
A Particle Gradient Evolutionary Algorithm Based on 
Statistical Mechanics and Convergence Analysis 

Kangshun Li1,2,3, Wei Li1,2, Zhangxin Chen4, and  Zhijian Wu3 

1 School of Information Engineering, Jiangxi University of Science and Technology , Ganzhou 
341000, China 

{Kangshun Li, lks@public1.gz.jx.cn 
2 Provincial Key Lab of Intelligent Computation and Network Measurement-Control Tech-

nology, Jiangxi University of Science and Technology, Ganzhou 341000, China 
3 State Key Lab of Software Engineering, Wuhan University, Wuhan 430072, China 

4 Center for Scientific Computation and Department of Mathematics, Southern Methodist 
University, Dallas, TX 75275-0156, USA 

 

Abstract. In this paper a particle gradient evolutionary algorithm is presented 
for solving complex single-objective optimization problems based on statistical 
mechanics theory, the principle of gradient descending, and the law of evolving 
chance ascending of particles. Numerical experiments show that we can easily 
solve complex single-objective optimiz ation problems that are difficult to solve 
by using traditional evolutionary  algorithms and avoid the premature phenome-
non of these problems. In addition, a convergence analysis of the algo rithm indi-
cates that it can quickly converge to optimal solutions of the optimiz ation prob-
lems. Hence this algorithm is more reliable and stable than traditional evolution-
ary algorithms. 

1   Introduction 

Evolutionary algorithms (EAs) are searching methods that take their inspiration from 
natural selection and survival of the fittest in the biological world [1,2]. EAs differ from 
traditional optimization techniques in that they involve a search from a “population” of 
solutions, not from a single point. Each iteration of an EA involves a competitive se-
lection that weeds out poor solutions. The solutions with high “fitness” are “recom-
bined” with other solutions by crossing parts of a solution with another. Solutions are 
also “mutated” by making a small change to a single element of the solutions. Recom-
bination and mutation are used to generate new solutions that are biased toward re-
gions of the space for which good solutions have already been seen. However, there 
are two main problems puzzling researches in the literature of EC (evolutionary compu-
tation) research. The first is the premature, which is one of the basic problems in EC 
research, and the second is the lack of a proper stopping criterion in problem solution. 



Previous evolutionary algorithms (we call them traditional evolutionary algorithms) are 
difficult to avoid the premature phenomenon, and fall into local optimal solutions; the 
reason is that the traditional evolutionary algorithms cannot take all the individuals of 
population to participate in crossing and mutating all the time.  

In this paper a particle gradient evolutionary algorithm for solving complex single-
objective optimization problems (SPGEA) is presented to overcome the shortcomings 
of the traditional evolutionary algorithms mentioned above. SPGEA adopts the method 
of solving the gradient of an optimization problem to construct the fitness function of 
the problem, which simulates the principle of energy minimizing of particles in statisti-
cal mechanics, and designs  an evolving chance function of individuals as the amount 
of individual crossing, which simulates the law of entropy increasing of particles in 
statistical mechanics. Based on this construction method, the algorithm guarantees 
that all the particles have a chance to cross and evolve all the time and produces the 
global optimization solution of a proble m. 

This paper is organized as follows: In Section 2, theoretical foundations of statis-
tical mechanics  are discussed. The principle of gradient descending and the law of 
evolving chance ascending in a particle system are then analyzed theoretically in Sec-
tion 3. A detailed description of a SPGEA flow is designed in Section 4. In Section 5, 
we perform experiments to test SPGEA by solving three complex optimization problems. 
The convergence of SPGEA is studied in Section 6. Finally, we draw some conclusions 
in Section 7. 

2  Relevant Theories of Statistical Mechanics 

Statistical mechanics  [3,4] is to apply a statistical analysis method of applied mathe-
matics  to study the average behavior and statistical rules of a number of particles.  It is 
an important branch of theoretical physics. The non-equilibrium statistical mechanics 
is to study more complex problems. Not until in the mid-20th century has the study of 
statistical mechanics achieved a rapid development. For a macro physical system be-
ing composed of a  number of particles, the probability of the system that keeps a more 
disordered state exceeds the probability of the system that keeps a  more ordered state. 
A closed physical system always trends to the disordered state from the ordered state. 
In thermodynamics, this is the corresponding law of entropy ascending. Therefore, the 
free energy theory and entropy theory of statistical mechanics are very important in 
the course of discussing the equilibrium and non-equilibrium particle system below. 

