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Abstract. GPUs for numerical computations are becoming an attrac-
tive alternative in research. In this paper, we propose a new parallel pro-
cessing environment for matrix multiplications by using both CPUs and
GPUs. The execution time of matrix multiplications can be decreased to
40.1% by our method, compared with using the fastest of either CPU
only case or GPU only case. Our method performs well when matrix
sizes are large.

1 Introduction

The performance of Graphics Processing Units (GPU) has been significantly
improved in recent years. Compared with the CPU, the GPU is better suited
for parallel processing and vector processing and has evolved to perform various
types of computation, in addition to graphics processing, including numerical
computations. General-purpose computations on GPUs (GPGPU) have been
examined for various applications[1–3].

A high-performance computing environment is necessary for numerical com-
putations like physics and earth environment simulations which require enor-
mous computational power. Matrix multiplication is an important operation in
numerical computation. Speeding up matrix multiplication results in a corre-
sponding speed up increase in various numerical computations.

Basic Linear Algebra Subprograms (BLAS)[4] is frequently used as a ba-
sic numerical calculation library. Automatically Tuned Linear Algebra Software
(ATLAS)[5], is a fast implementation of BLAS in CPUs. These libraries have
succeeded in exploiting performance enhancing features of a CPU.

In BLAS, matrix multiplication is treated as a computation of C = α×A×
B + β ×C where A, B, and C are matrices, and α and β are scalars. Improving
performance of such computations will speedup of various numerical calculations.

We propose a heterogeneous computing environment for parallel processing
using both CPUs and GPUs for numerical computations. First we divide the
larger problem into two partial problems and assign one to the CPU and the
? Candidate to the best student paper award



other to the GPU. Ideally, this results in achieving high performance of both the
CPU and the GPU. We evaluate this method of parallel processing using the
NVIDIA GeForce7800GTX and the 6600GT as our GPUs.

Section 2, discusses the background and related work. Section 3, proposes
a parallel processing method using 1-CPU and 1-GPU. Implementation and
analysis of our method for matrix multiplication are described in Section 4.
Section 5 describes the experimental results measured on a real heterogeneous
environment and section 6 discusses about future research issues.

2 Background and Related Work

Graphics processors generate large number of polygons at a very high speed. In
generating polygons, vector and matrix computations are frequently used. Many
computations can be executed in parallel on a GPU. GPUs have evolved rapidly
with hardware suited for both vector and highly parallel computations compared
with a CPU. In addition, the programmable shader, controls processor’s behav-
ior in software level, has become popular in newer GPUs. Since floating point
arithmetic of a GPU is advanced these GPUs can efficiently execute various
computations rather than generating polygons[2, 3, 6].

The GPGPU aims at resolving target calculations utilizing the computational
power of a GPU. The main scope of GPGPU includes the computation of high-
level shading and lighting in creating real images[7], various simulations and
visualizations[8, 9]. These are examples related to graphics computations, the
original use of GPUs. Besides these graphics computations, utilization for nu-
merical computations is a new application domain of the GPU[10–12]. Floating-
point computations of GPUs have a lower precision than CPUs[13]. Therefore,
further evaluation and improvement of precision are necessary because of the
very high arithmetic precision required in numerical calculations.

Matrix multiplication is a popular GPGPU application. Current research
includes: efficient utilization of GPU for matrix multiplication, decreasing exe-
cution time by using vector computation and programmable shaders and an ef-
fective utilization of GPU inner cache[2, 14–17]. However, effective performance
evaluation results have not yet been obtained, because of the issues related to
memory and bandwidth in inner GPU.

Task parallelization has been used to increase performance in systems having
both CPUs and GPUs. For example, in a real-time movie, the CPUs calculate the
position of numerous objects and the GPUs calculate the shades and high lights
of these objects. However, data parallelization in both the CPUs and GPUs is
rare. We propose data parallelization with the CPUs and GPUs for numerical
calculation.

