
Triangular Clique Based Multilevel Approaches

to Identify Protein Functional Modules

S. Oliveira1 and S. C. Seok1

Department of Computer Science, 14 MLH, University of Iowa, Iowa City IA 52242,
USA

Email:{oliveira, sseok}@cs.uiowa.edu
Phone: (319)-335-0731, (319)-353-4851

Fax: (319)-335-3624

Abstract. Identifying functional modules is believed to reveal most
cellular processes. There have been many computational approaches to
investigate the underlying biological structures [1, 5, 10, 13]. A spectral
clustering method plays a critical role identifying functional modules in
a yeast protein-protein network in [10]. One of major obstacles clustering
algorithms face and deal with is the limited information on how close two
proteins with or without interactions are. We present an unweighted-
graph version of a multilevel spectral algorithm which identifies more
protein complexes with less computational time [9]. Existing multilevel
approaches are hampered with no preliminary knowledge how many lev-
els should be used to expect the best or near best results. While existing
matching based multilevel algorithms try to merge pairs of nodes, we here
present a new multilevel algorithms which merges groups of three nodes
in triangular cliques. These new algorithms produce as good clustering
results as previously best known matching based coarsening algorithms.
Moreover, our algorithms use only one or two levels of coarsening, so we
can avoid a major weakness of matching based algorithms.

Topic: Computing in Biosciences, Data Processing, Numerical Methods

1 Introduction

Most cellular processes are carried out by groups of proteins. Identifying func-
tional modules in protein-protein networks is considered as one of the most im-
portant and challenging research topics in computational systems biology. There
has been many recent computational approaches to disclose the underlying bio-
logical structures.[1, 5, 10, 13]

Successful approaches to clustering functional modules include partition-
based algorithms [5, 10]. Pothen et al. proposed a two-level architecture for a
yeast proteomic network [10] and Ding et al. introduced a partitioning algo-
rithm on a bipartite model. Pothen et al. construct a smaller network from a
protein-protein interaction network by removing proteins which interact with too

many or too few proteins. And then a spectral clustering method was applied to
identify functional modules in the protein-protein network in their research.

The biggest obstacle to identifying functional modules is that protein-protein
interaction networks are unweighted or uniformly weighted. Unweighted graphs
are considered to be harder to partition than weighted graphs because un-
weighted graphs provide only limited information on the strength of connection
between two vertices. Multilevel (ML) algorithms have been introduced to iden-
tify more functional modules based on matching algorithms in PPI networks
[9]. But these algorithms are hampered by two weaknesses. First, it is hard to
find the optimal number of levels. Second, most matching based algorithms use
random algorithms, so the clustering results vary from an experiment to another.

Our Triangular Clique (TC) based multilevel algorithm was inspired by Spirin
et al’s approach to investigate the large-scale structure of PPI networks [12].
They used the Clique idea to identify highly connected clusters of proteins in
protein-protein interaction networks. They not only enumerated all cliques of
size 3 and larger (complete subgraphs) but also partially complete subgraphs
with high quality.

Our algorithm use only triangular cliques (cliques of size 3). These are dif-
ferent from matching based ML algorithms which pick pairs of nodes based on
edge or node related information to merge, TC based algorithms try to merge
highly connected triples of nodes. We present four different kinds of TC based
algorithms according to the decision on how to deal with two TCs which share
one or two nodes. These algorithms are compared and analyzed with the com-
putational results.

We show some TC based algorithms identify as good as or better functional
modules with one or two levels of coarsening than the best matching based ML
algorithm we found in [9].

2 Features of Interaction networks and Two-level

Approach

Graph theory is commonly used as a method for analyzing protein-protein in-
teraction (PPI) networks in Computational Biology. Each vertex represents a
protein, and edges correspond to experimentally identified PPIs. Proteomic net-
works have two important features [3]. One is that the degree distribution func-
tion P (k) follows a power law (and so is considered a scale-free network). This
means that, most vertices have low degrees, called low-shell proteins, and a few
are highly connected, called hub proteins. The other feature is the small world

property which is also known as six degrees of separation. This means the diam-
eter of the graph is small compared with the number of nodes.

A two level approach was proposed by Pothen et al. [10] to identify functional
modules in a proteomic network in yeast. The main idea is derived from the k-
cores concept which was introduced by Batagelj, Mrvar and Zaversnik [2] in
graph theory. If we repeatedly remove vertices of degree less than k from a
graph until there are no longer any such vertices, the result is the k-core of

the original graph. The vertices removed are called the low-shell vertices. The
two-level approach pays attention to three facts in protein-protein interaction
networks:

– The hub proteins have interactions with many other proteins, so it is hard to
limit them to only one cluster and the computational complexity increases
when they are included.

