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Abstract. Cardiac modeling is here to stay.  Computer models are being used in 
a variety of ways and support the tests of drugs, the development of new 
medical devices and non-invasive diagnostic techniques. Computer models 
have become valuable tools for the study and comprehension of the complex 
phenomena of cardiac electrophysiology. However, the complexity and the 
multidisciplinary nature of cardiac models still restrict its use to a few 
specialized research centers in the world. We propose a computational 
framework that provides support for cardiac electrophysiology modeling. This 
framework integrates different computer tools and allows one to bypass many 
complex steps during the development and use of cardiac models.  The 
implementation of cardiac cell models is automatically provided by a tool that 
translates models described in CellML language to executable code that allows 
one to manipulate and solve the models numerically. The automatically 
generated cell models are integrated in an efficient 2-dimensional parallel 
cardiac simulator. The set up and use of the simulator is supported by a user-
friendly graphical interface that offers the tasks of simulation configuration, 
parallel execution in a pool of connected computer clusters, storage of results 
and basic visualization. All these tools are being integrated in a Web portal that 
is connected to a pool of clusters. The Web portal allows one to develop and 
simulate cardiac models efficiently via this user-friendly integrated 
environment. As a result, the complex techniques and the know-how behind 
cardiac modeling are all taken care of by the web distributed applications. 

1   Introduction 

The phenomenon of electric propagation in the heart comprises a set of complex non-
linear biophysical processes. Its multi-scale nature spans from nanometre processes 
such as ionic movements and protein dynamic conformation, to centimetre 
phenomena such as whole heart structure and contraction. Computer models [1,2] 
have become valuable tools for the study and comprehension of such complex 
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phenomena, as they allow different information acquired from different physical 
scales and experiments to be combined in order to generate a better picture of the 
whole system functionality.  

Not surprisingly, the high complexity of the biophysical processes translates into 
complex mathematical models. The modern cardiac electrophysiology models are 
described by non-linear systems of partial differential equations with millions of 
variables and hundreds of parameters. Whereas the setup process of the simulations is 
time consuming and error prone, the numerical resolution demands high performance 
computing environments. In spite of the difficulties, the benefits and applications of 
these complex models justify their use. Computer models have been used during the 
tests of drugs [3], development of new medical devices [4], and of new techniques of 
non-invasive diagnosis [5] for several heart diseases. 

We propose a computational framework that provides support for cardiac 
electrophysiology modelling. A web portal architecture which combines server and 
applications is presented in Figure 1. 

 

Fig. 1. The high level architecture 

Through a public website (1), a user can select a biological model previously 
stored in the system (2), or submit its own model described in CellML meta-language 
(3), which has recently emerged as an international standard for the description of cell 
models [6]. Once established the biological model to be used, a compiler for CellML 
[6] will generate parallel C code based on the Message Passing Interface library (MPI 
[7]) (4). The result of the compilation is used as input by the simulator software which 
we have previously developed [8]. At the same time, the user can type the parameters 
in an electronic form to configure the initial states and conditions for the simulation 
(5). These parameters are used as simulator's data input. The simulations run on a 
pool of clusters and generate binary files in the end of the process (6) which can be 
downloaded and visualized (Figure 2). 
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Fig. 2. Visualization of simulated results showing an electrical wave that propagates through 
the ventricles.  

The tools described above (XML based code generator, parallel cardiac simulators, 
graphical user interface environments and the web portal) provide a user-friendly 
environment for cardiac simulation. The complex techniques and know-how that are 
behind cardiac simulations, such as parallel computing, advanced numerical methods, 
visualization techniques and even computer code programming, are all hidden behind 
the integrated and easy-to-use web based framework.  

The next sections describe the details of each of these components. 