The research on parallel processing in heterogeneous environments includes
multiple CPUs with different performance. The problems addressed are: schedul-
ing for effective utilization of all processors, load balancing in a dynamically
changing environment, and resolving differences in arithmetic precision[18]. We



try to overcome such issues using a new domain as CPU and GPU complex
heterogeneous system.

3 Parallel Processing in a CPU and GPU Heterogeneous
Environment

3.1 Execution Time Analysis of Parallel Processing

Conventional approaches for execution time analysis for both CPU and GPU
include processor speedup, increased processor utilization (various proposals
and implementations have been investigated for approaching theoretical per-
formance), and parallel processing with multiple processors.

First, we formulate the execution time for CPUs. The execution time TCPU ALL

is defined in equation (1). We denote the number of operations in the target
computation as R. The execution time required for solution using peak CPU
performance is denoted as a function of R, or fCPU (R). The effective execution
time increases because the CPU cannot always attain peak performance. We
denote the increase of execution time relative to the ideal execution time (exe-
cution time at effective performance / execution time at peak performance) as
a (a ≥ 1). Ideally, the execution time is divided by n (n ≥ 1), the number of
CPUs used in parallel processing. The execution time is increased by the par-
allelization overhead when more than two CPUs are used. We neglect this time
for simplification.

TCPU ALL =
fCPU (R) × a

n
(1)

Similarly, we formulate the execution time for GPUs. The execution time
TGPU ALL is defined in equation (2). In this equation, the execution time re-
quired for a solution using the peak GPU performance is fGPU (R), the increase
of execution time relative to the ideal execution time is b (b ≥ 1), and the number
of GPUs is m (m ≥ 1).

TGPU ALL =
fGPU (R) × b

m
(2)

In previous research on numerical computations using GPGPUs, the execu-
tion time of a GPU system was compared to that of a CPU system, as shown
by (1) and (2). However, GPGPU systems often have both CPUs and GPUs.
Therefore, we propose a parallel processing method to obtain the overall CPUs
and GPUs performance. We divide a target computation into a parts, and assign
them to CPUs and GPUs to perform.

Assume that the target computation is divided into two partial computa-
tions. One partial computation with the assignment ratio r (0 ≤ r ≤ 1) of the
computation is assigned to CPUs. The other, with assignment ratio 1− r of the
computation, is assigned to the GPUs. Then, the CPUs’ execution time TCPU

defined in equation (1) becomes equation (3). Similarly, the GPUs’ execution
time TGPU defined in equation (2) becomes equation (4).



TCPU =
fCPU (R × r) × a

n
(3)

TGPU =
fGPU (R × (1 − r)) × b

m
(4)

The execution time for a parallel system is defined as TParallel in (5). Be-
cause the target computation ends when both the CPUs and the GPUs finish
computations, the execution time is obtained as the maximum of either TCPU

or TGPU . The parallelization overhead. is omitted for simplification.

TParallel = max(TCPU , TGPU ) (5)

To attain optimal performance, the execution time TParallel, defined by equa-
tion (5), must be minimized.

3.2 Case of One CPU and One GPU

For simplicity, we evaluate the proposed method for the case of one CPU and
one GPU. If the parameters a, n, b, and m in equations (3) and (4) are constants,
then TParallel is a function of only r as an input parameter. We propose a method
by which to achieve high performance by properly estimating the parameter r.
For one CPU and one GPU, we have n = 1and m = 1 in equation (3) and
(4). Therefore, equation (3) can be simplified to (6), and equation (4) can be
simplified to (7).

TCPU = fCPU (R × r) × a (6)

TGPU = fGPU (R × (1 − r)) × b (7)

3.3 Parallelization of Matrix Multiplication

The interface of matrix multiplication in BLAS is denoted in (8). In this equation,
A, B, and C are matrices, and α and β are scalars. This function updates the
matrix C.