– There are many low-shell proteins, which increases the size of network. These
nodes are easy to cluster when the nodes they are connected to are clustered
first.

– Proteomic networks are mostly comprised of one big component and several
small components.

So, disregarding hub proteins and low-shell proteins, and confining attention to
the biggest component of proteomic networks leaves us to focus on the nodes
which are most meaningful to cluster.

3 Background on Multilevel Approaches and Clustering

Algorithms

Let G = (V, E) be a graph with vertex set V and set of undirected edges E.
One of the most commonly used data structures for graphs are matrices. Matrix
representations are very useful to store weights for edges and vertices. We can
also use a lot of well-known computational techniques from Linear Algebra. In
our matrix representations S = (sij), diagonal entries sii store the weights of
vertices and off-diagonal entries sij represent edge weights. Our ML algorithms
use this matrix representation.

3.1 Multilevel Spectral Clustering

The basic concept of “Multilevel clustering” algorithms is that when we have
a large graph G = (V, E) to partition, we construct a smaller graph whose
vertices are groups of vertices from G. We can apply a clustering method to this
smaller graph, and transfer the partition to the original graph. This idea is very
useful because smaller matrices or graphs require much less time to cluster. The
process of constructing the smaller matrix is called coarsening, and the process
of transferring the partition is called decoarsening.

Coarsening and decoarsening steps are implemented by multiplying a graph
matrix S by a special coarsening matrix C. Each entry of C is either 0 or 1. We
set cij = 1 if node i of the fine graph belongs to node j of the coarsened graph.
A series of matrices S0, S1, · · · , Sl are recursively constructed using C1, · · · , Cl in
the form of Si = C ′

i ∗Si−1 ∗Ci with i = 1, · · · , l. Note that C ′ is the transpose of
C (i.e. cij = cji) . A partitioning algorithm is applied to matrix Sl and we will
have an initial partition Cut in the coarsest level.

Partitioning is done by using a recursive spectral bipartitioning (divisive par-
titioning). Recursive bipartitioning algorithms repeatedly performs two main
steps. One is selecting a cluster to split, and the other is applying a two-way
clustering algorithm.

The best known spectral clustering algorithms is the MinMaxCut algorithm
[6]. Two-way MinMaxCut clustering algorithm aims to minimize

JMMC(A, B) =
s(A, B)

s(A, A)
+

s(A, B)

s(B, B)
=

s(A, Ā)

s(A, A)
+

s(B, B̄)

s(B, B)
, (1)

where s(A, B) =
∑

i∈A,j∈B sij .
In [6], a continuous approximation to this problem has the solution which is

the eigenvector q2 associated with the second smallest eigenvalue of the system
(D−S)q = λDq, where D = diag(d1, d2, · · · , dn) and di =

∑
j sij . The partition

(A, B) is calculated by finding index opt such that the corresponding objective
function gets optimum value with the partition, A = {q2(i) | q2(i) < q2(opt)}
and B = {q2(i) | q2(i) ≥ q2(opt)}.

The optimum value of two-way MinMaxCut is called the cohesion of the
cluster and can be an indicator to show how closely vertices of the current
cluster are related [6]. This value can be used for the cluster selection algorithm.
Divisive algorithms recursively choose a cluster which has the least cohesion for
partitioning until we have the predefined number of clusters or until all current
clusters satisfy a certain condition. On level i we have a partition (Aj) of the
vertices of Gi. To represent the partition, we use a vector Cuti on level i where
(Cuti)k = j if k ∈ Aj .

Decoarsening is how we get back to the original graph. The partition from the
coarsest level is mapped into finer levels by using a proper coarsening matrix
Cuti = C ′

i · Cuti−1 where i is the level number of the coarser level. Then a
Kernighan-Lin (KL) type refinement algorithm is applied to improve the quality
at each level [7]. KL starts with an initial partition; it iteratively searches for
nodes from each cluster of the graph if moving a node to one of the other clusters
leads to a better partition. For each node, there may be more than one cluster to
give smaller objective function values than the current cut. So the node moves to
the cluster that gives the biggest improvement. The iteration terminates when
it does not find any node to improve the partition.

3.2 Matching based Coarsening Algorithms

A matching in a graph is a set of edges in which no two of them are incident on
the same node. We introduced a heuristic matching algorithm which works very
well on weighted graphs in [8], called Sorted Matching (SM). SM was used earlier
by us to improve clustering results for groups of documents, which compose
weighted graphs. In SM, nodes are merged in order of decreasing edge weight.