2 AGOS Tool 

There are two basic components in mathematical models of cardiac electric 
propagation: the cell model and the tissue model. The first component models the 
flow of ions across the cell membrane as first proposed by Hodgkin and Huxley [2] in 
their work on nerve cells. This component typically comprises of a system of 
Ordinary Differential Equations (ODEs). The Second component is an electrical 
model for the tissue that describes how currents from one region of a cell membrane 
interact with the neighborhood. This component is represented by a Partial 
Differential Equation (PDE). In this section, we present an on-line tool, the AGOS 
tool, aimed to help researchers in the development and solution of cell models or any 
other scientific model based on systems of ODEs. Special computational tools for 
handling the second component (the PDEs) are covered in the next sections.  

AGOS stands for API (Application Program Interface) Generator for ODE 
Solution. Through its use one can submit a meta-model file to automatically generate 
a C++ API for solving first-order initial-value ODE systems. 

The input data is a CellML [6] or a Content MathML [9] file, i.e., XML-based 
languages. CellML is an open-source mark-up language used for defining 
mathematical and electrophysiological models of cellular function. MathML is a W3C 
standard for describing mathematical notation. A CellML file includes Content 
MathML to provide both a human- and computer-readable representation of 
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mathematical relationships of biological components [10]. Therefore, the AGOS tool 
allows the submission of a complete CellML file or just its MathML subset. 

Once submitted, the XML file is translated to an API. The generated API is an 
object oriented C++ code. Functions are created for system initialization 
(initialization of parameters like the number of iterations, discretization interval and 
initial values of variables), numerical solution (via Explicit Euler scheme) and results 
storage. In addition, the API offers public reflexive functions used, for example, to 
restore the number of variables and their names. These reflexive functions allow the 
automatic creation of model-specific interfaces. This automatic generated interface 
enables one to set any model initial condition or parameter, displaying their actual 
names, as documented in the CellML or MathML input file. The AGOS tool is 
available at (www.fisiocomp.ufjf.br), from where it is possible to download the API 
source-code.  AGOS can also be used online via a web application (see section 4), 
which uses the generated API to solve ODE systems and visualize their results.  

In the next section, we present how the XML code is translated to C++ code. 

2.1 The Translator 

The AGOS application was implemented in C++ and makes use of basic computer 
structure and algorithms in order to capture the variables, parameters and equations, 
i.e. the ODE conceptual elements, that are embedded in a MathML file and translate 
these to executable C++ code, i.e. the AGOS API. The translator tool comprises of 
three basic components: a Preprocessor for XML format, an Extractor of ODE 
conceptual elements, and a Code Generator. The components are organized as a 
pipeline. The Preprocessor reads an XML-based file (MathML or CellML) and 
extracts the content into an array of tree data structures. Every tree of this array is 
processed by the ODE extractor that identifies the ODE elements and stores them in 
appropriate data formats. At the end of the pipeline, the Code Generator combines the 
extracted information to a code template and generates the AGOS API. The adopted 
strategy for code generation is largely based on code templates. The syntactical 
structure of code templates is described using formal grammar notation. Details 
related to the AGOS API and to the translator are documented in the AGOS manuals 
that can be found at [11].  
The MathML description language uses a prefix format, i.e., the operators precedes 
the operands.  The translator goal is achieved via the creation of a structure that 
supports easy identification of the operands and operators. AGOS converts the XML 
embedded equations in a tree-like structure. We briefly illustrate the translator tasks 
via a simple example. Consider the following equation: 

n at += 0.6  (1) 

The corresponding Content MathML code and the generated tree are presented in 
Figure 3. 
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<math xmlns="http://www.w3.org/1998/Math/MathML">

   <apply><eq/>

      <ci>  </ci>

      <apply><plus />

         <cn>  </cn>

         <apply><root/>

            <degree><ci>  </ci></degree>

    <ci>  </ci>

         </apply>

      </apply>

   </apply>

</math>

t

6.0

n
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Fig. 3. Content MathML code and the extracted tree structure. 

The tree nodes contain information about each operand and operator, besides the 
equation type (if it is a differential equation or an algebraic one). The translator uses 
this information to include the mathematical code in the right place in the API. Using 
a search in depth, the following code is generated: “t = (6.0 + pow(a, 1.0/n));”.  