C = α × A × B + β × C (8)

In this equation, matrix size is assigned the three values of M,N, and K,
as shown in Fig.1(a). When a certain element of matrix C is updated, only the
updated element of matrix C is referenced. We divide matrices A and C into
McandMg, where Mc and Mg denote the sizes of matrices allocated to CPU
and GPU respectively. Then we assign the partial matrices to the CPU and
the GPU as shown in Fig.1(b). Thus, matrix multiplication can be executed in
parallel without synchronization, and theassignment ratio r = Mc/Mc + Mg is
obtained. A matrix can be divided into any assignment ratio, and the value of r



can be changed freely. So, optimal division, i.e. static load balancing, is easy to
achieve.

Parallel processing on 1-CPU and 1-GPU uses two threads. One is a thread
handling the CPU, this thread performs the SGEMM function (single precision
floating-point GEMM function) using ATLAS. The other is a thread handling
the GPU, this thread performs data transfer between the CPU and the GPU,
and issues instructions to the GPU. Matrix multiplication on the GPU is imple-
mented as follows. We use DirectX as a graphics API and HLSL as a shading
language for creating programs[19]. Vector calculations are used because the
GPU can handle vector data and vector operations efficiently. Although a GPU
has both vertex and pixel processing units (fragment processing units), the im-
plementation herein uses only pixel processing units.

In the next section, we measure the performance of matrix multiplication
using either only one CPU or only one GPU. Based on this measurement, we
can predict the performance of parallel execution using both 1-CPU and a 1-
GPU heterogeneous environment.

Fig. 1. Assignment of computation in Matrix Multiplication

4 Preliminary Performance Experiments

4.1 Performance of the 1-CPU System

The personal computer we used has a Pentium4 3.0GHz processor as the CPU
and NVIDIA GeForce7800GTX as the GPU. Specifications of these processors
are given by Table 1. First, we examine the performance of the 1-CPU system
in the execution of matrix multiplication.



Table 1. Experimental Environment of Experiments

CPU Pentium4 3.0GHz

Memory 1.00GB

OS Windows XP

GPU GeForce7800GTX

Graphics Bus PCI-Express

VRAM 256MB

GPU’s core clock 430MHz

GPU’s memory clock 1.20GHz

amount of vertex shader unit 8

amount of pixel(fragment) shader unit 24
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Fig. 2. CPU execution time for one Pentium4 3.0GHz

As described in Section 3.3, the SGEMM function of ATLAS is executed on
the CPU in parallel processing in a 1-CPU and 1-GPU heterogeneous environ-
ment. We execute the SGEMM function and measure the execution time. The
matrix size is 2,048, which means that r = 1.0 when M = N = K = 2, 048.
We examine the relationship between the value of r and the execution time by
changing the vertical size Mc of matrices A and C.

The results obtained are shown in Fig.2. The horizontal axis denotes r, and
the vertical axis denotes the execution time. This is a the graph of equation (6).
We observe that the execution time of the SGEMM function is proportional to
the computation size, and the amount of computation in matrix multiplication is
proportional to r. Measurements are obtained by changing the assignment ratio
of matrices of the size of multiples of 64.

4.2 Performance of the 1-GPU System

Next, we examine the performance of the 1-GPU system. The matrix size is
defined as 2,048, and the relationship between the matrix size and the execution



time is examined in the same manner as the 1-CPU system. The execution time
is measured from the beginning of data transfer from the CPU to the GPU to
the end of data read back from the GPU to the CPU. We exclude the time
required to initialize DirectX and load the HLSL program from the scope of
measurement.