2.1   Law of Entropy Ascending  

Assume that a closed system is composed of two open subsystems that may ex-
change energy and particles so that the entropy of the system increases, i.e ., 

21 SSS += , where 1S  and 2S denote the entropies of the first and second systems, 

respectively.     Furthermore, assume that the relationship between the micro-state 



number of the micro-canonical ensemble and the entropy function is )(∆Ω= fS , and 

the two subsystems are independent of each other. As a result, the micro -state number 
of an isolated system is 21∆Ω∆Ω=∆Ω . Thus )( 2121 ∆Ω∆Ω=+ fSS  and 

∆Ω= lnBkS , where 
Bk  is called the Boltzmann constant. According to the entropy 

equilibrium equation and Boltzman H-theorem, we see that the entropy function is a 

monotonically increasing function of time in a closed system; i.e., 0
)(

≥
dt

tdS
. There-

fore, the entropy is irreversible in the thermo-insulated system, which is the law of 
entropy increasing. 

2.2   Principle of Energy Descending  

The concept of “free energy” is a key concept to characterize physically relevant 
states in statistical mechanics. Given an equilibrium system of statistical mechanics 
with energy levels 

iE  of the microstates i , the Helmholtz free energy is defined as 

)(log1)( β
β

β ZF −= , 

where  

∑ −=
i

iEeZ ββ )(  

is the partition function and β  is the inverse temperature. Apparently, the Helmholtz 

free energy is different from the internal energy U  given by 

iEZU =
∂
∂

−= )(log β
β

. 

The difference is given by the entropy times the temperature: 
TSUF −= . 

This equation can also be regarded as descending a Legendre transformation 
from U  to F . Equilibrium states minimize the free energy; in this sense F  is more 
relevant than U . The minimum of F  can be achieved in two competing ways: Either 
by making the internal energy U  small or by making the entropy S  large. The basic 
principle underlying statistical mechanics, the maximum entropy principle, can also be 
formulated as a “principle of minimum free energy ”. 

Through the above analysis of a particle system, we know that the equilibrium 
state of the particle system depends on the result of the competition between free 
energy descending of this particle system and entropy ascending. 



3 Principle of Gradient Descending and Law of Evolving Chance 
Ascending 

We apply the principle of free energy descending and the law of entropy ascending in 
statistical mechanics to the SPGEA design. In the design of SPGEA , we consider indi-
viduals of a population as particles in the particle phase space, and the population of 
each generation as a system of particles. Our purpose is to simulate the particle system 
discipline in the physics system to cross and mutate individuals of the population, 
which tries to change its state from non-equilibrium to equilibrium, and as a result, 
solves  for all the optimal solutions, and avoid problems’ premature.  

Because the establishment of a fitness function and an iterative stopping criterion 
of SPGEA is based on the principle of gradient descending and the law of evolving 
chance ascending in a physical system, which simulates the law of entropy ascending 
and the principle of energy descending,  SPGEA is guaranteed to drive all the part icles 
in the phase space to participate in crossing and mutating, and to speed up its con-
vergence; in the meantime it improves its computing performance so that the probabil-
ity of the phase space equals and the equilibrium state in the phase space is achieved. 

 
 

4 Algorithm Flow of SPGEA 

4.1   Description of Optimization Problem 

We consider the optimization problem : 
)(min Xf

DX∈
， qkXgSXD k ,,2,1,0)(;{ L=≤∈= , 

where nRS ⊂  is the searching space, usually a hypercube of N  dimensions, namely, 
niuxl iii ,,2,1, L=≤≤ , RSf →:  the objective function, n  the dimension of the 

decision space,  and D  the set of feasible points . 

4.2   Variation of the Objective Function 

We assume that the population size is N , and the individuals Nxxx ,,, 21 L  as N  
particles in a physical system. Then we add the number t  of a continuous evolving 
iteration into the objective function of the optimization problem, and get the new dy-
namical single-objective function of the optimization problem ),(min

0,
Xtf

tDX >∈
 related 

to the iteration time. We say that ),(min
0,

Xtf
tDX >∈

 is a SPGEA objective function. 