3 The Parallel Cardiac Simulator 

The set of Bidomain equations [12] is currently one of the most complete 
mathematical models to simulate the electrical activity in cardiac tissue: 
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, where φe  is the extracellular potential, φi the intracellular potential and φ is the 
transmembrane potential. Eq. 4 is a system of non-linear equations that accounts for 
the dynamics of several ionic species and channels (proteins that cross cell 
membrane) and their relation to the transmembrane potential. The system of Eq. 4 
typically accounts for over 20 variables, such as ionic concentrations, protein channel 
resistivities and other cellular features. σi and  σe are the intracellular and extracellular 
conductivity tensors, i.e. 3x3 symmetric matrices that vary in space and describe the 
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anisotropy of the cardiac tissue. Cm and χ are the cell membrane capacitance and the 
surface-to-volume ratio, respectively.   
 
Unfortunately, a solution of this large nonlinear system of partial differential 
equations (PDEs) is computationally expensive. One way to solve (2)–(4) at every 
time step is via the operator splitting technique [13]-[15]. The numerical solution 
reduces to a modular three step scheme which involves the solutions of a parabolic 
PDE, an elliptic PDE and a nonlinear system of ordinary differential equations 
(ODEs) at each time step. Rewriting equations (2)–(4) using the operator splitting 
technique (see [16] for more details) we get the following numerical scheme: 
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where ϕk, ϕe

k and ξk discretizes φ, φe and η at time k ∆t; Ai and Ae are the 
discretizations for ∇ .σi∇  and ∇ .σe∇ , respectively. Spatial discretization was done via 
the Finite Element Method using a uniform mesh of squares and bilinear polynomials 
as previously described in [16]. 
 
Steps (5), (6) and (7) are solved as independent systems. Nevertheless, (5), (6) and (7) 
are still computationally expensive. One way of reducing the time spent on solving 
these equations is via parallel computing. 

3. 1 The 2-dimensional Parallel Cardiac Simulator 

A solution for the Bidomain model was implemented in parallel using the MPI and 
PETSc [17] libraries. PETSc provides a suite of data structures and routines for the 
scalable solution of applications modeled by PDEs. The nonlinear ODE system was 
solved via the explicit forward-Euler scheme (see section 3.2 for more details). The 
PDEs are the most computationally expensive portion of the model and thus need a 
more robust algorithm. The Conjugate Gradient (CG) method combined with an 
appropriate preconditioner has become a standard choice for an iterative solver and 
was applied for the solution of the elliptic and parabolic PDEs. 

The CG was parallelized via linear domain decomposition. The spatial rectangular 
domain was decomposed into nproc nonoverlapping domains of equal size, where 
nproc was the number of processors involved in the simulation. For the 2-D problem, 
the slice was made in the y direction. 
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3. 2 Integration with AGOS API 

As described in Section 2, one can select or submit a biological model through a 
public web site. This model is compiled into a scalable (parallel) shared library, which 
can be used by the simulator.  

The shared library is dynamic, thus the Simulator does not need to be compiled for 
every new cell model. Therefore, when it is necessary to solve the nonlinear system of 
ODEs, i.e. during the step described by equation (6), the Simulator makes a call to the 
functions of the automatic generated API library on run time, the functions are loaded 
to memory and executed. 

 The parallelization is easily obtained: each processor is responsible for a 
rectangular domain (nx X ny/nproc) that has nx ny /nproc ODE systems associated 
with. These are independent systems. The solution of these systems does not involve 
communication.     

 3. 3 Simulator Graphic User Interface (GUI) 

In order to provide an easy way for setting up simulations, a Java GUI was developed 
and it is here briefly presented. 

The GUI allows the creation, set up, execution and visualization of simulations. 
First, one must create a project and set several parameters for simulating the spread of 
cardiac electric activity. Then, the parallel simulation can be started and its results 
will be stored in a folder that has the same name of the project. Visualization of the 
results can also be initiated via the GUI. Currently the visualization is done via an 
interface to FLOUNDER, a free software developed at the Calgary University [18]. 

