On evaluating decentralized parallel I/0O scheduling
strategies for parallel file systems

Florin Isaila, David Singh, Jests Carretero, and Félxdia

Department of Compute Science,
University Carlos Il de Madrid, Spain
{florin,desingh,jcarrete, fgarcia}@rcos.inf.uc3mes

Abstract. This paper evaluates the impact of the parallel /O schedgirat-
egy on the performance of the file access in a parallel fileegydor clusters
of commodity computers (Clusterfile). We argue that the IfgrdO schedul-

ing strategy should be seen as a complement to other file saopéisnizations
like striping over several 1/O servers, non-contiguousaf@ collective /0. Our
study is based on three simple decentralized parallel Ii@istecs implemented
inside Clusterfile. The measurements in a real environnmtew shat the perfor-
mance of parallel file access may vary with as much as 86% ftinggand 804%
for reading with the employed heuristic and with the schedhibck granularity.

1 Introduction

The performance of applications accessing large dataseftein limited by the speed
of 1/0 subsystems. On one hand, this limitation comes froenawer increasing dis-
crepancy between processor, memory speed and magnetc@iskhe other hand, the
potential for parallelism existent in clusters of commgdibmputers and supercom-
puters is not always fully exploited by the 1/0 system sofeydike the parallel file
systems [1-11] and libraries [12, 13]. These systems empéghanisms such as strip-
ing a file over several independent disks managed by 1/0 nad@sllowing parallel
file access from several compute nodes.

For a better utilization of network and storage resourcesra¢point-to-point non-
contiguous I/O methods have been proposed: data sievigligt4/O [15], view I/O
[16]. These methods greedily optimize the communicatiomben exactly one pair
compute node - /0O node without regard at the global systefopeance. The collec-
tive 1/0 methods two-phase I/O [17] and disk-directed I/@][tise collective buffers
in order to gather the requests from compute nodes befodéregethem to disks. For
disk-directed I/0 the collective buffers reside at /O ned&hereas for two-phase 1/0
at intermediary compute nodes. Both of these methods tesbow the data flows
through the system between compute nodes and I/O nodesphudtdsay anything
about the order in which requests are sent between panatieimg compute nodes and
I/0 nodes. However, an improper request ordering may callisedss, load imbalance
or resource contention, which may have a tremendous impga¢dormance.

The parallel I/O scheduling strategy may be seen as a conepleta the above
mentioned I/O optimizations. File striping describes aafial spatial data placement,

whereas the parallel I/O strategy decides the temporal @fdearallel requests. Non-
contiguous I/O methods gather small messages into larges, evhile the parallel I/O

strategy targets to schedule requests with sizes and indar trat optimize the re-

source usage. For collective 1/0 methods, the schedulmagegty may intervene both
in the process of gathering the data into collective buffassvell as in the sending the
collective buffers to the I/O servers.

In previous work [19] we have developed a decentralizedllghl#O scheduling
strategy for collective I/O operations. However, thistsgy is specialized for collective
I/0 operations, and the impact of this strategy on the glsgatem performance was
not evaluated.

In this paper we evaluate three simple decentralized ght&D scheduling strate-
gies implemented in the Clusterfile [20] parallel file syst&e show that optimizations
like non-contiguous I/O and collective I/O can not achieydgh resource utilization
without a proper parallel /O scheduling strategy. Addidly, the choice of the proper
strategy and proper schedule block size may have an impanfarence on the overall
file system performance.

2 Parallel I/0O scheduling problem

The parallel 1/O scheduling problem is not new. It was foratetl by Jain and et al.
[21] as follows. Givenn,, compute nodes;;os /O servers and a set of requests for
transfers of the same length among compute nodes and l/@rseand assuming that
a compute node and an I/O server can perform exactly oneféraaisany given time,
find a service order that minimizes the schedule length [21].