The simplest matching for unweighted graphs is random matching. One node
is randomly visited and one of unmatched node is randomly chosen to be merged
with the node (RVRM). A drawback is that the nodes with low degrees have

higher chance to be left unmerged than high degree nodes. In order to avoid this
problem we can pick the lowest degree node among unmerged nodes and choose
one of the unmerged nodes randomly to merge (LVRM). Thus this algorithm
tends to merge more nodes than RVRM.

Our matching algorithm for unweighted graphs introduced in [9] goes as
follows: we define the weights of edges as follows. The edge weights are all 1’s
to start with, but become the sum of the number of edges combined after a
matching step. A node weight is defined as the total number of nodes merged
into it.

In the PPI network, at first we have equal edge weights. We perform the first
level of coarsening by combining nodes with each other, as long as they are not
matched. The results are similar for any order we pick up for this step. After
this matching we will have groups of edges which share the same weight (the
maximum resulting edge weight will be 4 for a clique with 4 nodes/vertices).
We then give the higher priority to the edge with lower combined node weights,
i.e. we take the edge with maximum 1/w(ni) + 1/w(nj) as a tie-break rule,
where w(ni) and w(nj) are the node weights, that is, the number of nodes, of
supernodes ni and nj . We call this matching scheme Heavy-Edge-Small-Node
(HESN).

HESN was introduced and shown to outperform the other matching based
algorithms [9].

4 Coarsening with Triangular Cliques

Matching based coarsening algorithms merge groups of at most two nodes which
have an edge between them. These algorithm have worked well especially on
weighted graphs because all edges have different weights. These weights play a
key role for picking pairs of nodes to merge. Meanwhile unweighted graphs do
not provide this information. The ML algorithm with HESN works well on the
unweighted graphs even though HESN is a matching based coarsening. However,
in general, matching based ML algorithms have two main weaknesses. First, it
is hard to find the optimal number of levels which generates the best cluster-
ing. Second, most matching based algorithms has a random component, so the
clustering results vary from an experiment to another.

A clique in an undirected graph G = (V, E) is a subset V ′ ⊆ V , where each
pair of vertices is connected by an edge. The problem of finding the maximal size
of a clique for a given graph is an NP-complete problem [11]. However, finding
all cliques comprised of three vertices takes O(|E|2/|V |) time. We pay attention
to that, first, if both proteins p1 and p2 interact with the protein p3, p1 and
p2 should interact and second, when three proteins p1, p2, p3 forms a triangular
clique (TC), the chance all three proteins are clustered in the same functional
module is high. We show the quality of triangular cliques in section 5. These
three nodes p1, p2, p3 in a graph compose a triangular clique.

When we use TCs to form sets of vertices to be merged, we have to make two
decisions. The first one is mainly because many TCs shares one or two nodes

with others. All two pairs of TCs fall into three different cases: sharing no, one,
or two common vertices. The first one does not make any difference. We focus on
the last two cases. How do we merge TCs for each case? The graph at the upper-
left of Figure 1 has four TCs, from TC1 through TC4. TC1 and TC2 share two
common nodes and TC3 and TC4 share one common node. One way is to merge
all nodes in TCs which share one or two nodes into one supernode, let us call
this method TC ALL. In this case, any group of TCs which share one or more
vertices is merged into a supernode. Another simple way is to merge one of two
TCs for both cases and leave other vertices unmerged, let us call this TC ONLY.
When we assume that TC1 and TC3 are chosen over TC2 and TC4 and merged
into two separate supernodes by TC ONLY, two nodes of TC4 and one node
of TC2 are left unmerged. We consider two variants of TC ONLY according to
how to deal with these three unmerged nodes. The one unmerged node of TC2
forms an edge with the supernode after coarsening and looks reasonable to be
grouped in the same cluster with the supernode made of TC1. So we devise a
new algorithm, TC ONE, which is basically the same as TC ONLY but merging
the left out node of TC2 and TC1 into a supernode. Similarly, the two unmerged
nodes of TC4 form a TC with the supernode created. The two unmerged nodes
have high chance to be merged with newly created supernode into a supernode
if we have additional levels of coarsening. If we do not want to merge them with
the supernode, we can have all three nodes of TC3 and two nodes of TC4 form
two separate supernodes. Let us call this algorithm TC TWO. In this case, the
one unmerged node of TC2 by TC ONLY is still left unmerged as shown in
Figure 1.