Once the project is created, it is possible to select which variables should be saved 
for later analyzes (intra-, transmembrane, extracellular potentials, etc.). Parameters as 
time and space discretization, size of the bidimensional portion of tissue and number 
of iterations can be set. Via the selection of input files one defines the geometry of the 
model, cardiac fiber and sheet orientations. Stimuli type, location and intensity can 
also be configured. Figure 4 shows an example of a simulation set up using the 
simulator GUI. 
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Fig. 4. Simulation set up using the GUI 

3. 4 The Cluster 

The set up of a parallel environment based on commodity network and desktop 
computers can be a complex task. In order to set up a Linux cluster for scientific 
computing, several software packages are necessary for tasks such as installation, 
configuration and management. Fortunately, there are some popular kits that support 
these tasks.  

The cluster used in this work [11], is based on NAPCI Rocks architecture and it is 
made up of eight nodes, Athlon 64 3000+ with 2 GB of RAM, connected by a fast 
Gigabit Ethernet switching device. Rocks [19] is a collection of open source software 
integrated to the Red Hat Linux which aims at building high performance clusters. 

For monitoring the cluster status, Rocks provides a tool named Ganglia, which is a 
scalable distributed monitoring system for high-performance computing systems. 
Ganglia allows the cluster administrator to visualize historical monitoring information 
for cluster, host, and metric trends over different time granularities ranging from 
minutes to years. It generates graphics that present the historical trends of metrics 
versus time. Typical and useful graphics include information on network bandwidth 
utilization and CPU load for the whole cluster as well as for each individual node. All 
the monitoring in Ganglia can be done via a web browser. 

In addition, Rocks is integrated to Sun Grid Engine (SGE). SGE schedules the jobs 
submitted to the cluster to the most appropriate nodes, based on management policies 



A Computational Framework for Cardiac Modeling 

previously defined by the cluster administrator. SGE is integrated with Message 
Passing Interface and Parallel Virtual Machine and allows users to run parallel jobs 
based on these libraries. Any number of different parallel environment interfaces can 
be configured concurrently. Sun Grid Engine also provides dynamic scheduling and 
job migration via checkpoints, i.e., the procedure of storing the state of an active 
process. A graphical interface called QMON provides for easy control and 
configuration of all SGE capabilities.  

3. 5 Simulation Example 

In this section we present an example of the use of the environment discussed in the 
preceding sections. We simulate the cardiac electric propagation on a 2-dimensional 
cut of the left ventricle obtained during the cardiac systole phase by the resonance 
magnetic technique of a healthful person. After segmenting the resonance image, a 
two-dimensional mesh of 769 X 769 points is generated, that models the cardiac 
tissue, blood and torso. All bidomain parameters were taken from [20]. The cardiac 
tissue conductivity values have been set to: σil = 3 mS/cm, σit = 0.31 mS/cm, σel = 2 
mS/cm and σet = 1.35 mS/cm, where i(e) denotes intracellular (extracellular), l(t) and 
stands for longitudinal (transversal) to the fiber orientation. The capacitance per unit 
area and the surface area-to-volume ratio are set to 1 mF/cm2 and 2000 /cm, 
respectively. The interface between cardiac tissue and bath is modeled as described in 
[21]. All the other boundaries are assumed to be electrically isolated. The spatial and 
temporal discretization steps of the numerical model are set to 150 µm and 10 µs, 
respectively. The simulation was carried out for 20 ms after a single current stimulus 
was introduced at a selected endocardial site. 
 For simulating the action potential of cardiac cells we used the human ventricular 
model of ten Tusscher [22]. The explicit Euler implementation described by equation 
(6) was generated automatically by AGOS, based on a CellMl model description 
downloaded from the CellML repository [6]. The linear system associated to the 
parabolic part of the bidomain formulation, see equation (5), is solved with the 
Conugate Gradient (CG) method and ILU (Incomplete LU factorization with zero fill-
in) preconditioner. The linear system associated to the elliptic part, equation (7), 
dominates computation and is solved with CG and a parallel Algebraic Multigrid 
preconditioner. In this work we adopted the parallel AMG code BoomerAMG [23] 
with its Falgout-coarsening strategy.  
Figure 5 shows the simulation result overlapped to the resonance image. The color-
coded image represents the transmembrane potential distribution for a certain time 
instant.   
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Fig. 5. Simulated electrical wave propagation overlapped to the Resonance Image. 

