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Abstract. This paper evaluates the impact of the parallel I/O scheduling strat-
egy on the performance of the file access in a parallel file system for clusters
of commodity computers (Clusterfile). We argue that the parallel I/O schedul-
ing strategy should be seen as a complement to other file access optimizations
like striping over several I/O servers, non-contiguous I/Oand collective I/O. Our
study is based on three simple decentralized parallel I/O heuristics implemented
inside Clusterfile. The measurements in a real environment show that the perfor-
mance of parallel file access may vary with as much as 86% for writing and 804%
for reading with the employed heuristic and with the schedule block granularity.

1 Introduction

The performance of applications accessing large data sets is often limited by the speed
of I/O subsystems. On one hand, this limitation comes from the ever increasing dis-
crepancy between processor, memory speed and magnetic disks. On the other hand, the
potential for parallelism existent in clusters of commodity computers and supercom-
puters is not always fully exploited by the I/O system software, like the parallel file
systems [1–11] and libraries [12, 13]. These systems employmechanisms such as strip-
ing a file over several independent disks managed by I/O nodesand allowing parallel
file access from several compute nodes.

For a better utilization of network and storage resources several point-to-point non-
contiguous I/O methods have been proposed: data sieving [14], list I/O [15], view I/O
[16]. These methods greedily optimize the communication between exactly one pair
compute node - I/O node without regard at the global system performance. The collec-
tive I/O methods two-phase I/O [17] and disk-directed I/O [18] use collective buffers
in order to gather the requests from compute nodes before sending them to disks. For
disk-directed I/O the collective buffers reside at I/O nodes, whereas for two-phase I/O
at intermediary compute nodes. Both of these methods describe how the data flows
through the system between compute nodes and I/O nodes, but do not say anything
about the order in which requests are sent between parallel running compute nodes and
I/O nodes. However, an improper request ordering may cause idleness, load imbalance
or resource contention, which may have a tremendous impact on performance.

The parallel I/O scheduling strategy may be seen as a complement to the above
mentioned I/O optimizations. File striping describes a parallel spatial data placement,



whereas the parallel I/O strategy decides the temporal order of parallel requests. Non-
contiguous I/O methods gather small messages into larger ones, while the parallel I/O
strategy targets to schedule requests with sizes and in an order that optimize the re-
source usage. For collective I/O methods, the scheduling strategy may intervene both
in the process of gathering the data into collective buffers, as well as in the sending the
collective buffers to the I/O servers.

In previous work [19] we have developed a decentralized parallel I/O scheduling
strategy for collective I/O operations. However, this strategy is specialized for collective
I/O operations, and the impact of this strategy on the globalsystem performance was
not evaluated.

In this paper we evaluate three simple decentralized parallel I/O scheduling strate-
gies implemented in the Clusterfile [20] parallel file system. We show that optimizations
like non-contiguous I/O and collective I/O can not achieve ahigh resource utilization
without a proper parallel I/O scheduling strategy. Additionally, the choice of the proper
strategy and proper schedule block size may have an important influence on the overall
file system performance.

2 Parallel I/O scheduling problem

The parallel I/O scheduling problem is not new. It was formulated by Jain and et al.
[21] as follows. Givennp compute nodes,nIOS I/O servers and a set of requests for
transfers of the same length among compute nodes and I/O servers and assuming that
a compute node and an I/O server can perform exactly one transfer at any given time,
find a service order that minimizes the schedule length [21].

Figure 1 shows an example, in whichnp = 2 compute nodes simultaneously issue
in order four requests T1, T2, T3, T4 fornIOS = 2 I/O servers. For this set of requests,
several schedules are possible under the assumption that for each pair compute node
- I/O node, only one request can be serviced at a time. Two of them are shown in the
figure. In “Schedule 1”, T1 and T2 are serviced at time 0; subsequently, T3 and T4 can
not be scheduled simultaneously, because they have the samedestination. The resulting
schedule has the length 3. If T4 and T1 are scheduled in the first phase, T2 and T3 can
be executed in parallel in the second phase and the schedule length is 2 (“Schedule 2”).

