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Abstract. In this paper a particle gradient evolutionary algorithm is presented
for solving complex single-objective optimization problems based on statistical
mechanicstheory, the principle of gradient descending and the law of evolving
chance ascending of particles. Numerical experiments show that we can easily
solve complex single-objective optimiz ation problems that are difficult to solve
by using traditional evolutionary algorithms and avoid the premature phenome-
non of these problems. In addition, a convergence analysis of the algorithm indi-
cates that it can quickly converge to optimal solutions of the optimiz ation prob-
lems. Hence this algorithm is more reliable and stable than traditional evolution-
ary agorithms.

1 Introduction

Evolutionary algorithms (EAs) are searching methods that take their inspiration from
natural selection and survival of thefittest in the biological world [1,2]. EAs differ from
traditional optimization techniquesin that they involve a search from a“population” of
solutions, not from a single point. Each iteration of an EA involves a competitive se-
lection that weeds out poor solutions. The solutions with high “fitness” are “recom-
bined” with other solutions by crossing parts of a solution with another. Solutions are
also “mutated’ by making a small change to a single element of the solutions. Recom-
bination and mutation are used to generate new solutions that are biased toward re-
gions of the space for which good solutions have already been seen. However, there
are two main problems puzzling researches in the literature of EC (evolutionary conmpu-
tation) research. The first is the premature, which is one of the basic problems in EC
research, and the second isthelack of a proper stopping criterion in problem solution.



Previous evolutionary algorithms (we call them traditional evolutionary algorithns) are
difficult to avoidthe premature phenomenon, and fall into local optimal solutions; the
reason isthat the traditional evolutionary algorithms cannot take all the individuals of
population to participate in crossing and mutating all the time.

In this paper a particle gradient evolutionary algorithm for solving complex single-
objective optimization problems (SPGEA) is presented to overcome the shortcomings
of the traditional evolutionary algorithms mentioned above. SPGEA adopts the method
of solving the gradient of an optimization problem to construct the fitness function of
the problem, which simulates the principle of energy minimizing of particles in statisti-
cal mechanics, and designs an evolving chance function of individuals as the amount
of individual crossing, which simulates the law of entropy increasing of particles in
statistical mechanics. Based on this construction method, the algorithm guarantees
that all the particles havea chance to cross and evolve al the time and produces the
global optimization solution of aproblem.

This paper is organized as follows: In Section 2, theoretical foundations of statis-
tical mechanics are discussed. The principle of gradient descending and the law of
evolving chance ascending in a particle system are then analyzed theoretically in Sec-
tion 3. A detailed description of a SPGEA flow is designed in Section 4. In Section 5,
we perform experiments to test SPGEA by solving three complex optimization problems.
The convergence of SPGEA isstudiedin Section 6. Finally, we draw some conclusions
in Section 7.

2 Relevant Theories of Statistical M echanics

Statistical mechanics [34] isto apply a statistical analysis method of applied mathe-
matics to study the average behavior and statistical rules of a number of particles. It is
an important branch of theoretical physics. The non-equilibrium statistical mechanics
is tostudy more complex problens. Not until in the mid-20th century has the study of
statistical mechanics achieved a rapid development. For a macro physical system be-
ing conmposed of a number of particles, the probability of the system that keeps a more
disordered state exceeds the probability of the system that keeps a more ordered state.
A closed physical system always trends to the disordered state from the ordered state.
In thermodynamics, thisis the corresponding law of entropy ascending. Therefore, the
free energy theory and entropy theory of statistical mechanics are very important in
the course of discussing the equilibrium and non-equilibrium particle system below.

2.1 Law of Entropy Ascending

Assume that a closed system is composed of two open subsystems that may ex-
change energy and particles so that the entropy of the system increases, i.e.,
S=§ +S,, where S and S, denote the entropies of the first and second systems,

respectively. Furthermore, assume that the relationship between the micro-state



number of the micro-canonical ensemble and the entropy function is S= f (Dw), and
the two subsystems are independent of each other. As aresult, the micro-state number
of an isolated system is DW=DWDW, . Thus S +S, =f(DwWDW,) and
S=k,InDW, where k, is called the Boltzmann constant. According to the entropy
equilibrium equation and Boltzman H-theorem, we see that the entropy function is a

monotonically increasing function of time in a closed system; i.e., % 3 0. There-

fore, the entropy is irreversible in the thermo-insulated system, which is the law of
entropy increasing.