The simulation was run using one, two, four and eight processors. As presented in 
Figure 6, when running the simulation on eight processors the relative speedup 
(execution time using 1 processor / execution time with n processors) is near 5. The 
execution time drops from near 5 hours when running with 1 processor to less than 1 
hour running with 8 processors. Linear speedups were not achieved. This is mainly 
due to communication overhead and to the Multigrid Preconditioner adopted. The 
direct method used in the coarsest grid of the preconditioner is not parallelized and 
thus limits scalability.  Nevertheless, the results indicate the importance and benefits 
of cluster computing for cardiac electrophysiology modeling.  
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Fig. 6. Parallel speedup and execution time in hours. 
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4. The Web Portal: goals, current status and future work 

The Web portal is under development and has three main goals:  
1- To popularize the technology of cardiac simulation. The tools described above 

(XML based code generator, parallel cardiac simulators and user interface 
environments) are being combined in a single Web application which has access to a 
pool of clusters. The web portal supports the development and simulation of cardiac 
models efficiently via this user-friendly integrated environment.  The complex 
techniques and know-how that are behind cardiac simulations, such as parallel 
computing, advanced numerical methods, visualization techniques and even computer 
code programming, are all taken care by the integrated and easy-to-use web 
application. Online tutorials [11] instruct the users on how to make efficient use of the 
integrated environment.     

2- To promote the share of the computational resources among different research 
centers. The web application under development will allow users to execute their 
simulations on a pool of clusters made of clusters residing on different research 
centers. This will bring a parallel environment to those that do not have access to it as 
well as increase the computational power of the participating centers. Currently, there 
are three small clusters being integrated to the Web Portal (4-node cluster from 
Lanec-UFSJ (Neuroscience Laboratory), 5-node cluster from Labma-UFRJ (Applied 
Mathematics Laboratory), and the 8-node cluster from FISIOCOMP-UFJF 
(Computational Physiology Laboratory). This integration will be done with the Sun 
Grid Engine, which provides the mechanisms required for grid computing. 

3- To promote the development of cardiac modeling. The integration of the above 
mentioned tools in a single web portal will speed up the development of new and 
more realistic electro-physiological models of the heart and further integrate different 
research centers, promoting international collaborations. 

Currently the AGOS tool is fully operational and integrated to the Web Portal. 
After registration, the user is granted a new account and is able to create, manage, 
execute and store the results of simulation projects. Associated to each registered 
researcher there is a folder in the server’s hard disk. This folder contains one 
subfolder for each created project, with all the input and output files generated by the 
AGOS application. Those files can be downloaded and visualized at anytime. In 
addition, the researcher may modify the API parameters to generate new PDF and PS 
graphics. One of the portal screenshots is shown in the Figure 7. 
We are using JSP [24] and Struts framework [25] and some web pages also use PHP 
[26] language. All data is being stored in a MySQL [27] database and the web-site 
runs in an Apache Tomcat server [28]. The simulator GUI described in section 3.3 is 
currently being integrated to the web portal. Combined with AGOS, the parallel 
cardiac simulator and the SGE grid computing tool, this easy-to-use computational 
framework will efficiently support cardiac modeling in distributed environments.   
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Fig. 7. Web portal usage example 

5. Conclusion 

In this work we presented a computational framework that supports cardiac 
electrophysiology modeling. The framework is made of different components and 
technologies and aim on simplifying the development and use of cardiac models. The 
combination of an XML based automatic code generator, parallel cardiac simulators, 
graphical user interface environments and a web portal provides an user-friendly 
environment for cardiac simulation. The complex techniques and know-how that are 
behind cardiac modeling, such as parallel computing, advanced numerical methods, 
visualization techniques and even computer code programming are all hidden behind 
the integrated and easy-to-use web based framework 
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