Figure 1 shows an example, in whiel) = 2 compute nodes simultaneously issue
in order four requests T1, T2, T3, T4 faros = 2 I/O servers. For this set of requests,
several schedules are possible under the assumption theac¢h pair compute node
- 1/0 node, only one request can be serviced at a time. Twoeashitare shown in the
figure. In “Schedule 1", T1 and T2 are serviced at time 0; sqbeatly, T3 and T4 can
not be scheduled simultaneously, because they have thedestirgation. The resulting
schedule has the length 3. If T4 and T1 are scheduled in thefiese, T2 and T3 can
be executed in parallel in the second phase and the schedglinlis 2 (“Schedule 27).

The general scheduling problem is shown to be NP-compldiehamakes it im-
practical for the real medium size parallel systems. Comsety, all solutions pre-
sented in the related work section are based on heuristit#yto minimize the sched-
ule length, but without guaranteeing that the optimal vadugsed.

3 Related work

The proposed solutions to the parallel I/O scheduling pobtan be divided at least
by five criteria. First, the proposed algorithms may be @dized or distributed. The
centralized algorithms assume that there is a place in ttesywhere all information
about requests are gathered, before the schedule is camputhe distributed algo-
rithms the global schedule is computed in parallel by diffénodes having only partial
information about the requests. Second, some algorithine e parallel I/O schedule

Schedule 1

PlQ T1 O D1 ™
13 T1 | T3 | T4
PZQ T4 D2 0 1 2 3 tim
Schedule 2
T2
D3 T4 T2
T1 T3
0 1 2 3 tim

Fig. 1. Parallel /O scheduling problem.

problem in the presence of replication and others condidgithere is only one copy of
the data in the system. Third, the algorithms may be off-¢éinen-line. In the off-line
algorithms the schedule is computed based on the fact th&ealequest information
is available and is executed as such. In the on-line algustrequests generated dur-
ing the execution trigger a re-computation of the schedtderth, the algorithms may
differentiate between data with and with-out real-timestoaints. Fifth, the evaluation
can be based on simulations or on real implementations estelrag.

The strategies incorporated in Clusterfile and discussdtiinpaper are decen-
tralized, without replication, off-line, without realatie constraints, implemented and
evaluated in a real environment.

Jain et al. [21] were among the first that formalized the pelrlO scheduling prob-
lem in absence of replication and proposed three centcadiffdine heuristics based on
graph coloring algorithms. In First-Come First-Serve (8LHn each phase, as many
as possible requests are served in parallel (colored wihs#éime color) in the order
of their arrival. For Figure 1, if the order of request artiigaT1, T2, T3, T4, “Sched-
ule 1" is produced. Highest Degree First (HDF) considers thie graph nodes with
the higher degrees in order to schedule parallel trandBath schedules from Figure
1 may be produced. Highest Common Degree First (HCDF) psesefirst the graph
edges with the higher sum of the node degrees in order to skhpdrallel transfers.
Only the optimal “Schedule 2” can be produced in the exampmfFigure 1. The
evaluation is based on a simulation and shows as expectqueda@uperformance for
the “more-informed” HCDF heuristic.

Chen and Majumdar [22] evaluate five centralized paraleldtheduling strate-
gies for clusters in the presence of replication. On one lilaegl add replication sup-
port to FCFS and HCDF. On the other hand they propose Lowestiriaéion De-
gree First (LDDF), Shortest Job First (SJF) and Shortesst@uding 1/0 Demand Job
First (SOJF). The strategies are evaluated on a real systesingle job and multi-
programmed workloads. An other real evaluation of five cgtlon-based centralized
parallel /0 scheduling strategies including those fro] & presented in [23].

Durand et al. [24] propose distributed randomized paralf@lscheduling algo-
rithms based on edge colorings. In Uniformly at Random (U&Rg¢h client selects

randomly a request and sends it as a bid to an I/O server. T@NIA server selects
one received request at random and colors it with the cuo@ot. The algorithm re-
peats until all the graph is colored. Our implemented raridedhstrategy is a simplified
version of this algorithm. MPASSES gives several (M) oppoities to color an edge to
the clients whose proposal were rejected in the first pas#&t.WHDF is a distributed
variant of the centralized HDF from [21] in which the cliesend their degree together
with the bid and the 1/O servers picks up the client with thghleist number of pending
requests. The evaluation is based on a simulation.