2.2 Principle of Energy Descending

The concept of “free energy” is a key concept to characterize physically relevant
states in statistical mechanics. Given an equilibrium system of statistical mechanics
with energy levels E, of the microstates i, the Helmholtz free energy is defined as

F(b) =- %IogZ(b) ,

where
Z(b)= é g"s

is the partition function and b is the inverse temperature. Apparently, the Helmholtz

free energy isdifferent from theinternal energy U given by
__ 0 _
U o logZ(b) =(E).

Thedifferenceisgiven by the entropy times the temperature:

F=U-TS.

This equation can also be regarded as descending a Legendre transformation
from U to F. Equilibrium states minimize the free energy; in this sense F ismore
relevant than U . Theminimum of F can be achieved in two competing ways: Either
by making the internal energy U small or by making the entropy S large. The basic
principle underlying statistical mechanics, the maximum entropy principle, can also be
formulated as a“principle of minimum free energy” .

Through the above analysis of a particle system, we know that the equilibrium
state of the particle system depends on the result of the competition between free
energy descending of this particle system and entropy ascending.



3 Principle of Gradient Descending and Law of Evolving Chance
Ascending

We apply the principle of free energy descending and the law of entropy ascending in
statistical mechanics tothe SPGEA design. In the design of SPGEA , we consider indi-
viduals of apopulation as particles in the particle phase space, and the population of
each generation as a system of particles. Our purposeisto simulate the particle system
discipline in the physics systemto cross and mutate individuals of the population,
which tries to change its state from nornequilibrium to equilibrium, and as a resullt,
solves for al the optimal solutions, and avoid problems’ premature.

Because the establishment of afitness function and an iterative stopping criterion
of SPGEA is based onthe principle of gradient descending and the law of evolving
chance ascending in a physical system, which simulates the law of entropy ascending
and the principle of energy descending, SPGEA is guaranteedto drive all the particles
in the phase space to participate in crossing and mutating, and to speed up its con-
vergence; in the meantime it improves its computing performance so that the probabil-
ity of the phase space equals and the equilibrium state in the phase space is achieved.

4  Algorithm Flow of SPGEA

4.1 Description of Optimization Problem

We consider the optimization problem :

rgip f(X) D={X1Sg/(X)£0k=12--,q,
where SI R" isthe searching space, usually a hypercube of N dimensions, namely,
lLEx £u,i=12--,n, f:S® R the objective function, n the dimension of the
decision space, and D the set of feasible points.

42 Variation of the Objective Function

We assume that the population size is N, and the individuals x,,X,, -+, Xy @ N
particlesin a physical system Then we add the number t of a continuous evolving

iteration into the objective function of the optimization problem, and get the new dy-
namical single-objective function of the optimization problem min f(t, X) related
X1 Dt>0

>

totheiteration time.We say that min f(t, X) isaSPGEA objective function.
XI Dt>0



4.3 Algorithm Process of SPGEA

According to the principle of free energy descending and the law of entropy ascend-
ing of the physical system, we give the definitions of a gradient descending equation
and aevolving chance ascending equation of SPGEA asfollows:

Definition 1 (SPGEA gradient descending equation): We call the difference equa-
tion Np(t,x;) =Nf (t,x;) - Nf(t- 1,x) as a SPGEA gradient descending equation
(SPGEA free energy) of ith particle x, a timet, where f(x) is afunction on D,
X; 1D, =123 .