The general scheduling problem is shown to be NP-complete, which makes it im-
practical for the real medium size parallel systems. Consequently, all solutions pre-
sented in the related work section are based on heuristics that try to minimize the sched-
ule length, but without guaranteeing that the optimal valueis used.

3 Related work

The proposed solutions to the parallel I/O scheduling problem can be divided at least
by five criteria. First, the proposed algorithms may be centralized or distributed. The
centralized algorithms assume that there is a place in the system where all information
about requests are gathered, before the schedule is computed. In the distributed algo-
rithms the global schedule is computed in parallel by different nodes having only partial
information about the requests. Second, some algorithms solve the parallel I/O schedule



P1

P2

D1

D2

D3

T1

T3

T4

T2

Schedule 1

Schedule 2

0          1          2         3         time

0          1          2         3         time

T2

T1       T3       T4

T4        T2

T1        T3

Fig. 1.Parallel I/O scheduling problem.

problem in the presence of replication and others consider that there is only one copy of
the data in the system. Third, the algorithms may be off-lineor on-line. In the off-line
algorithms the schedule is computed based on the fact that all the request information
is available and is executed as such. In the on-line algorithms requests generated dur-
ing the execution trigger a re-computation of the schedule.Fourth, the algorithms may
differentiate between data with and with-out real-time constraints. Fifth, the evaluation
can be based on simulations or on real implementations and systems.

The strategies incorporated in Clusterfile and discussed inthis paper are decen-
tralized, without replication, off-line, without real-time constraints, implemented and
evaluated in a real environment.

Jain et al. [21] were among the first that formalized the parallel I/O scheduling prob-
lem in absence of replication and proposed three centralized off-line heuristics based on
graph coloring algorithms. In First-Come First-Serve (FCFS), in each phase, as many
as possible requests are served in parallel (colored with the same color) in the order
of their arrival. For Figure 1, if the order of request arrival is T1, T2, T3, T4, “Sched-
ule 1” is produced. Highest Degree First (HDF) considers first the graph nodes with
the higher degrees in order to schedule parallel transfers.Both schedules from Figure
1 may be produced. Highest Common Degree First (HCDF) processes first the graph
edges with the higher sum of the node degrees in order to schedule parallel transfers.
Only the optimal “Schedule 2” can be produced in the example from Figure 1. The
evaluation is based on a simulation and shows as expected a superior performance for
the “more-informed” HCDF heuristic.

Chen and Majumdar [22] evaluate five centralized parallel I/O scheduling strate-
gies for clusters in the presence of replication. On one handthey add replication sup-
port to FCFS and HCDF. On the other hand they propose Lowest Destination De-
gree First (LDDF), Shortest Job First (SJF) and Shortest Outstanding I/O Demand Job
First (SOJF). The strategies are evaluated on a real system for single job and multi-
programmed workloads. An other real evaluation of five replication-based centralized
parallel I/O scheduling strategies including those from [22] is presented in [23].

Durand et al. [24] propose distributed randomized parallelI/O scheduling algo-
rithms based on edge colorings. In Uniformly at Random (UAR)each client selects



randomly a request and sends it as a bid to an I/O server. Then each I/O server selects
one received request at random and colors it with the currentcolor. The algorithm re-
peats until all the graph is colored. Our implemented randomized strategy is a simplified
version of this algorithm. MPASSES gives several (M) opportunities to color an edge to
the clients whose proposal were rejected in the first pass of UAR. HDF is a distributed
variant of the centralized HDF from [21] in which the clientssend their degree together
with the bid and the I/O servers picks up the client with the highest number of pending
requests. The evaluation is based on a simulation.

In [25], the authors propose a decentralized update-based parallel I/O algorithm
(D-SPTF) targeting load balance, efficient global cache exploitation and reducing disk
positioning times for writing. The data may be replicated over several disks, which
allows for an efficient read from the client which can serve the request fastest and a slow
write due to the update of all replicas. Locality Aware Request Distribution (LARD)
[26] requires a front-end which distributes the requests among the I/O servers according
to the locality. Simulation results show that D-SPTF outperforms LARD and hash-based
request distribution in terms of throughput and response time.