Second problem we face is whether or not we keep creating more levels. If
we use more than one level then the question is how many levels to create.
In this paper we focus on using the same algorithm to create more levels. The
performance of these four algorithms is presented and compared with a matching
based coarsening algorithm, HESN, in the following section.

5 Model Networks and Computational Experiments

The budding yeast, Saccharomyces cerevisiae, is considered the simplest and so is
the most investigated organism. Pothen’s two-level architecture is applied to the
CORE dataset of DIP (Database of Interacting Proteins, dip.doe-mbi.ucla.edu),
where the pairs of interacting proteins identified were validated according to the
criteria described in Deane et al. [4]. The network has 2610 proteins and 6236
interactions. Their idea is that removing high degree proteins (hub proteins)
and low degree proteins (low-shell proteins) from the network before clustering
leads to a better partitioning and then the removed nodes can be added to the
partitioning. The residual network after removing hub proteins and low shell
proteins has 499 proteins and 1229 interactions.

Instead of using the small network (CORE dataset), we use the DIP network
which has 4931 nodes and 17471 edges to validate our ML algorithms. Con-
structing a residual network starts with removing nodes that have degree 20 or

TC1

TC2

TC3

TC4

TC
 _ALL

TC
 _TWO

TC
 _ONE
TC
 _ONLY

Fig. 1. Four different TC based coarsening algorithms. Each circle stands for a node
and a triangle represents a supernode after coarsening.

more from the original network. Then low-shell proteins whose degree is 3 or less
are pruned from the biggest component. The residual network has 1078 nodes
and 2778 edges.

After our ML spectral algorithm is applied to this residual network, the
clustering results are compared with the MIPS (mips.gsf.de) dataset as we did
in [9]. Note that the residual network and MIPS dataset share 800 proteins. So
the maximum number of correctly clustered nodes is 800 for any experiment.

Now we present various computational results to investigate the properties
of TC based ML algorithms. Table 1 shows the number of nodes, the number
of TCs, and the number of correctly grouped nodes as the number of levels
increases. The sum of the maximum number of proteins which belong to the
same functional module in each supernode is what we use as the number of
correctly grouped proteins. Notice that, as the number of levels increases, the
number of correctly grouped proteins should not increase. The original number
of proteins in the residual network is 1078. As expected, TC ALL collapses the
largest number of nodes at each level of coarsening (see the first entries in row
TC ALL). But the quality of grouping worsens pretty fast (see the third entries
in row TC ALL). So with TC ALL as the number of level increases the size
of network shrinks very fast and the quality of coarsening is becoming very

bad. Meanwhile, TC TWO merges the least after the first level, 819 proteins.
TC ONLY merges more nodes than TC TWO at the beginning but the least
after all. Even though TC ONLY merges the least nodes after all, the quality of
grouping remains good. TC ONE merges the most nodes except when compared
to TC ALL and the quality of grouping also decreases faster than TC ONLY
and TC TWO.

There are 1195 TCs found in the original graph. The number of TCs decreases
at the first level to as few as 145 for TC ONE or as many as 580 for TC TWO.
And then the number of TCs does not change much for the first a few levels
except TC ALL for which the number of TCs significantly continues to decrease.

level 1 2 3 4 5

HESN 601 333 182 102 56
TC ALL 513/272/586 303/198/265 89/39/91 35/4/47
TC ONE 662/145/733 550/145/647 501/342/544 468/333/460 438/316/405
TC TWO 819/580/759 686/261/719 561/147/679 533/133/650 517/140/610
TC ONLY 770/273/754 630/168/693 578/214/624 554/308/567 540/334/523

Table 1. The comparison of four different TC based coarsening algorithms. Note that
xx/yy/zz means xx nodes, yy TCs, and zz correctly grouped nodes.

Finally, we see the clustering results when the ML spectral clustering algo-
rithm is actually applied with the coarsening algorithms. Tables 2 shows the
number of correctly clustered proteins with four different TC based coarsening
algorithms when 1 up to 5 levels are used to form 40, 60, and 80 clusters. These
results are compared with the HESN matching [9] based ML algorithm. Some
algorithms, like HESN and TC ALL, do not have big enough networks to form
particular number of clusters after particular levels of coarsening. For example,
there are only 56 nodes after three levels of coaresening with HESN, so we do not
try to construct 60 and 80 clusters. First row has the results with HESN which
is considered to work best among the matching based algorithms in [9]. With-
out any ML algorithm 201, 234, and 286 proteins are reported to be correctly
clustered to form 40, 60, and 80 clusters respectively.