Definition 2 (SPGEA evolving chance ascending): We cdl the evolving chance
counting function a (t,x;) of ith partice x, at timet the SPGEA evolving chance

ascending (SPGEA entropy), whose value is determined asfollows: When particles x;
participate in the evolving operation in timet ,
a(t,x;)=alt- ,x;)+1,
Otherwise,
a(t,x)=a(t-1x) x1D, =123 N
Definition 3 (SPGEA fitness function): We define the weighted function
select(t,x,)zl1§0||Np(k,x‘)||p+l ,In(@(t,x,)+1) as the SPGEA fitness function,

where | 1,1 [04], |,+I,=1, and | ,|, are caled SPGEA Boltzmann constants,

2
t
whose values depend on the significance of é_ |||§Ip(k,xi)|p and In(a (t,x,) +1) on
k=0

the right-hand side of the fitness function equation, respectively. That is, the more
significant it is, the larger the corresponding SPGEA Boltzmann constant is. This en-
sures the whole physical system to reach the equilibrium state from the non-
equilibrium state, and hence to achieve the equal probability in the phase space; in
the meantime, al theindividuals in the popul ation havea chance to take part in cross-
ing and mutating at al the iteration times so that global optimal solutions can be
achieved. In the SPGEA fitness function we can also see that the reason why SPGEA
can avoid the premature phenomenon is that the SPGEA fitness function contains the
SPGEA gradient descending term (SPGEA free energy) and the SPGEA evolving
chance ascending term (SPGEA entropy).

Definition 4 (SPGEA stopping criterion): We definea SPGEA stopping criterion
by

@& [Rip.x)) /t<eor & In@(tx)+)>T,

where e isagiven small positive constant.

Thefirst SPGEA stopping criterion is constructed by SPGEA free energy, and the
second SPGEA stopping criterion is built by SPGEA entropy. We can easily see that
the purpose of SPGEA isto minimize SPGEA free energy andmaximze SPGEA en-
tropy . T hese two terms are like the Helmholtz free energy and the entropy of particles



in the physical system and always compete with each other in the course of chang-

ing from non-equilibrium to equilibrium spontaneously under the same temperature.

According to the abovefour basic definitions of SPGEA we design the detailed
algorithm of SPGEA as follows:

Step 1: Initialize particles in thephysical systemto generate an initial population with
N individuals Gy = {x;,x,, - ,x,} randomly, and set t:= 0.

Step 2: Calculate all the function values of the particlesin G and set Np(t,x;) =0,
a(tx) =0, x; ) Gy : then calculate the fitness values of fitnessfunctions
select(t, x; ), which are in the order from small to large.

Step 3: Save all the particles and their function valuesin the system G .

Step 4: Begintoiterate: t =t +1.

Step 5: Select n particles x4, i =1,2,---,n on the forefront of selectt - 1,%;); if al the
values of seleci(t - 1, x;) arethe same, selectn particles randonly.

Step 6: Implement evolving operations on then particles of the physical system, and
generate n random numbersa, T [- 11],i =1,2,---,n that satisfy
- 05£ _é; a £15and X =4 a x¢l X ;if thefunction value at the point X is
better than the worst function value at the point  , then we replace the indi-
vidual x by X; otherwise repeat this evolving operation.

Step 7: Save the best particles, and their function values and fitness values in the
system G .

Step 8: Renew all the values of sdect (t,x; ) and re-sort in an ascending order.

Step 9: Calculate the stopping criterion; if (g INpt.x)] ) /it<e

org In(a(t,x;)+1) >T , stopiteration; otherwise, go to step 4.
i=1

In the above two SPGEA stopping criteriawe know that the individualswhich are
not selected in the previous generation have more chance to be selected to take part in
the evolving operation in the next generation because the fitness values added up by
non-selected individualsin the previous generation are less than other individuals’
fitness values cal culated by the selected individualsin the previous generation. In this
way, it isguaranteed that all theindividualsin the population have a chance to take
part in crossing and mutating al the time; thisis one of the main features of SPGEA .