In [25], the authors propose a decentralized update-baseadlgd 1/0 algorithm
(D-SPTF) targeting load balance, efficient global cachdatgtion and reducing disk
positioning times for writing. The data may be replicate@moseveral disks, which
allows for an efficient read from the client which can seneerdquest fastest and a slow
write due to the update of all replicas. Locality Aware Resjugistribution (LARD)
[26] requires a front-end which distributes the requestsragiihe I/O servers according
to the locality. Simulation results show that D-SPTF ouftpens LARD and hash-based
request distribution in terms of throughput and respomse.ti

Lebre et al. [27] present the implementation and real systeatuation of two
centralized parallel I/O strategies targeting global perfance optimization and fair-
ness in a multi-application environment. Their solutiorai§ile system independent
application-level library, whereas ours is done at file systevel.

4 Parallel file system overview

Clusterfile(CLF) [20] is a parallel file system for clustefcommodity computers. The
architecture is based on the classical parallel file systemeatin which the files are
declustered over several I/O nodes managed by I/O serveesapplications run on
compute nodes and access the file system through a POSIXrliggietary interface
or a classical UNIX interface after mounting the file systéach individual process
may declare afilgiew, i.e. alogical contiguousvindow mapped onto a non-contiguous
file region. After declaration, each view can be accesseddikegular file. Clusterfile
performs efficient non-contiguous 1/O through a methodechlliew I/O, described in
detail in [16].

Clusterfile integrates two well-known collective 1/O tedures, disk-directed [18]
and two-phase 1/0O [17], into a common design [19]. The ctilecbuffers are stored
into a global cache, managed in cooperation by several cadreagers running a
version of the decentralized hash-distributed cooperataching algorithm presented
in [29].

5 Goals

The parallel I/O scheduling presented in this paper areemphted inside a real par-
allel file system. The parallel file system consists of foyety of components: several
parallel acting clients, several I/O servers, several eashnagers, one metadata man-
ager. The interaction between these components even irativedy small cluster is

highly complex. Experience with the xFS file system [28] hasen that complex pro-
tocols may make the development of a parallel system vefigdlif. In fact, the initial
proposal of xFS was never fully implemented in part due toetkgonential explosion
of protocol complexity, which made bug detection very avadling even with formal
verification tools. Consequently, when adding adding alfeitZO scheduling strategy
to an existing complex system we have in msgihplicity.

The scheduling strategy should have a small overhead. Ohantk this overhead is
proportional with the number of messages exchanged fongekischeduling decision.
Even though the latency of the network is low, the commurocatay cause side-
effects like context switches or evictions affecting datzality. On the other hand, data
replication would perform poor for file writing. We have cleosnot to replicate the data
inside Clusterfile. Eventual replication schemes couldiy@émented on top of the file
system.

Some scheduling strategies presented in the related wotlosere centralized.
However, gathering the scheduling information at a cepioait may be difficult. First,
this involves communication that adds additional competd the existing distributed
protocols. Second, the additional communication for gatigethe requests from all
nodes and distributing the decision makes the solutiorlycastl non-scalable. There-
fore, the scheduling I/O strategies we chose are decergtdali

6 Parallel scheduling I/O heuristics

For all parallel scheduling heuristics, we assume thatcati@in point in timey,, com-
pute nodes simultaneously issue large data requests fgr I/O servers. The decision
of the order of data service is taken by the compute node fdaimgrand by the I/O
for reading in a similar way. For this reason we describe baig the write scheduling
strategy. For writing, large requests are split by each eadmpode into smaller requests
of sizeb.

In the first scheduling strategdfytst-IOS(1/O server), each compute node sends the
data to the 1/0 nodes in the order of file offsets. This is a r@étapproach, but may
pose the potential risk that all the compute nodes send ttaetddhe same I/O node
at the same instant. However, the load balance problem mapreensated by high
data locality in the case of non-contiguous interleaveesscas will be shown in the
evaluation section.

Inthe second write scheduling strateg@ndom-10Seach compute node first builds
a list of requests targeted to each 1/0 node. Then the conmmate chooses randomly
the 1/O server to which the data will be send until all the datsent.