4.3   Algorithm Process of SPGEA 

According to the principle of free energy descending and the law of entropy ascend-
ing of the physical system, we give the definitions of a gradient descending equation 
and a evolving chance ascending equation of SPGEA as follows : 

Definition 1 (SPGEA gradient descending equation): We call the difference equa-
tion  ),1(),(),( iii xxx −∇−∇=∇ tftftp  as a SPGEA gradient descending equation 

(SPGEA free energy) of thi  particle 
ix  at time t, where )(xf  is a function on D , 

.3,2,1, LL=∈ iDix  

Definition 2 (SPGEA evolving chance ascending ):  We call the evolving chance 
counting function ),( ixtα  of thi  particle 

ix  at time t the SPGEA evolving chance 
ascending (SPGEA entropy), whose value is determined as follows: When particles ix  

participate in the evolving operation in time t ,  
1),1(),( +−= ii xx tatα , 

Otherwise, 
),1(),( ii xx −= tatα ， NiD LL3,2,1, =∈ix 。 

Definition 3 (SPGEA fitness function): We define the weighted function  

)1),(ln(),(),( 2
0

1 ++∇= ∑
=

iii xxx tkptselect
t

k
p

αλλ  as the SPGEA fitness function, 

where ]1,0[, 21 ∈λλ , 121 =+ λλ , and 
21, λλ  are called SPGEA Boltzmann constants, 

whose values depend on the significance of ∑
=

∇
t

k
p

kp
0

),( ix and )1),(ln( +ixtα  on 

the right-hand side of the fitness function equation, respectively. That is, the more 
significant it is, the larger the corresponding SPGEA Boltzmann constant is. This en-
sures the whole physical system to reach the equilibrium state from the non-
equilibrium state, and hence to achieve the equal probability in the phase space ;  in 
the meantime, all the individuals in the population have a chance to take part in cross-
ing and mutating at all the iteration times so that global optimal solutions can be 
achieved. In the SPGEA fitness function we can also see that the reason why SPGEA 
can avoid the premature phenomenon is  that the SPGEA fitness function contain s the 
SPGEA gradient descending term (SPGEA free energy) and the SPGEA evolving 
chance ascending term (SPGEA e ntropy). 

Definition 4 (SPGEA stopping criterion):  We define a SPGEA stopping criterion 
by  

 ε<∇∑
=

ttp
N

i
p

/)),((
1

ix  or ∑
=

>+
N

i
Tt

1
)1),(ln( ixα , 

where ε  is a given small positive constant. 
The first SPGEA stopping criterion is constructed by SPGEA free energy, and the 

second SPGEA stopping criterion is built by SPGEA entropy. We can easily see that 
the purpose of SPGEA is to minimize SPGEA free energy and maximize SPGEA en-
tropy. These two terms are like the Helmholtz free energy and the entropy of particles 



in the physical system, and always compete with each other in the course of chang-
ing from non-equilibrium to equilibrium spontaneously under the same temperature.  

According to the above four basic definitions of SPGEA we design the detailed 
algorithm of  SPGEA as follows:  
Step 1: Initialize particles in the physical system to generate an initial population with 

N individuals { }N21 x,,x,x L=ΓN  randomly, and set 0:=t .  

Step 2: Calculate all the function values of the particles in NΓ  and set 0),( =∇ ixtp ,  

0),( =ixtα ,  NΓ∈ix ; then calculate the fitness values of fitness functions 

),( ixtselect , which are in the order from small to large.  
Step 3: Save all the particles and their function values in the system NΓ .  

Step 4: Begin to iterate: 1: += tt . 
Step 5: Select n particles ix′ , ni ,,2,1 L=  on the forefront of ),1( ix−tselect ; if all the 

values of ),1( ix−tselect  are the same, select n particles randomly. 

Step 6: Implement evolving operations on the n particles of the physical system, and 
generate n  random numbers nii ,,2,1],1,1[ L=−∈α  that satisfy 

∑
=

≤≤−
n

i
i

1
5.15.0 α  and Xxx ∈′= ∑

=

n

i
ii

1

ˆ α ; if the function value at the point x̂  is 

better than the worst function value at the point 
ix~ , then we replace the indi-

vidual 
ix~  by x̂ ; otherwise re peat this evolving operation. 

Step 7: Save the best particles, and their function values and fitness values in the 
system NΓ . 

Step 8: Renew all the values of ),( ixtselect  and re-sort in an ascending order.  

Step 9: Calculate the stopping criterion; if ε<∇∑
=

ttp
N

i
p

/)),((
1

ix  

or ∑
=

>+
N

i
Tt

1
)1),(ln( ixα , stop iteration; otherwise, go to step 4. 

In the above two  SPGEA stopping criteria we know that the individuals which are 
not selected in the previous generation have more chance to be selected to take part in 
the evolving operation in the next generation because the fitness values added up by 
non-selected individuals in the previous generation are less than other individuals’ 
fitness values calculated by the selected individuals in the previous generation. In this 
way, it is guaranteed that all the individuals in the population have a chance to take 
part in crossing and mutating all the time; this is one of the main fe atures of SPGEA. 