5 Data Experiments

Inthis section, three typical optimization problems that are difficult to solve using the
traditional EA [5-8] will be experimented to test the performance of SPGEA. In the first
experiment, we use SPGEA to solve the minimization problem of the function

rrx}ig f(x,,Xx,)=x?+x2 - 0.3cos(3px,)- 0.4cos(4px,) +0.7,



where - 50 £ x, £50 and - 50 £ x, £50 . From Fig.1 we can see that this optimi zation

problem has amost an infinite number of local optimal points in the searching space,
but thereis only onegloba minimum point at x, =0 and x, =0 that reaches the mini-

mum value f° =0 of the function. Only the local optimal points can be solved by
using the traditional evolutionary algorithm in general.

In this experiment, we set the population size N =80. The weighted coefficient
I, =081l,=02e=10", and the maximd value of the evolving chance function

T =10°%, and then select four particles (individuals) that are located in front of the
fitness values of the function selec(t,x,) in the order from small to large to cross and

mutate. A ccording to the above configured parameters we run the SPGEA program 10
times continuously, in every iteration time we can get the optimal point that isgiven in
Table 1 The convergent speed by using SPGEA is faster and the results are more
accurate than the traditional evolutionary algorithmin Ref. [8].

Fig.1 the landscape of experiment 1
Tablel: The results of running SPGEA program 10 timesin experiment 1

Minvaue f X, X, step
0 1.53257e-010 -1.92252e-009 796
0 2.20815e-010 9.12350e-012 780
0 -1.13563e-009 -4.89725e-010 696
0 -1.92390e-009 1.30710e-010 718
0 3.66944e-010 6.67918e-010 708
0 -1.63819e-010 2.56498e-010 670
0 -259710e-010 1.85425e-011 831
0 1.02611e-009 -3.04113e-010 747
0 -5.06763e-011 5.91274e-010 745
0 4.64298e-010 2.06257e-010 812

In the second experiment, we useSPGEA to test a non-convex function asfollows:



FQIQ f(Xl,Xz) :100()(12 - Xz)2 +(l' )(1)2
where -2.048£ x, £ 2.048,-2.048 £ x, £2.048 ; this function is non-convex (see
Fig.2). In running SPGEA, we set the population size N=60 ,
I, =0.81,=0.2e =107, and the maximd value of the evolving chance function

T =10° the crossing and mutating method isthe same as in the first experiment. Run-
ning the SPGEA program 10 timescontinuously, we can get the optimal point every
timewhichisgivenin Table 2

Fig.2 the landscape of experiment 2
Table2: Theresults of running SPGEA program 10 timesin experiment 2

Minvaue f X X, step
3.11543E-244 1.00000E+00 1.00000E+00 9976
1.06561E-241 1.00000E+00 1.00000E+00 9999
9.01807E-241 1.00000E+00 1.00000E+00 10000
7.33725E-243 1.00000E+00 1.00000E+00 9991
8.85133E-243 1.00000E+00 1.00000E+00 9984
1.75654E-243 1.00000E+00 1.00000E+00 9989
4.45935E-242 1.00000E+00 1.00000E+00 9999
5.99649E-242 1.00000E+00 1.00000E+00 9998

In the third experiment, a complex single-objective minimization problem (Ackley
function) is tested by using SPGEA, and the optimization problem is as follows:
. 2 15 ,0 o g o)
min f(x,x,) =-20exp&- 0.2,/— 4 X’ I- expc=a cos@px)++20+e
as n iz 5 enia o
where - 32.768 £ x £32.768,i =1,2,---n, N =2. It is obvious that the optimal solu-
tion f* =0 isreached at the point x =0 and x, = 0. From Fig.3 we can also see that



this function is non-convex andincludes multi4ocal-optimal-points. So it is difficult to
solve by using the traditiona evolutionary algorithms. In fact, it is very easy to fall
into the local solutions, i.e., the premature phenomenon of the algorithms.

We set the parameters of SPGEA: population size N =80
I, =0.81l,=02e =107, and the maximal value of the evolving chance function

T =10°; the crossing and mutating method is same asin the first expeiment. Running
the SPGEA program 10 timescontinuously , in each iteration time we also caneasily get
the optimal point that is given in Table 3.