The third scheduling strategyash-10Sis the one employed for the collective I/O
operations of Clusterfile [19]. Conforming to the theoratiproblem definition, for
which each compute node can perform exactly one transfaryagi@en time, at time
stept;,j = 0, 1, ..., the compute nodéesends a block to the 1/0 serv@r+ j) modulo
n1os-

Figure 1 shows an example, in whigl) = 2 compute nodes simultaneously issue
4 requests fon;ps = 2 /O servers. For the first-I0OS method, CNO decides to send
the request to the 10S0 first, and then to 10S1, and a scheélidagth 3 is produced

(“Schedule 17). On the other hand, hash I/O produces a sédedllength 2 (“Schedule
2"), as the I/O servers may run in parallel. Random 10S maypce any possible
schedule, depending on the generated random numbers.

Notice that, for all strategies, there is no central poirdetision, each process acts
independently.

7 Evaluation

We performed our experiments on a cluster of 16 dual procé&&satium 111 800MHz,
having 256 KBytes L2 cache and 1024 MB RAM, interconnected/yyinet LANai
9 cards at 133 MHz, capable of sustaining a throughput of 2s@Bgach direction.
The machines are equipped with IDE disks and were runnindgJXMernels version
2.6.13 with theext2local file system. We used TCP/IP on top of the 2.0.24 versidimeo
GM [31] communication library. The ttcp benchmark delivéteeTCP/IP node-to-node
throughput of 120 MB/sec.

The 1/0O scheduling heuristics are all implemented insi@eGlusterfile parallel file
system.

In the following two subsections, we present the resultsfordifferent workloads:
a synthetic parallel benchmark accessing contiguousheafid BTIO [32], a NASA
parallel benchmark, in which several processes write roriiguously to a file and then
read back the result.

7.1 Synthetic benchmark

| ——HASH —%—RANDOM —+ FIRST |
2 600 -
=
S 550 -
£79 s00 /\‘\ : /\ /
=g TN Y
= 8 450
z 5
o S 400 -
® =
> 350 - -
g 300 T T T T T T T T T T T 1
< < o) © o < o) © o~ < © © N
— (32} [{e} N n — N < (@] ()]
— N Te) o o o —
— N < [ee]
Schedule block size (KBytes)

Fig. 2. Synthetic benchmark file write throughput.

‘—O—HASH ——RANDOM FIRST

900
800 - /‘——'\

700 -

600 ~ A —t————
500

100 | ¥ — —
300

200 A .——’.k_—.___.___.___I~—_|r//4r/'
100

< oo} © A <t [oe] © N
- ™ © N Te] —
— N [Te)

Aggregate read throughput
(MBytes/sec)

1024
2048
4096
8192

Schedule block size (Kbytes)

Fig. 3. Synthetic benchmark file read throughput.

We have written a synthetic benchmark in Message Passiadgdoe [30], in which
all processes write and read in parallel different regidrik@same file. The writes and
reads are performed contiguously, as we first want to inyatgithe effect of parallel
I/0O heuristics on the performance, unaffected from thegyasicatter operations that are
necessary for non-contiguous I/O.

Clusterfile uses 8 I/O server running on 8 1/0O nodes. The fitlblsize is 64
KBytes. In the benchmark each of the 8 compute nodes writddBytes, resulting
in a total of 256 MBytes. Each measurement was repeated 5 time the mean value
is reported.

Figures 2 and 3 show the aggregate throughput in MBytesiskalatained employ-
ing the three parallel I/O scheduling heuristics for wigtiand reading, respectively.
The x-axis values represent the length of schedule bidels introduced in the previ-
ous section).

First of all, note that for diverse parameters the perforceanrf the same application
may vary by as much as 86% for writing and 804% for readingwrding, the highest
value is obtained for hash-10S for= 64 K Bytes (573 MBytes/second) and the lowest
for first-10S forb = 4096 K Bytes (308 MBytes/second). For reading, the highest value
is obtained for hash-10S fdr = 32K Bytes (817 MBytes/second) and the lowest for
first-10S forb = 4K Bytes (90 MBytes/second).

