would suspend
the computation for the requesting bucket until the moment of data arrival. Both
the interruption of the tree walk and the notification from the CacheManager
incur an overhead. To limit this effect, we developed a prefetching phase which
precedes the real tree-walk computation. During this phase, we traverse the tree
and prefetch all the data that will be later used during the computation in the
regular tree walk. This prefetching phase can work with different cache depths.

We used the lambs dataset on 64 processors of Tungsten to evaluate the
impact of cache depth and the prefetching phase. Figure 3(a) shows the execution
time for different cache depths with and without the prefetching phase. In both
cases there is an optimal value of cache depth, at which the execution time
is minimal. The optimal point is achieved when the fixed cost associated with
every message and the variable cost of transferring data over the network are in
balance. According to our results in Figure 3(a), the optimal cache depth seems
to vary between 3 and 5.

We can also see that the prefetching phase improves performance for all
considered values of cache depth. This is due to the increased hit rate of the
cache. While executions without the prefetching phase generate a cache hit rate
of about 90%, with the prefetching active the hit rate rises to 95-97% for SFC
tree decomposition, and 100% for Oct decomposition. The greater accuracy in
prefetching for Oct decomposition is due to the better prefetching algorithm we
developed, given the constraint that prefetching must be lightweight. Although



Scalable Cosmological Simulations 9

Fig. 3. Impact of cache depth and prefetching on (a) iteration time, and (b) relevance
and memory use

Oct decomposition provides a clear benefit in terms of cache hit rate over SFC,
the full effects on the entire execution time are more complex and will require
more detailed studies to be fully characterized.

We define the relevance as the ratio between the number of nodes fetched
and used, and the total number of nodes fetched. Ratios closer to 1.0 represent
a better relevance. In Figure 3(b), we plot the relevance on the left vertical
axis. The observed relevance decreases with increasing cache depth, leading to
unnecessarily higher memory consumption, as plotted on the right vertical axis
of the same graph. Nevertheless, this higher memory consumption due to caching
is limited to a fraction of the total memory footprint for moderate values of cache
depth. At a very low value of relevance, the cost of fetching a large amount of
extra data is not offset by the benefit of having the data already present in the
software cache when it is requested. This is why the execution time rises for large
values of cache depth in Figure 3(a). The prefetching phase does not affect the
relevance, since it does not change which data items are transferred. Prefetching
simply causes those data transfers to occur earlier.

Thus, we see that using the prefetching phase along with a small but non-
zero value of cache depth improves performance. In the following subsections,
we will assume that the prefetching phase is active, and a reasonable value of
cache depth is used.

4.4 Tree-in-Cache Effects

In Section 3 we introduced the concept of local and global computation.We
pointed that the global work is on the critical path, and that the local work
can be used to hide the latency of data transfers. From this, it is clear that we
should have as much local work as possible. One point to notice is that in the
Charm++ environment we fragment the particle dataset in more TreePieces
than the number of physical processors available. This over-decomposition re-
duces the amount of local work per TreePiece. In some of our experiments, when



10 Filippo Gioachin et al.

Table 4. Distribution of work between local and global computation

Local Global

Original Code 16% 84%
Code with Tree-in-cache 42% 58%

increasing the number of processors beyond one hundred, the local work became
insufficient to maintain the processor busy during the entire computation.

By noticing that during the force computation there is no migration of
TreePieces, we can consider collectively all the TreePieces residing on a given
processor. We can attribute to local computation not only the work related
to nodes/particles present in the same TreePiece, but also the work related to
particles and nodes present in other TreePieces in the same processor. This is
implemented by having each TreePiece registering to the CacheManager at the
beginning of the computation step. The CacheManager will then create a su-
perset tree including all the trees belonging to the registered TreePieces. Each
TreePiece will now consider as local work this entire tree. During this operation,
only the nodes closest to the root of the tree will be duplicated. According to
our tests with datasets of a few million particles, less than one hundred nodes
were duplicated.

Table 4 summarizes the percentage of local and global work for a simulation
on 64 Tungsten processors with the lambs-300K subset. The percentages changed
considerably before and after this optimization. In our tests, this new scheme
enabled scaling the computation up to hundreds of processors. However, when
reaching the limit of one thousand processors, even the extra work from co-
resident TreePieces becomes insufficient. A solution that we are investigating is
to split the global walk into multiple sub-walks.

4.5 Interaction Lists

After having preceded the computation with a prefetching phase, and verifying
that it is accurate, we explored a faster algorithm for gravitational force compu-
tation. This algorithm is centered on the concept of interaction lists, which we
describe in this subsection. The new algorithm is based on the same principle
of the CacheManager: two buckets close in space will tend to interact similarly
with a given remote node.