The results obtained are shown in Fig.3. The horizontal axis denotes the
value of 1 − r, and the vertical axis denotes the execution time. This is a graph
of equation (7). As a result, the execution time of matrix multiplication using
1-GPU is also proportional to the matrix size. This is the result of changing the
assignment ratio as we did with the 1-CPU.
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Fig. 3. GPU execution time for one NVIDIA GeForce7800GTX

4.3 Performance Prediction of the Heterogeneous Environment

We can predict the execution time on a parallel heterogeneous environment based
on 1-CPU and 1-GPU execution times using the following process: we first put
the 1-GPU graph (Fig.3) over the 1-CPU graph (Fig.2), while adjusting the
horizontal edge. We obtain Fig.4, which depicts both TCPU and TGPU for the
assignment ratio r. As mentioned above, the larger value of TCPU and TGPU is
the predicted time for parallel execution of each r, because parallel execution
finishes when both the CPU and the GPU complete the calculations. Figure 5
shows a graph of the prediction time obtained from Fig.4. This is a graph of
equation (5). Matrix multiplication is executed at the fastest speed at the lowest
point of the execution time on this graph, and its assignment ratio is optimal,
that is, the value of r is minimized equation (5).

The result of the above prediction is that, in this environment, the execution
time is expected to be the minimum when the CPU assignment is 43.8% of the
computation. The execution time is expected to be reduced 44.1% compared
with the 1-CPU only case and by 59.5% compared with the 1-GPU only case.
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Fig. 4. CPU and GPU execution time
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Fig. 5. Predicted execution time for parallel processing with 1-CPU and 1-GPU.

5 Performance Evaluation of the CPU and GPU
Heterogeneous Environment

5.1 Performance Evaluation of the Heterogeneous System

In this section, we measure the execution time required in parallel execution on
a heterogeneous environment. We implemented a parallel program using both
the thread handling CPU and GPU, as described in Section 3.3. The SGEMM
function of ATLAS is executed in the CPU thread, and data transfer between
the CPU and the GPU and computations using the programmable shader are
executed in the GPU thread. These experiments were carried out by changing
the matrix size by 64 intervals.

The results obtained are shown in Fig.6. The center of the graph is lower
compared with either side. Therefore, the execution time is decreased by parallel
execution. The execution time is minimum when the CPU does 40.6% of the
computation. The execution time is decreased by 45.1% compared with the CPU



only case, and by 60.8% compared with the GPU only case. Figure 7 shows the
performance ratio when the higher performance of the 1-CPU only case and the
1-GPU only case is defined as 1.0. As a result, we got a performance improvement
for the parallel case of 1.64 times.

We compare the experimental result with our prediction result. We first con-
firm that the assignment ratio minimizing the execution time. The execution
time is predicted to be decreased the most when the CPU does 43.8% of the
computation. Correspondingly, the experimental result also indicated that the
execution time is minimum when the CPU does 43.8% of the computation. In
addition, these values mean that execution time is minimum when the CPU does
1, 152 of the total 2, 048 size.

Next, we confirm the minimal execution time by using the optimal assignment
ratio of the computation. In the prediction, the minimal execution time is 1.23
sec. Here, the ratio of the execution time to the CPU only case is 44.1%, and the
ratio of the execution time to the GPU only case is 59.6%. In the experiment, the
minimal experimental execution time is 1.26 sec. At this time, the ratio of the
execution time to the 1-CPU only case is 45.1%, and the ratio of the execution
time to the 1-GPU only case is 60.8%. The ratio of the minimal experimental
execution time to the minimal prediction time is 102.4%.

We can conclude that we obtained high performance using parallel processing
method. Moreover, we can predict with high precision both the execution time
of matrix multiplication on a heterogeneous environment and the assignment
ratio of computation for the minimal execution time.
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Fig. 6. Execution time measured on the CPU and GPU heterogeneous environment.

5.2 Performance Evaluation with Varying Matrix Sizes

We examine the performance in other matrix sizes of matrix multiplication to
confirm whether our method is affected by the size of matrix in the computa-
tion. So, we evaluate performance by varying the matrix size of the matrix of



Fig. 7. Relative performance of parallel execution. (The higher performance of the
CPU only case and the GPU only case is defined as 1.0.)

computation. The results obtained are shown in Figs.8 and 9. Figure 8 shows
the result of the 1-CPU only case and the 1-GPU only case with varying the
matrix sizes: 512, 1024, 1536 and 2560.