As expected, for first-lOS strategy, the aggregate writeufhput decreased with
schedule block granularity. The reason is that all the I/@exs try to send the data in
the same order to all the 1/O servers, which creates cooteatil/O servers. The con-
tention prevents the compute nodes from advancing and ginglthe other available
I/O servers.

We have expected that the random-10S write performancétsdmisomewhat in
the middle between the results of hash-10S and first-IOSpr&imgly, the random
I0S heuristic outperformed first-IOS only for the smallesifand largest two values.

We believe that the reason lies in the fact that first-IOS ggtes a critical bottleneck
only when accessing the first I/O server. The first computeertbdt “escapes” this
bottleneck continues sending the data to the second I/@sand so on, generating a
pipeline behavior. On the other hand, it appears that thaorauty generated bottlenecks
cause a higher overhead, as they can appear non-detercaiihyshroughout the whole
run of the application.

For large schedule block sizes, hash-10S clearly outpexgdhne other two methods.
For this heuristic each compute node starts by contactinffexeht 1/0 server which
provides a good initial load balance, which is then presgtheoughout the whole run
by a cyclic access to the I/O servers.

The aggregate read throughput was similar for hash-10S estd®S. This is due
to the fact that in the present Clusterfile implementatiot@rserver that receives the
first request starts serving it. It appears that the init@keptial bottleneck can not be
overcome by the hash-10S. This is unlike the write case, e/ttez performance does
not degrade with the the size of the schedule block.

The first-IOS and hash-I0OS managed to exploit 85% of the #imad point-to-point
bandwidth of 8x120MBytes/second (as measured by the ttopHmeark) for reading
with b = 32K Bytes andb = 64K Bytes. A further performance analysis is necessary
in order to try to improve the write aggregate throughput.

7.2 BTIO benchmark

| ——HASH —— RANDOM FIRST

0.8
0.75

0.7 -~

0.65 - v\

0.55 -
0.5 T T T T T T T T T T T

File write time (seconds)

2048
4096
8192

Schedule block size (KBytes)

Fig. 4. BTIO file write times.

NASA's BTIO benchmark [32] solves the Block-Tridiagonall(Bproblem, which
employs a complex domain decompoasition across a squarearwhbompute nodes.
Each compute node is responsible for multiple Cartesiasedslof the entire data set.

——HASH —&— RANDOM FIRST

0.6 - ~

File read time (seconds)
o
[e0]

0.4 T I T T
< [e¢] (] A < [e¢] (o] N < [o0] [{e] N
— [92] (] N Lo — N < (2] (2]
— N Lo o o o —
— N < [e¢]

Schedule block size (KBytes)

Fig.5.BTIO file read times.

The execution alternates computation and I/O phasesallgjtall compute nodes col-
lectively open a file and declare views on the relevant filéoregy After each five com-
puting steps the compute nodes write the solution to a fileutiin a collective opera-
tion. There are three sizes of the data sets: A (419.43 MByB£1697.93 MBytes)
and C (6802.44 MBytes). For these classes the benchmadkper200 compute steps
and 40 /O steps. We are interested only in the results fonglesil/O phase writing
10.5 MBytes (A), 42.2 MBytes (B) and 170 MBytes (C). The plddl/O scheduling
policies are relevant for large amounts of data, therefees,eport in this paper the 1/0
access times of the C class data set. The access patternaggishested-strided with
a nesting depth of 2 with an access granularity of 3240 byweseport the results for 9
compute nodes and 9 I/O nodes in Figures 4 and 5 for writingeading, respectively.

At the beginning of the BTIO benchmark, each process operths arfd declares a
view on the file regions of interests. The individual file @ of the processes corre-
sponding to the views do not overlap. Later, during each H@sg, each process writes
to the file through the view I/O method of Clusterfile [16]. Barocess uses the view
in order to contiguously send the data from each compute twoithe I/O nodes. At I/0
node, the data is scattered into the file blocks, kept in ctille buffers. The reverse
process takes place for reading. In a previous paper we W&yeye have shown that
the combined view I/O and collective I/O method of Clustersiignificantly outperform
two-phase 1/0 method of ROMIO [14], the most popular MPI-lpiementation. In
the paper cited above the parallel scheduling strategy weg.fi