5   Data Experiments 

In this  section, three typical optimization problems that are difficult to solve us ing the 
traditional EA  [5-8] will be experimented to test the performance of SPGEA. In the first 
experiment, we use SPGEA to solve the minimization problem of the function 

7.0)4cos(4.0)3cos(3.0),(min 21
2
2

2
121 +−−+=

∈
xxxxxxf

Sx
ππ , 



where 5050 1 ≤≤− x  and 5050 2 ≤≤− x . From Fig.1 we can see that this optimization 

problem has almost an infinite number of local optimal points in the searching space, 
but there is only one global minimum point at 01 =x  and 02 =x  that reaches the mini-

mum value 0* =f  of the function. Only the local optimal points can be solved by 

using the traditional evolutionary algorithm in general.  
In this experiment, we set the population size 80=N . The weighted coefficient 

11
21 10,2.0,8.0 −=== ελλ , and the maximal value of the evolving chance function 

810=T , and then select four particles (individuals) that are located in front of the 
fitness values of the function ),( itselect x  in the order from small to large to cross and 

mutate. According to the above configured parameters we run the SPGEA program 10 
times continuously, in every iteration time we can get the optimal point that is given in 
Table 1. The convergent speed by using SPGEA is faster and the results are more 
accurate than the traditional evolutionary algorithm in Ref. [8]. 
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Fig.1 the landscape of experiment 1 

   Table1: The results of running SPGEA program 10 times in experiment 1 
Min value f  

1x  
2x  step 

0 1.53257e-010 -1.92252e-009 796 
0 2.20815e-010 9.12350e-012 780 
0 -1.13563e-009 -4.89725e-010 696 
0 -1.92390e-009 1.30710e-010 718 
0 3.66944e-010 6.67918e-010 708 
0 -1.63819e-010 2.56498e-010 670 
0 -2.59710e-010 1.85425e-011 831 
0 1.02611e-009 -3.04113e-010 747 
0 -5.06763e-011 5.91274e-010 745 
0 4.64298e-010 2.06257e-010 812 

In the second experiment, we use SPGEA  to tes t a non-convex function as fo llows: 



 2
1

2
2

2
121 )1()(100),(min xxxxxf

S
−+−=

∈x
 

where 048.2048.2,048.2048.2 21 ≤≤−≤≤− xx ; this function is non-convex (see 

Fig.2). In running SPGEA, we set the population size 60=N , 
20

21 10,2.0,8.0 −=== ελλ , and the maximal value of the evolving chance function 
610=T ; the crossing and mutating method is the same as  in the first experiment. Run-

ning the SPGEA program 10 times continuously , we can get the optimal point every 
time which is given in Table 2. 
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Fig.2 the landscape of experiment 2 

Table2:   The results of running SPGEA program 10 times in experiment 2 
Min value f  

1x  
2x  step  

3.11543E-244 1.00000E+00 1.00000E+00 9976  
1.06561E-241 1.00000E+00 1.00000E+00 9999  
9.01807E-241 1.00000E+00 1.00000E+00 10000  
7.33725E-243 1.00000E+00 1.00000E+00 9991  
8.85133E-243 1.00000E+00 1.00000E+00 9984  
1.75654E-243 1.00000E+00 1.00000E+00 9989  
4.45935E-242 1.00000E+00 1.00000E+00 9999  
5.99649E-242 1.00000E+00 1.00000E+00 9998  

In the third experiment, a complex single-objective minimization problem (Ackley 
function) is tested by using SPGEA,  and the optimization problem is as follows: 

ex
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xxf
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21 π

x
 

where nixi L,2,1,768.32768.32 =≤≤− , 2=n . It is obvious that the optimal solu-

tion 0* =f  is reached at the point 01 =x  and 02 =x . From Fig.3 we can also see that 



this function is non-convex and includes multi-local-optimal-points . So it is difficult to 
solve by using the traditional evolutionary algorithms . In fact, it is very easy to fall 
into the local solutions, i.e., the premature phenomenon o f the algorithms. 