Graphs for the small computation sizes were unstable, but the tendency in
the larger matrix size was the same as the figures we have already shown. Figure
9 shows the result in parallel execution. As a result, this method didn’t work well
when the computation size was small. However, when the computation size was
large enough, the execution time was decreased by parallel processing. At this
time, the assignment ratio for the minimal time in parallel execution was near
the prediction point. In this heterogeneous environment, maximum speedup was
obtained at the size of 2048. Further research is required to analyze the reason
why the best performance was obtained in this size.

5.3 Performance Evaluation on Heterogeneous Environment with
Different GPU

We tried to evaluate performance with another GPU of a different type to evalu-
ate the effectiveness of the proposed method. We use the GeForce6600GT instead
of the GeForce7800GTX. The differences for each GPU are shown in Table 2 1.
The results obtained are shown in Figs.10 and 11. Figure 10 is a graph for the
1-CPU only case and the 1-GPU only case with changing matrix sizes of 1024
and 2048. Figure 11 is a graph in parallel execution. The environment in this
experiment is the same as for the GeForce7800GTX.

Our method didn’t work well when the computation size was small, but
the execution time was decreased by parallel processing when the computation
size was large enough. The difference between the optimal assignment ratio of
computation in CPU and GPU was small. The tendencies were almost same
as the case of the GeForce7800GTX. The highest rate of speedup is shown for
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Fig. 8. 1-CPU only execution time and 1-GPU only execution time (GeForce7800GTX)
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Fig. 9. Execution time measured on the implemented on parallel system with a CPU
and a GPU, and fastest point of prediction (GeForce7800GTX)



the size 2048, and the ratio of the execution time for the 1-CPU only case was
70.5%. These results show that our method is useful when computation size is
large. and doesn’t work well when computation size is too small.

Table 2. Comparison of GPUs

GPU GeForce7800GTX GeForce6600GT

Graphics Bus PCI-Express PCI-Express

VRAM 256MB 128MB

GPU’s core clock 430MHz 300MHz

GPU’s memory clock 1.20GHz 1.00GHz

amount of vertex shader unit 8 3

amount of pixel(fragment) shader unit 24 8
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Fig. 10. CPU only execution time and GPU only execution time (GeForce6600GT)

6 Conclusion and Future Work

In this paper, we proposed a method for dividing a large target computation into
partial computations and executing them in parallel using 1-CPU and 1-GPU.
In addition, we proposed a load balancing method for minimizing the execution
time. Using the method we proposed and proved by experiment for experiment.
the execution time was reduced to 44.1% for the CPU and 59.5% of that for the
GPU. In addition, we demonstrated that the proposed method could be used to
predict the optimal assignment ratio to the CPU and GPU according to each
execution time.

Future research work is required in the following problem areas. First, we
must check how useful our method is in heterogeneous environments. There-
fore, it is necessary to evaluate performance in various environments. Secondly,
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Fig. 11. Execution time measured on the implemented on parallel system with a CPU
and a GPU, and fastest point of prediction (GeForce6600GT)

it is necessary to evaluate the arithmetic precision of the computation using
our method. In particular, we have to evaluate the differences in precision for
calculated results between the CPU and GPU. Thirdly, a library of parallel pro-
gramming must be developed for CPU and GPU research. We have to write CPU
and GPU programs independently when we want to execute parallel programs
using CPUs and GPUs. However, it is desirable that users are not concerned
about whether they use CPUs or GPUs.

We are considering developing such an automatic performance tuning li-
brary. Various applications are speeded up when a library automatically assigns
computations to CPUs and GPUs using our load balancing method in parallel
processing. For example, if we make a library with an interface of BLAS, it can
automatically assign computations to the CPU and GPU, and many applications
using BLAS can be speeded up easily.

The method we proposed can be applied for more complex environments
having multiple CPUs and GPUs. Utilizing such a multiple processor environ-
ment will become a new trend in GPU technology for the benefit of many CPUs
and GPUs. In such environments, new approaches for realizing optimal load bal-
ancing are required to achieve the maximal speed up in the high-performance
computing field.
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