However, Figures 4 and 5 show that, depending on the paliasicheduling strat-
egy employed, the time to write a file in BTIO may vary with asahwas 53% for
writing (the ratio of 0.78 seconds for first-IOS with= 4K Bytes to 0.51 seconds
for first-IOS withb = 8 M Bytes) and 173% for reading (the ratio of 1.15 seconds for
random-10S withh = 4K Bytes to 0.42 seconds of hash-10S with= 8 M Bytes).
As it can be noticed the performance span is not as large agicatse of the contigu-

ous access. This is mainly due to the fact that the non-contig access generates a
relatively constant overhead for scattering or gathetiregdata at the compute and 1/0
nodes.

8 Conclusions and current work

This paper presents and contrasts three parallel I/O sthgdeuristics implemented
in Clusterfile parallel file system. The performance reshtaw that the performance of
parallel file access strongly depends on the choice of thalpblfO scheduling strat-
egy, as a combination of the employed heuristic and the ¢matyof the schedule. An
improper scheduling strategy may result in inefficientzailion of the parallel network
paths, poor load balance and high contention at I/O nodes.

The classical parallel I/O optimizations like data strgpinon-contiguous I/O, col-
lective 1/0 should be seen as a complement to a parallel I@dding strategy. Our
experiments have demonstrated that various simple phi@iescheduling strategies
may produce a performance difference of as much as 53% favfiilimg and 173% for
file reading over the above mentioned optimizations.

The decentralized strategies presented in this paper sgltie@ workloads of well-
balanced parallel applications. For irregular appliaaicome form of centralization or
communication between the application library and I/O seswould be needed. Our
current work includes the design and analysis of stratdgietis type of applications.

Acknowledgments

The authors want to thank the anonymous reviewers for theusaful comments and
suggestions.

This work has been funded in part by the projeECNICAS DE OPTIMIZACION
Y FIABILIDAD PARA SISTEMAS DE ENTRADA/SALIDA ESCALABLES DEAL-
TAS PRESTACIONES (COMUNIDAD DE MADRID-UC3M)

References

1. DeBenedictis, E., Rosario, J.D.: nCUBE Parallel /O ®afe. In: Proceedings of 11th
International Phoenix Conference on Computers and Conwuation. (1992)

2. LoVerso, S., Isman, M., Nanopoulos, A., Nesheim, W., Iglil&., Wheeler, R.: sfs: A Parallel
File System for the CM-5. In: Proceedings of the Summer 199BNIX Conference. (1993)
291-305

3. Huber, J., Elford, C., Reed, D., Chien, A., Blumenthal, IPPFS: A High Performance
Portable File System. In: Proceedings of the 9th ACM Inteonal Conference on Super-
computing. (1995)

4. Corbett, P., Feitelson, D.: The Vesta Parallel File SystACM Transactions on Computer
Systems (1996)

5. Carretero, J., Serez, F., Miguel, P., Garca, F., AlonsoPlarFiSys: A Parallel File System
for MPP. ACM SIGOPS30(1996)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. Freedman, C., Burger, J., DeWitt, D.: SPIFFI-A Scalaldeafel File System for the Intel

Paragon. IEEE Transactions on Parallel and Distributete8ys (1996)

. Nieuwejaar, N., Kotz, D.: The Galley Parallel File Systdparallel Computing (1997)
. O’Keefe, M.: Shared file systems and fibre channel. In: lnRinoceedings of the Sixth

NASA Goddard Space Flight Center Conference on Mass St@ggieems and Technolo-
gies. (1998)

. Ligon, W., Ross, R.: An Overview of the Parallel Virtuald=8ystem. In: Proceedings of the

Extreme Linux Workshop. (1999)

Schmuck, F., Haskin, R.: GPFS: A Shared-Disk File Systerharge Computing Clusters.
In: Proceedings of FAST. (2002)

Garcia-Carballeira, F., Calderon, A., Carretero, &rnkndez, J., Perez, J.M.: The Design of
the Expand Parallel File System. The International Jowhgligh Performance Computing
Applications17 (2003) 21-38