In the regular ParallelGravity algorithm, whenever a bucket walk visits a
tree node, a fundamental test is carried out. In this test, we check the spatial
position of the bucket in respect to the particles in that node. If the bucket is
sufficiently far from the node, the forces on the bucket due to the entire subtree
rooted at that node are immediately computed, using the subtree’s center of
mass. Otherwise, ParallelGravity opens the node, i.e. it recursively traverses the
subtree rooted at that node. Thus, the threshold used to decide if a node is close
enough to the bucket represents the opening criteria for deciding whether the
visited node must be opened or not.



Scalable Cosmological Simulations 11

Table 5. Number of checks for opening criteria, in millions

lambs 1M dwarf 5M

Original algorithm 120 1,108
Modified algorithm 66 440

Instead of checking the opening criteria at a given node for each bucket
independently, we can modify the algorithm and do that check for various local
buckets at once. We can do this collective check using the buckets’ ancestors
in the local tree. These ancestors will be local nodes containing particles which
are close in space. If an ancestor needs to open a visited node, that node will
be opened for every bucket that is a descendent of such ancestor. On the other
hand, if a node is far enough for that ancestor, this node will be far enough for
all the ancestor’s buckets too. In this second case, we can directly compute the
interaction between the node and all these local buckets.

By grouping the checking for various local buckets, we can reduce the total
number of checks for opening nodes. As an example, Table 5 shows the number of
checks that are observed with the two algorithms, executing on the HPCx system
with our two datasets. A potential problem in this modified algorithm is that it
may cause less effective usage of the hardware cache: because the computation
of interactions proceeds for various local buckets, one bucket’s data may flush
another bucket’s data from the hardware cache. We can reduce the number of
hardware-cache misses by storing all the nodes that interact with a given bucket
in a bucket’s interaction list, and perform the entire computation of forces on
that bucket at the end of the tree walk. Performance is improved even further
with interaction lists because compilers may keep a particle’s data inside CPU
registers while computing interactions with the nodes in the list.

Figure 4(a) plots the execution time for both the regular algorithm and the
new algorithm employing interaction lists, showing also cases where load bal-
ancing was employed (load balancing is the subject of our analysis in the next
subsection). The new algorithm shows a performance improvement over the en-
tire range considered. This improvement varies between 7% and 10%. We used
ParallelGravity with interaction lists for the uniprocessor tests of Section 4.1.

4.6 Load Balancer Importance

After describing all the optimizations applied to the basic ParallelGravity code,
we assess the importance of the Charm++ automatic load balancing framework
in improving the performance of our simulations. In particular, we emphasize the
fact that the code instrumentation and the migration of chares in the system
are totally automated, and do not require any programmer intervention.

Figure 4(a) shows the effect of load balancing on both versions of Parallel-
Gravity, one with the regular algorithm and the other with the interaction-list
implementation. The improvement from load balancing is similar in both al-
gorithms. We see that, before load balancing, the behavior of the algorithms



12 Filippo Gioachin et al.

Fig. 4. (a) Comparison between regular ParallelGravity (Ver-I) and the one with inter-
action lists (Ver-II) before and after load balancing on BlueGene/L for dwarf dataset.
(b) Effect of Load Balancer for dwarf dataset on 64 BlueGene/L processors

is somewhat random and determined only by the particle decomposition. This
happens because different particles in space require different amounts of compu-
tation. TreePieces owning heavy particles will be overloaded, hence cause bad
performance. After load balancing, performance improves between 15% and 35%.

To further analyze the improvements from the load balancer, Figure 4(b) dis-
plays a view from our Projections performance analysis tool, a component of
Charm++. This view corresponds to five timesteps of a simulation on 64 Blue-
Gene/L processors. The horizontal axis represents time, while each horizontal
bar represents a processor. Darker colors represent higher utilization, with black
as full utilization and white as idleness. One can see that even starting from
a very unbalanced situation on the first timestep, after two timesteps the load
balancer improves performance quite significantly, approaching almost perfect
balance. The gray region at the beginning of each timestep, where utilization
is lower, corresponds to the communication overhead due to prefetching. The
time spent by the application in load balancing and in domain decomposition is
hardly visible in the figure. It corresponds to the period between the end of the
longest black bar in one timestep and the beginning of the gray region of the
next timestep. That time is negligible.

It is relevant to notice that the input dataset (dwarf) is highly clustered at
the center of the simulation space, and its spatial distribution of particles is very
uneven. This non-uniform particle distribution is reflected by the varying proces-
sor utilization in the first timestep of the simulation. Situations like this present
the biggest challenge to obtain load balance across processors. Nevertheless, the
Charm++ load balancers achieved very good balance.