We set the parameters of SPGEA: population size 80=N . 
20

21 10,2.0,8.0 −=== ελλ , and the maximal value of the evolving chance function 
610=T ; the crossing and mutating method is same as in the first experiment. Running 

the SPGEA program 10 times continuously , in each iteration time we also can easily get 
the optimal point that is given in Table 3. 
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Fig.3 the landscape of experiment 3 

Table3:   The results of running SPGEA program 10 times in experiment 3 
Min value f  

1x  
2x  step 

1.54096e-009 1.23727e-016 2.74191e-016 913 
1.54096e-009 -1.03297e-016 -7.22339e-017 975 
1.54096e-009 -3.43706e-017 -8.11170e-017 855 
1.54096e-009 2.35071e-016 1.00479e-016 777 
1.54096e-009 2.75004e-017 2.20330e-017 871 
1.54096e-009 -2.01528e-016 1.24738e-016 780 
1.54096e-009 1.66060e-017 1.26505e-017 893 
1.54096e-009 -7.42641e-019 7.21961e-019 822 
1.54096e-009 -4.29195e-016 -1.45410e-016 938 
1.54096e-009 -4.87201e-017 -1.01773e-017 902 

Furthermore, we have also done many experiments to solve some well-konwn  
complex single-objective optimization problems like the Six Hump Camel Back Function, 



Axis-Parallel Hyperellipsoid  Function, and Griewangk’s Function by using SPGEA, 
and we have obtained very accurate optimal solutions, which are difficult to solve by 
using the traditional evolutionary algorithms.  

6   Convergent Analysis of SPGEA 

The convergence, t ime efficiency, and precision of optimal solutions are very impor-
tant factors when optimization problems are solved by using evolutionary algorithms  
[9-12], which provide a reliable indication to an efficient algorithm. In this section the 
convergence of SPGEA is studied to illustrate the advantages of SPGEA according to 
the theory of the Markov chain and other convergent theories related to EC [13-15]. 

Assume the optimization problem:  

}|)(min{ Sxxf ∈ ,               (1) 
where f  is a function in the decision space S  and 0)(, ≥∈∀ xx fS . S  can be 

either a finite set (e.g., composition optimization problems), or a set in the real space 
nR (e.g., continuous optimization problems). Then we get four definitions as follows : 

Definition 5: For the SPGEA optimization problem (1), suppose that random 
variable }},,,1,0{::min{ * LL nZfFZtT t ==∈= −−  represents the time the global 
optimal point is  found at the first time, if 1}{ =∞<TP  and independent of the initial 

population; then we say that the SPGEA algorithm can find the global optimal solu-
tions of optimization problems in probability 1 in the finite time [16].  

Definition 6: For a non-negative random variable sequence }{ nX , LL,,1,0=t , 

which is defined in the probability space  ),,( PAΩ . 

(1) If 0>∀ε  such that ∑
∞

=
>

0
)(

n
nXP ε  is convergent, then }{ nX  is called com-

pletely convergent to 0.  

(2) If 0>∀ε  such that ∑
∞

= ∞→
==

0
1}0)(lim:{

n
nn

XP ωω , then }{ nX  is called conver-

gent to 0 in the probability 1. 
(3) If 0>∀ε  such that 0})({lim =>

∞→
εωnn

XP , then }{ nX  is called convergent to 

0 in probability. 
In the above three convergent forms, the completely convergent is the strongest, 

which implies both the convergent in the probability 1 and the convergent in probabil-
ity, and the convergent in probability is the weakest [16]. 

Define *)( fFXdD ttt −== , where *f  is the optimal solution of the optimiza-

tion problem, and )( tt fF x=  is the best solution of the optimization problem in the 

t th generation, and then set the convergence  definition of SPGEA as follows: 
Definition 7: We call solving optimization problem (1) the completely conver-

gent (the convergent in the probability 1 or the convergent in  probability) to the global 
optimal points of the problem, if the non-negative random sequence )0:( ≥tDt

 pro-



duced by this optimization problem is completely convergent (convergent in the prob-
ability 1 or convergent in probability) to 0 [16]. 

Definition 8: We call solving optimization problem (1) which adopts the elite 
reservation strategy by using SPGEA the completely convergent (the convergent in 
the probability 1 or the convergent in probability) to the global optimal point *f , if the 

non-negative random sequence )0:( ≥tDt
 produced by this optimization problem is 

completely convergent (convergent in the probability 1 or convergent in probability) 
to 0 [16]. 

According to the above definitions, we get the next convergence theories of 
SPGEA . 

 Theorem 1: If the optimization problem (1) solved by using SPGEA satis fies the 
following conditions: 

(1) In every evolving iteration t , if xx ~≠  for all individuals x ))(( tP∈x  in the 

population )(tP  and S∈∀x~ , then through crossover and mutation operation once, 
the probability mutating x  to x~  is more than or equal to )( tp , where )(tp  is a con-

stant more than 0,  and the probability is  related to generation t . 