Winslett, M., Seamons, K., Chen, Y., Cho, Y., Kuo, S.,@aofmniam, M.: The Panda li-
brary for parallel /0 of large multidimensional arrays: Rroceedings of Scalable Parallel
Libraries Conference lll. (1996)

Message Passing Interface Forum: MPI2: Extensionsedvtbssage Passing Interface.
(1997)

Thakur, R., Gropp, W., Lusk, E.: Data Sieving and Colecl/O in ROMIO. In: Proc. of
the 7th Symposium on the Frontiers of Massively Parallel fatation. (1999) 182—-189
Thakur, R., Gropp, W., Lusk, E.: On Implementing MPI-1@rfbly and with High Perfor-
mance. In: Proc. of the Sixth Workshop on I/O in Parallel anstiibuted Systems. (1999)
23-32

Isaila, F., Tichy, W.: View I/O:improving the performaaof non-contiguous I/O. In: Third
IEEE International Conference on Cluster Computing. (235343

del Rosario, J., Bordawekar, R., Choudhary, A.: Impdgvarallel I/O via a two-phase run-
time access strategy. In: Proc. of IPPS Workshop on Inptpi@un Parallel Computer
Systems. (1993)

Kotz, D.: Disk-directed 1/O for MIMD Multiprocessors.n:l Proc. of the First USENIX
Symp. on Operating Systems Design and Implementation4{§199

Isaila, F., Malpohl, G., Olaru, V., Szeder, G., Tichy; Whtegrating Collective I/O and Co-
operative Caching into the “Clusterfile” Parallel File Symst In: Proceedings of ACM Inter-
national Conference on Supercomputing (ICS), ACM Pres84p815-324

Isaila, F., Tichy, W.: Clusterfile: A flexible physicaytaut parallel file system. Concurrency
and Computation: Practice and Experied&g2003) 653—679

Jain, R., Somalwar, K., Werth, J., Browne, J.C.: Heigsstor scheduling 1/O operations.
IEEE Transactions on Parallel and Distributed Syst8ifi997) 310-320

Chen, F., Majumdar, S.: Performance of parallel I/O dualieg strategies on a network of
workstations. In: Proceedings of ICPADS 2001. (2001) 154-1

Abawajy, J.H.: Performance Analysis of Parallel I/O &tiding Approaches on Cluster
Computing Systems. In: CCGRID '03: Proceedings of the 3gtrirational Symposium on
Cluster Computing and the Grid, Washington, DC, USA, IEEEn@ater Society (2003)
724

Durand, D., Jain, R., Tseytlin, D.: Parallel /0O schéuylsing randomized, distributed edge
coloring algorithms. J. Parallel Distrib. Comp68 (2003) 611-618

Lumb, C.R., Golding, R.A., Ganger, G.R.: D-SPTF: dedized request distribution in
brick-based storage systems. In: ASPLOS. (2004) 37-47

Pai, V., Aron, M., Banga, G., Svendsen, M., Druschel ZRaenepoel, W., Nahum, E.:
Locality-Aware Request Distribution in Cluster-based Watk Servers. In: Proceedings of
the ACM Eighth International Conference on Architecturapfort for Programming Lan-
guages and Operating Systems (ASPLOS-VIII) . (1998)

27.

28.

29.

30.

31.

32.

Lebre, A., Denneulin, Y., Van, T.T.: Controlling and &dualing Parallel I/O in Multi-
application Environments. Technical report, INRIA (2005)

Wang, R.Y., Anderson, T.E., Dahlin, M.D.: Experiencéhva distributed file system imple-
mentation with adaptive. Technical report (1998)

Dahlin, M., Yang, R., Anderson, T., Patterson, D.: Caafiee Caching: Using Remote
Client Memory to Improve File System Performance. In: ThestF8ymp. on Operating
Systems Design and Implementation. (1994)

Message Passing Interface Forum: MPI: A Message-Rplsgarface Standard. (1995)
Myricom. GM: the low-level message-passing system foryrikt networks:
http://www.myri.com/. (2000)

Wong, P., der Wijngaart, R.: NAS Parallel Benchmarks\¥&®sion 2.4. Technical Report
NAS-03-002, NASA Ames Research Center, Moffet Field, CAOZ0