Lebre et al. [27] present the implementation and real systemevaluation of two
centralized parallel I/O strategies targeting global performance optimization and fair-
ness in a multi-application environment. Their solution isa file system independent
application-level library, whereas ours is done at file system level.

4 Parallel file system overview

Clusterfile(CLF) [20] is a parallel file system for clusters of commodity computers. The
architecture is based on the classical parallel file system model, in which the files are
declustered over several I/O nodes managed by I/O servers. The applications run on
compute nodes and access the file system through a POSIX-likeproprietary interface
or a classical UNIX interface after mounting the file system.Each individual process
may declare a fileview, i.e. alogical contiguouswindow mapped onto a non-contiguous
file region. After declaration, each view can be accessed like a regular file. Clusterfile
performs efficient non-contiguous I/O through a method called view I/O, described in
detail in [16].

Clusterfile integrates two well-known collective I/O techniques, disk-directed [18]
and two-phase I/O [17], into a common design [19]. The collective buffers are stored
into a global cache, managed in cooperation by several cachemanagers running a
version of the decentralized hash-distributed cooperative caching algorithm presented
in [29].

5 Goals

The parallel I/O scheduling presented in this paper are implemented inside a real par-
allel file system. The parallel file system consists of four types of components: several
parallel acting clients, several I/O servers, several cache managers, one metadata man-
ager. The interaction between these components even in a relatively small cluster is



highly complex. Experience with the xFS file system [28] has shown that complex pro-
tocols may make the development of a parallel system very difficult. In fact, the initial
proposal of xFS was never fully implemented in part due to theexponential explosion
of protocol complexity, which made bug detection very challenging even with formal
verification tools. Consequently, when adding adding a parallel I/O scheduling strategy
to an existing complex system we have in mindsimplicity.

The scheduling strategy should have a small overhead. On onehand, this overhead is
proportional with the number of messages exchanged for taking a scheduling decision.
Even though the latency of the network is low, the communication may cause side-
effects like context switches or evictions affecting data locality. On the other hand, data
replication would perform poor for file writing. We have chosen not to replicate the data
inside Clusterfile. Eventual replication schemes could be implemented on top of the file
system.

Some scheduling strategies presented in the related work section are centralized.
However, gathering the scheduling information at a centralpoint may be difficult. First,
this involves communication that adds additional complexity to the existing distributed
protocols. Second, the additional communication for gathering the requests from all
nodes and distributing the decision makes the solution costly and non-scalable. There-
fore, the scheduling I/O strategies we chose are decentralized.

6 Parallel scheduling I/O heuristics

For all parallel scheduling heuristics, we assume that, at acertain point in time,np com-
pute nodes simultaneously issue large data requests fornIOS I/O servers. The decision
of the order of data service is taken by the compute node for writing and by the I/O
for reading in a similar way. For this reason we describe hereonly the write scheduling
strategy. For writing, large requests are split by each compute node into smaller requests
of sizeb.

In the first scheduling strategy,first-IOS(I/O server), each compute node sends the
data to the I/O nodes in the order of file offsets. This is a natural approach, but may
pose the potential risk that all the compute nodes send the data to the same I/O node
at the same instant. However, the load balance problem may becompensated by high
data locality in the case of non-contiguous interleaved access, as will be shown in the
evaluation section.

In the second write scheduling strategy,random-IOS, each compute node first builds
a list of requests targeted to each I/O node. Then the computenode chooses randomly
the I/O server to which the data will be send until all the datais sent.

The third scheduling strategy,hash-IOS, is the one employed for the collective I/O
operations of Clusterfile [19]. Conforming to the theoretical problem definition, for
which each compute node can perform exactly one transfer at any given time, at time
steptj , j = 0, 1, ..., the compute nodei sends a block to the I/O server(i + j) modulo
nIOS .