Fig.3 the landscape of experiment 3
Table3 Theresults of running SPGEA program 10 timesin experiment 3

Minvalue f X, X, step
1.54096e-009 1.23727e-016 2.74191e-016 913
154096e-009  -1.03297e-016 -7.22339%-017 975
154096e-009  -343706e-017 -8.11170e-017 855
1.54096e-009 2.35071e016 1.00479e-016 7
1.54096e-009 2.75004e-017 2.20330e-017 871
154096e-009  -2.01528¢-016 1.24738e-016 780
1.54096e-009 1.66080e-017 1.26505e-017 893
154096e-009  -7.42641e-019 7.21961e-019 822
154096e-009  -4.29195¢-016 -1.45410e-016 938
154096e-009  -4.87201e-017 -1.01773e-017 902

Furthermore, we have also done many experiments to solve somewell-konwn
complex single-objective optimization problems likethe Sx Hump Came Back Function,



Axis-Pardld Hyperellipsoid Function, and Griewangk’s Function by using SPGEA,
and we have obtained very accurate optimal solutions, which are difficult to solve by
using the traditional evolutionary algorithms.

6 Convergent Analysis of SPGEA

The convergence, timeefficiency, and precision of optimal solutions are veryimpor-
tant factors when optimization problems are solved by using evolutionary algorithms
[9-12], which provide areliableindicationto an efficient algorithm. In this section the
convergence of SPGEA is studied to illustrate the advantages of SPGEA according to
the theory of the Markov chain and other convergent theories related to EC [13-15)].

Assume the optimization problem

min{ f(x) | xI &, @
where f isa function in the decision space S and " xT S, f(x)3 0. S canbe
either afinite set (e.g., composition optimization problems), or aset in the real space
R"(e.g. continuous optimization problems). Then we get four definitions asfollows:
Definition 5: For the SPGEA optimization problem(1), suppose that random

variable T=min{tl Z :F, =f :Z ={01--,n,-}} representsthe time the global
optimal point is found at thefirst time, if P{T < ¥} =1 and independent of theinitial
population; then we say that the SPGEA algorithm can find the global optimal solu-
tions of optimization problemsin probability 1 in the finite time [16].

Definition 6: For anon-negative random variable sequence { X }, t=01,--,---,
which is defined in the probability space (W, A P) .

(1) If "e>0 such that 5 P(X, >e) is convergent, then { X } is called com-
n=0

pletely convergent to O.
(2 If "e>0 such that 5 P{w:lim X, (w) =0} =1, then { X } is called conver-
n=0 ne¥

gent to 0 in the probability 1.
(3) If " e >0 such that Il@r);l P{X,(w) >e} =0, then { X } iscalled convergent to

0in probability.

In the above three convergent forms, the completely convergent is the strongest,
which impliesboth the convergent in the probability 1 and the convergent in probabil-
ity, and the convergent in probability is the weakest [16].

Define D, =d(X,) =F, - f',where f" is the optimal solution of the optimiza-
tion problem, and F, = f(x,) is the best solution of the optimization problem in the

t th generation, and then set the convergence definition of SPGEA asfollows:
Definition 7: We call solving optimization problem (1) the completely conver-

gent (the convergent in the probability 1 or the convergent in probability) to the global

optimal points of the problem, if the non-negative random sequence (D, :t 3 0) pro-



duced by this optimization problem is completely convergent (convergent in the prob-
ability 1 or convergent in probability) to O [16].

Definition 8: We cal solving optimization problem (1) which adoptsthe elite
reservation strategy by using SPGEA the completely convergent (the convergent in
the probability 1 or the convergent in probability) to the global optimal point f*, if the
non-negative random sequence (D, :t 3 0) produced by this optimization problem s
completely convergent (convergent in the probability 1 or convergent in probability)
to 0 [16].

According to the above definitions, we get the next convergence theories of
SPGEA..

Theorem 1: If the optimization problem (1) solved by using SPGEA satisfies the
following conditions

(1) Inevery evolving iteration t, if x 1 x for al individuals x (xI P(t)) inthe
population P(t) and " XT S, then through crossover and mutation operation once,
the probability mutating x to x ismorethan or equal to p(t), where p(t) isacon-

stant morethan 0, andthe probability is related to generation t.
%
@ Oa- po) =o.