4.7 Scalability with Number of Processors

By applying all the optimizations described in the previous subsections, and
making use of various Charm++ features, we obtain our best performing version



Scalable Cosmological Simulations 13

Fig. 5. ParallelGravity scaling on various systems and comparison with PKDGRAV

of ParallelGravity. We used this version to conduct scaling tests on large machine
configurations, and to make scaling comparisons with PKDGRAV.

Figure 5 shows the scaling of ParallelGravity on BlueGene/L, HPCx and
Tungsten. The vertical axis is the product of the time per iteration and the
number of processors in the simulation. Horizontal lines represent perfect scala-
bility, while the diagonal lines represent no gain in scaling.

For the lambs1M dataset, the algorithm scales well up to 128 processors
on BlueGene/L and 256 processors on HPCx. Beyond these points, there is not
adequate work available for each processor, and the gain is reduced. BlueGene/L
has the most problems, and there is almost no advantage from the increased
number of processors. The dwarf dataset, being larger with 5 million particles,
allows good scaling up to 1024 processors of HPCx.

Figure 5 also presents the scaling comparison between ParallelGravity and
PKDGRAV on Tungsten. We can see that ParallelGravity scales much better
than PKDGRAV, maintaining a good performance over the entire range con-
sidered. Due to machine unavailability, we have not been able to run tests with
more than 256 Tungsten processors.

5 Conclusions and Future Work

In this paper, we have presented a new cosmological simulator named Paral-
lelGravity. Our design was guided by the goal of achieving good scalability on
modern parallel machines, with thousands of processors. Our experimental re-
sults show that ParallelGravity’s serial performance is comparable to that of
top-level simulators existing today. Meanwhile, by employing various optimiza-
tions enabled by the Charm++ runtime system, the gravity calculation phase



14 Filippo Gioachin et al.

in ParallelGravity was shown to scale very well up to one thousand processors
with real astronomical datasets. This level of scalability places ParallelGravity
as a potentially powerful resource for the astronomy community.

Despite ParallelGravity’s good observed scalability, we intend to study other
load balancing schemes and parallelization techniques that may provide even
further benefits. Moreover, ParallelGravity still needs to undergo a few more
steps to become a production-level simulator. We are working on adding support
for more physics, such as fluid-dynamics and periodic boundaries, as well as
providing multiple timestepping. In addition, as we start our tests on thousands
of processors, we are also analyzing the performance of other phases of the
simulation, such as the construction of the particle tree. Given the support for
various types of trees already present in the code, we intend to conduct a detailed
study of their effects on the simulation.

Acknowledgments
This work was supported in part by the National Science Foundation, under
grant number NSF ITR 0205611. We are thankful for the access to parallel
systems at Edinburgh’s HPCx Consortium, at Edinburgh’s EPCC Center, and
at Illinois’ NCSA.

References

1. M. D. Dikaiakos and J. Stadel, “A performance study of cosmological simulations
on message-passing and shared-memory multiprocessors,” in Proceedings of the
International Conference on Supercomputing - ICS’96, (Philadelphia, PA), pp. 94–
101, December 1996.

2. L. V. Kale and S. Krishnan, “Charm++: Parallel Programming with Message-
Driven Objects,” in Parallel Programming using C++ (G. V. Wilson and P. Lu,
eds.), pp. 175–213, MIT Press, 1996.

3. L. V. Kalé, “Performance and productivity in parallel programming via processor
virtualization,” in Proc. of the First Intl. Workshop on Productivity and Perfor-
mance in High-End Computing (at HPCA 10), (Madrid, Spain), February 2004.

4. J. Barnes and P. Hut, “A hierarchical O(N log N) force-calculation algorithm,”
Nature, vol. 324, pp. 446–449, December 1986.

5. G. Lake, N. Katz, and T. Quinn, “Cosmological N-body simulation,” in Proceedings
of the Seventh SIAM Conference on Parallel Processing for Scientific Computing,
(Philadelphia, PA), pp. 307–312, February 1995.

6. V. Springel, N. Yoshida, and S. White, “GADGET: A code for collisionless and
gasdynamical simulations,” New Astronomy, vol. 6, pp. 79–117, 2001.

7. W. Dehnen, “A hierarchical O(N) force calculation algorithm,” Journal of Com-
putational Physics, vol. 179, pp. 27–42, 2002.

8. V. Springel, “The cosmological simulation code GADGET-2,” MNRAS, vol. 364,
pp. 1105–1134, 2005.

9. J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé, “NAMD: Biomolecular simu-
lation on thousands of processors,” in Proceedings of SC 2002, (Baltimore, MD),
September 2002.

10. G. Zheng, Achieving High Performance on Extremely Large Parallel Machines:
Performance Prediction and Load Balancing. PhD thesis, Department of Computer
Science, University of Illinois at Urbana-Champaign, 2005.