Figure 1 shows an example, in whichnp = 2 compute nodes simultaneously issue
4 requests fornIOS = 2 I/O servers. For the first-IOS method, CN0 decides to send
the request to the IOS0 first, and then to IOS1, and a schedule of length 3 is produced



(“Schedule 1”). On the other hand, hash I/O produces a schedule of length 2 (“Schedule
2”), as the I/O servers may run in parallel. Random IOS may produce any possible
schedule, depending on the generated random numbers.

Notice that, for all strategies, there is no central point ofdecision, each process acts
independently.

7 Evaluation

We performed our experiments on a cluster of 16 dual processor Pentium III 800MHz,
having 256 KBytes L2 cache and 1024 MB RAM, interconnected byMyrinet LANai
9 cards at 133 MHz, capable of sustaining a throughput of 2 GB/s in each direction.
The machines are equipped with IDE disks and were running LINUX kernels version
2.6.13 with theext2local file system. We used TCP/IP on top of the 2.0.24 version of the
GM [31] communication library. The ttcp benchmark delivered a TCP/IP node-to-node
throughput of 120 MB/sec.

The I/O scheduling heuristics are all implemented inside the Clusterfile parallel file
system.

In the following two subsections, we present the results fortwo different workloads:
a synthetic parallel benchmark accessing contiguously a file and BTIO [32], a NASA
parallel benchmark, in which several processes write non-contiguously to a file and then
read back the result.

7.1 Synthetic benchmark
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Fig. 2. Synthetic benchmark file write throughput.
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Fig. 3. Synthetic benchmark file read throughput.

We have written a synthetic benchmark in Message Passing Interface [30], in which
all processes write and read in parallel different regions of the same file. The writes and
reads are performed contiguously, as we first want to investigate the effect of parallel
I/O heuristics on the performance, unaffected from the gather-scatter operations that are
necessary for non-contiguous I/O.

Clusterfile uses 8 I/O server running on 8 I/O nodes. The file block size is 64
KBytes. In the benchmark each of the 8 compute nodes writes 32MBytes, resulting
in a total of 256 MBytes. Each measurement was repeated 5 times and the mean value
is reported.

Figures 2 and 3 show the aggregate throughput in MBytes/second obtained employ-
ing the three parallel I/O scheduling heuristics for writing and reading, respectively.
The x-axis values represent the length of schedule blockb (as introduced in the previ-
ous section).

First of all, note that for diverse parameters the performance of the same application
may vary by as much as 86% for writing and 804% for reading. Forwriting, the highest
value is obtained for hash-IOS forb = 64KBytes (573 MBytes/second) and the lowest
for first-IOS forb = 4096KBytes (308 MBytes/second). For reading, the highest value
is obtained for hash-IOS forb = 32KBytes (817 MBytes/second) and the lowest for
first-IOS forb = 4KBytes (90 MBytes/second).

As expected, for first-IOS strategy, the aggregate write throughput decreased with
schedule block granularity. The reason is that all the I/O servers try to send the data in
the same order to all the I/O servers, which creates contention at I/O servers. The con-
tention prevents the compute nodes from advancing and employing the other available
I/O servers.

We have expected that the random-IOS write performance results lie somewhat in
the middle between the results of hash-IOS and first-IOS. Surprisingly, the random
IOS heuristic outperformed first-IOS only for the smallest four and largest two values.



We believe that the reason lies in the fact that first-IOS generates a critical bottleneck
only when accessing the first I/O server. The first compute node that “escapes” this
bottleneck continues sending the data to the second I/O server and so on, generating a
pipeline behavior. On the other hand, it appears that the randomly generated bottlenecks
cause a higher overhead, as they can appear non-deterministically throughout the whole
run of the application.

For large schedule block sizes, hash-IOS clearly outperforms the other two methods.
For this heuristic each compute node starts by contacting a different I/O server which
provides a good initial load balance, which is then preserved throughout the whole run
by a cyclic access to the I/O servers.

The aggregate read throughput was similar for hash-IOS and first-IOS. This is due
to the fact that in the present Clusterfile implementation anI/O server that receives the
first request starts serving it. It appears that the initial potential bottleneck can not be
overcome by the hash-IOS. This is unlike the write case, where the performance does
not degrade with the the size of the schedule block.