(2) 0))(1(
1

=−∏
∞

=t
tp . 

Then SPGEA can certainly find the global optimal solution of the optimization 
problem in probability in finite generation times, that is,  

1}{ =∞<TP , and it has nothing to do with the distribution of the iterating ini-

tial population. 
Proof: In the evolving process of tht generation, it needs to mutate to N  indi-

viduals of the population by using a mutation operator independently  from condition 
(1); we know that in tht generation of any evolving operation, through the mutation of 
the mutating operator, any individual in population )(tP  can mutate to any other 
individual in the search space S  on the lower boundary probability )(tp . Therefore, 

in the mutation process the probability which mutates any individual *arg f∉x  to one 

of the global optimal solutions is no less than )(tp , i.e. the probability which is the 
first found global optimal point is at least )0)(( >tp  in the evolving process of t th 

generation. So, after the t  generations, the probability )tp（  that no global optimal 

point found satisfies 

∏
=

−≤
t

i
tptp

1
))(1()（ ,  

namely, 0)(lim =
∞→

tp
t

, and then we get 

{}{ PTP ≥∞< find a global optimal point in t  generations } )(1 tp−= . 

Setting ∞→t  on both sides of the above equation, it reduce to 1}{ =∞<TP ; 
that is, SPGEA can find global optimal solutions of the optimization problem in the 
pro bability 1 in the finite evolving times, and obviously, from the proof process we can 



see that it has nothing to do with the selecting method of an initial population in this 
theorem’s proof. 

Theorem 2: If the optimization problem (1) solved by using SPGEA satisfies the 
following conditions: 

(1) In every evolving iteration t , if yx ≠  for all individuals x ))(( tP∈x  in the 

population )(tP  and S∈∀y , then by crossover and mutation operation once, the 

probability mutating x  to y  is more than or equal to )(tp , where )(tp  is a constant 

more than 0 and the probability is related to generation t . 

(2) 0))(1(
1

=−∏
∞

=t
tp . 

(3) Adopt the strategy of the elite reservation to evolve. 
Then, SPGEA certainly converges to the optimal solution of the optimization 

problem in probability, and it has nothing to do with the selecting method of an initial 
population. 

If SPGEA satisfies the following additional condition: 
(4)  There exists a constant 0>p  such that ptp ≥)(  for all generation t , then 

SPGEA is completely convergent. 
Proof: Assume  that the global optimal point of the optimization problem is first 

found in the tht generation, because SPGEA is evolved according to the strategy of 
elite reservation. This  guarantees the first found optimal solution individual to be 
maintained ever to the last generation in the evolving.  Hence we get 

∏
=

−=>=>−=>
t

i
ttt ipDPfFPfFP

1

** ))(1(}0{}0{}{ . 

Setting ∞→t , it is  
0}0{lim =>

∞→ tt
DP ; namely, SPGEA is convergent in  probability. 

If SPGEA satisfies condition (4), too, e.g., if we can find a constant 0>p  such 
that ptp ≥)(  for all t , then 

 
t

t

i

t

i
ttt

pp

ipDPfFPfFP

)1()1(
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1

1
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=

=  

Because the Taylor series ∑
∞

=
−

0
)1(

n

tp  is convergent, according to definitions  6 (1) and 

7, we conclude that )0:( ≥tDt
 is completely convergent to 0; accordingly, SPGEA is 

completely convergent to 0 as well. From all the proof process we can see that the 
convergence of SPGEA has nothing to do with the selection method of an initial popu-
lation. 



7   Conclusions  

Through the above theoretical and experimental analysis of SPGEA, we conclude that 
SPGEA has obviously more advantages than traditional EA s. Because SPGEA is 
based on statistical mechanics theory according to the principle of gradient descend-
ing and the law of evolving chance ascending of particles, which simulate the principle 
of energy minimizing and law of entropy increasing in the phase space of particles in 
statistical mechanics, it makes all the particles to have a chance to evolve, and drives 
all the particles to cross and mutate to reproduce new individuals of the next genera-
tion from the beginning to the end. Because of these reasons SPGEA can easily and 
quickly search for the global optimal solutions and avoid premature phenomenon of 
the algorithm. Meanwhile, convergent analysis o f SPGEA has proved that it is reliable, 
stable , and secure by using SPGEA to solve complex single -objective optimization 
problems .  
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