The most remarkable point from the table is the clustering results of TC ONE
and TC ONLY with one level of coarsening are the best or almost best compared
with more than one level of coarsening. As for TC TWO, the results are improv-
ing up to some point. The quality of grouping by TC TWO is shown well in
Table 1. However, the clustering results of TC TWO are not good compared
to TC ONLY and TC ONE when these algorithms are actually applied to ML
spectral algorithm. While TC ONLY provides the best results with one level of
coarsening, TC ONE generates the best results with one or two levels. And the
quality of clustering of TC ONLY drops significantly with two levels. We guess
that more than one level of coarsening causes overmerging, that is, the quality
of grouping with two or more levels is not good enough to improve clustering.

40 60 80

HESN 232/248/258/253/267 300/312/329/308 354/364/342/367
TC ALL 245/234/235 299/286 346/321
TC ONE 257/261/253/246/238 323/319/319/307/312 368/370/358/359/361
TC TWO 203/230/249/253/248 283/296/300/314/314 336/363/357/355/360
TC ONLY 271/248/248/243/238 329/306/316/298/301 369/361/367/354/349

Table 2. The numbers of correctly clustered proteins with four different TC based
coarsening algorithms and one matching based algorithm to form 40, 60, and 80 clus-
ters, when 1 up to 5 levels are used. First row has the clustering results with a matching
based ML algorithm, HESN. Best results are in bold font

6 Conclusion

In this paper we presented Triangular Clique (TC) based multi level algorithms
not only to avoid problems caused by matching based algorithms but also to
improve the quality of clustering. Triangular Clique based coarsening algorithms
works easily by finding TCs in a given graph and then merging in the nodes to
form a supernode in the next level as described in section 4. Among our four
TC based algorithms TC ONLY with one level usually gives the best results.
TC ONE also shows almost the same result as TC ONLY with one or two levels.
Our TC based ML algorithms do not rely as much on random algorithms. We
believe our TC based algorithms outperforms matching based ML algorithm
because TC based algorithms take advantage of the fundamental structure of
unweighted graphs.

References

1. G. D. Bader and C. W. Hogue. An automated method for finding molecular
complexes in large protein interaction networks. BMC Bioinformatics, 4(1), 2003.

2. V. Batagelj, A. Mrvar, and M. Zaveršnik. Partitioning approach to visualization
of large graphs. In Graph drawing (Štiř́ın Castle, 1999), volume 1731 of Lecture
Notes in Comput. Sci., pages 90–97. Springer, Berlin, 1999.

3. S. Bornholdt and H. G. Schuster, editors. Handbook of Graphs and Networks.
Wiley VCH, 2003.

4. C. M. Deane, L. Salwinski, I. Xenarios, and D. Eisenberg. Protein interactions:
two methods for assessment of the reliability of high throughput observations. Mol
Cell Proteomics., 1(5):349–56, May 2002.

5. C. Ding, X. He, R. F. Meraz, and S. R. Holbrook. A unified representation of
multiprotein complex data for modeling interaction networks. Proteins: Structure,
Function, and Bioinformatics, 57(1):99–108, 2004.

6. C. Ding, X. He, H. Zha, M. Gu, and H. Simon. A minmaxcut spectral method for
data clustering and graph partitioning. Technical Report 54111, LBNL, December
2003.

7. B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal, 1970.

8. S. Oliveira and S. C. Seok. A multi-level approach for document clustering. Lecture
Notes in Computer Science, 3514:204–211, Jan 2005.

9. S. Oliveira and S. C. Seok. A multilevel approach for identifying functional mod-
ules in protein-protein interaction networks. Proceedings of IWBRA 2006, Lecture
Notes in Computer Science, 3992, 2006. to appear.

10. E. Ramadan, C. Osgood, and A. Pothen. The architecture of a proteomic net-
work in the yeast. Proceedings of CompLife2005, Lecture Notes in Bioinformatics,
3695:265–276, 2005.

11. S. Skiena. The Algorithm Design Manual. New York:Springer-Verlag, 1998.
12. V. Spirin and L. A. Mirny. Protein complexes and functional modules in molecular

networks. Proc Natl Acad Sci U S A, 100(21):12123–12128, October 2003.
13. H. Xiong, X. He, C. Ding, Y. Zhang, V. Kumar, and S. Holbrook. Identification

of functional modules in protein complexes via hyperclique pattern discovery. In
Pacific Symposium on Biocomputing (PSB 2005), volume 10, pages 221–232, 2005.
Available via http://psb.stanford.edu/psb-online/.