The first-IOS and hash-IOS managed to exploit 85% of the theoretical point-to-point
bandwidth of 8x120MBytes/second (as measured by the ttcp benchmark) for reading
with b = 32KBytes andb = 64KBytes. A further performance analysis is necessary
in order to try to improve the write aggregate throughput.

7.2 BTIO benchmark
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Fig. 4. BTIO file write times.

NASA’s BTIO benchmark [32] solves the Block-Tridiagonal (BT) problem, which
employs a complex domain decomposition across a square number of compute nodes.
Each compute node is responsible for multiple Cartesian subsets of the entire data set.
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Fig. 5. BTIO file read times.

The execution alternates computation and I/O phases. Initially, all compute nodes col-
lectively open a file and declare views on the relevant file regions. After each five com-
puting steps the compute nodes write the solution to a file through a collective opera-
tion. There are three sizes of the data sets: A (419.43 MBytes), B (1697.93 MBytes)
and C (6802.44 MBytes). For these classes the benchmark performs 200 compute steps
and 40 I/O steps. We are interested only in the results for a single I/O phase writing
10.5 MBytes (A), 42.2 MBytes (B) and 170 MBytes (C). The parallel I/O scheduling
policies are relevant for large amounts of data, therefore,we report in this paper the I/O
access times of the C class data set. The access pattern of C class is nested-strided with
a nesting depth of 2 with an access granularity of 3240 bytes.We report the results for 9
compute nodes and 9 I/O nodes in Figures 4 and 5 for writing andreading, respectively.

At the beginning of the BTIO benchmark, each process opens a file and declares a
view on the file regions of interests. The individual file regions of the processes corre-
sponding to the views do not overlap. Later, during each I/O phase, each process writes
to the file through the view I/O method of Clusterfile [16]. Each process uses the view
in order to contiguously send the data from each compute nodeto the I/O nodes. At I/O
node, the data is scattered into the file blocks, kept in collective buffers. The reverse
process takes place for reading. In a previous paper we have [19], we have shown that
the combined view I/O and collective I/O method of Clusterfile significantly outperform
two-phase I/O method of ROMIO [14], the most popular MPI-IO implementation. In
the paper cited above the parallel scheduling strategy was fixed.

However, Figures 4 and 5 show that, depending on the parallelI/O scheduling strat-
egy employed, the time to write a file in BTIO may vary with as much as 53% for
writing (the ratio of 0.78 seconds for first-IOS withb = 4KBytes to 0.51 seconds
for first-IOS withb = 8MBytes) and 173% for reading (the ratio of 1.15 seconds for
random-IOS withb = 4KBytes to 0.42 seconds of hash-IOS withb = 8MBytes).
As it can be noticed the performance span is not as large as in the case of the contigu-



ous access. This is mainly due to the fact that the non-contiguous access generates a
relatively constant overhead for scattering or gathering the data at the compute and I/O
nodes.

8 Conclusions and current work

This paper presents and contrasts three parallel I/O scheduling heuristics implemented
in Clusterfile parallel file system. The performance resultsshow that the performance of
parallel file access strongly depends on the choice of the parallel I/O scheduling strat-
egy, as a combination of the employed heuristic and the granularity of the schedule. An
improper scheduling strategy may result in inefficient utilization of the parallel network
paths, poor load balance and high contention at I/O nodes.

The classical parallel I/O optimizations like data striping, non-contiguous I/O, col-
lective I/O should be seen as a complement to a parallel I/O scheduling strategy. Our
experiments have demonstrated that various simple parallel I/O scheduling strategies
may produce a performance difference of as much as 53% for filewriting and 173% for
file reading over the above mentioned optimizations.

The decentralized strategies presented in this paper address I/O workloads of well-
balanced parallel applications. For irregular applications, some form of centralization or
communication between the application library and I/O servers would be needed. Our
current work includes the design and analysis of strategiesfor this type of applications.
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