Then SPGEA can certainly find the global optimal solution of the optimization
problem in probability in finite generation times, that is,
P{T <¥} =1, and it has nothing to do with the distribution of the iterating ini-

tial population.

Proof: In the evolving process of tth generation, it needs to mutateto N indi-
viduals of thepopulation by using a mutation operator independently from condition
(1); weknow that in tthgeneration of any evolving operation, through the mutation of
the mutating operator, any individual in population P(t) can mutate to any other
individual in the search space S on the lower boundary probability p(t) . Therefore,
in the mutation process the probability which mutates any individual xi arg f " to one
of the global optimal solutionsis no lessthan p(t) , i.e. the probability which isthe
first found global optimal pointisat least p(t)(> 0) intheevolving processof tth
generation. So, after the t generations the probability B t) that no global optimal
point found satisfies

— o
PHEOQ- pt)),
namely, I!L)rrg _p(t) =0, and then we get

P{T <¥}3 P{find aglobal optimal pointin t generations} =1- ?)(t) .
Setting t ® ¥ on both sides of the above equation, it reduceto P{T < ¥} =1,

that is, SPGEA can find global optimal solutions of the optimization problem in the
probability 1 in the finite evolving times, and obviously, from the proof process we can



seethat it has nothing to do with the selecting method of an initial population in this
theoreni s proof.

Theorem 2: If the optimization problem (1) solved by using SPGEA satisfies the
following conditions

(1) In every evolving iteration t, if x ¢ y for all individuals x (xT P(t)) inthe

population P(t) and " yT S, then by crossover and mutation operation once, the
probability mutating x to y ismore than or equal to p(t) , where p(t) isaconstant
more than 0 and the probability isrelated to generation t.

(aéa-mnzo

(3) Adopt the strategy of theelite reservation to evolve.

Then, SPGEA certainly convergesto the optimal solution of the optimization
problem inprobability, and it has nothing to do with the selecting method of an initial
population.

If SPGEA satisfies the following additional condition:

(4) Thereexistsaconstant p>Q such that p(t) 3 p for all generation t, then
SPGEA is completely convergent.

Proof: Assume that the global optimal point of the optimization problem is first
found in the tth generation, because SPGEA is evolved according to the strategy of
elitereservation. This guarantees the first found optimal solution individual to be
maintained ever to the last generation in theevolving. Hence weget

PF. >} =P{F,- ' >0}=P{D,>G =0 (- p(i)

Setting t® ¥ ,itis
|i®rrg P{D, > @ =0; namely, SPGEA is convergent in probability.

If SPGEA satisfies condition (4), too, e.g.,if we can find aconstant p> 0 such
that p(t) 3 p foral t,then
P(F.>f'}=P(F.- f >0 =P(D, >0 :é(l- p(i)
£6a-p=0-p _
Because the Taylor series %O(l- p)' is convergent, according to definitions 6 (1) and

7, we conclude that (D, :t3 0) is completely convergent to Q accordingly, SPGEA is

completely convergent to O as well. From all the proof process we can see that the
convergence of SPGEA has nothing to do with the selection method of an initial popu-
lation.



7 Conclusons

Through the above theoretical and experimental analysis of SPGEA, we conclude that
SPGEA has obviously more advantages than traditiond EA s. Because SPCEA is
based on statistical mechanics theory according to the principle of gradient descend-
ing and the law of evolving chanceascending of particles, which simulatethe principle
of energy minimizing and law of entropy increasing in the phase space of particlesin
statistical mechanics, it makes al the particles to have a chance to evolve, and drives
all the particles to cross and mutate to reproduce new individuals of the next genera-
tion from the beginning to the end. Because of these reasons SPGEA can easily and
quickly search for the global optimal solutions and avoid premature phenomenon of
the algorithm. Meanwhile, convergent analysisof SPGEA has proved that it isreliable,
stable, and secure by using SPGEA to solve complex single-objective optimization
problems.
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