
Sequential and Parallel Resolution of the

Two-Group Transient Neutron Diffusion

Equation using second-degree Iterative Methods

Omar Flores-Sánchez12, Vicente E. Vidal1, Victor M. Garćıa1, and Pedro
Flores-Sánchez3

1 Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia, España
{oflores, vvidal, vmgarcia}@dsic.upv.es
2 Departamento de Sistemas y Computación

Instituto Tecnológico de Tuxtepec
Av. Dr. Victor Bravo Ahuja, Col. 5 de Mayo, C.P. 68300, Tuxtepec, Oaxaca, México

oflores70@hotmail.com
3 Telebachillerato ”El Recreo”

Tierra Blanca, Veracruz, México
pedrofs080374@hotmail.com

Abstract. We present an experimental study of two versions of a second-
degree iterative method applied to the resolution of the sparse linear sys-
tems related to the 3D multi-group time-dependent Neutron Diffusion
Equation (TNDE), which is important for studies of stability and secu-
rity of nuclear reactors. In addition, the second-degree iterative methods
have been combined with an adaptable technique, in order to improve
their convergence and accuracy. The authors consider that second-degree
iterative methods can be applied and extended to the study of transient
analysis with more than two energy groups and they might represent a
saving in spatial cost for nuclear core simulations. These methods have
been coded in PETSc [1][2][3].

1 Introduction

For design and safety reasons, nuclear power plants need fast and accurate plant
simulators. The centre point of concern in the simulation of a nuclear power
plant is the reactor core. Since it is the source of the energy that is produced in
the reactor, a very accurate model of the constituent processes is needed. The
neutron population into the reactor core is modeled using the Boltzmann trans-
port equation. This three-dimensional problem is modeled as a system of coupled
partial differential equations, the multigroup neutron diffusion equations[4][5],
that have been discretised using a nodal collocation method in space and one-
step Backward-Difference Method in time. The solution of these equations can
involve very intensive computing. Therefore, it is necessary to find effective algo-
rithms for the solution of the three-dimensional model. The progress in the area

of multiprocessor technology suggests the application of High-Performance Com-
puting to enable engineers to perform faster and more accurate safety analysis
of Nuclear Reactors [6].

Bru et al in [7] apply two Second-Degree methods [8] to solve the linear system
of equations related to a 2D Neutron-Diffusion equation case. Thus, the main
goal of this paper is the application of those methods and some modifications
that we have proposed to decrease the computational work, but applied to a 3D
real test case.

The outline of the paper is as follows. The mathematical model of the Time-
dependent Neutron Diffusion Equation and its discretisation are described in
Section 2. The second-degree iterative methods are introduced at Section 3. Sec-
tion 4 describes hardware and software platform used. The test case is presented
in Section 5. Section 6 presents a sequential study of the second-degree iterative
methods and the modifications proposed. In Section 7 numerical parallel results
are presented. Finally, we will draw some conclusions in Section 8.

2 Problem Description

Plant simulators mainly consist of two different modules which account for the
basic physical phenomena taking place in the plant: a neutronic module which
simulates the neutron balance in the reactor core, and the evaporation and con-
densation processes. In this paper, we will focus on the neutronic module. The
balance of neutrons in the reactor core can be approximately modeled by the
time-dependent two energy group neutron diffusion equation, which is written
using standard matrix notation as follows[9]:

[v−1]φ̇+ Lφ = (1 − β)Mφ + χ

K
∑

k=1

λkCk (1)

Ċk = βk[νΣf1
νΣf2

]φ− λkCk, k = 1, . . . ,K (2)

where

L =

[

−∇ · (D1∇) +
∑

a1 +
∑

12 0
−

∑

12 −∇ · (D2∇) +
∑

a2

]

, [v−1] =

[1
v1

0

0 1
v2

]

,

and

M =

[

νΣf1 νΣf2

0 0

]

, φ =

[

φf

φt

]

, χ =

[

1
0

]

,

where

– φ is the neutron flux on each point of the reactor; so, it is a function of time
and position.

– Ck is the concentration of the k-th neutron precursor on each point of the
reactor (it is as well a function of time and position). λkCk is the decay rate
of the k-th neutron precursor.

– K is the number of neutron precursors. βk is the proportion of fission neu-
trons given by transformation of the k-th neutron precursor; β =

∑K
k=1 βk.

– L models the diffusion (−∇ · (D1∇)), absorption (
∑

a1,
∑

a2) and transfer
from fast group to thermal group (

∑

12).
– M models the generation of neutrons by fission.
– ν

∑

fg gives the amount of neutrons obtained by fission in group g.

– v−1 gives the time constants of each group.

To study rapid transients of neutronic power and other space and time phe-
nomena related to neutron flux variations, fast codes for solving these equations
are needed. The first step to obtain a numerical solution of these equations con-
sists of choosing a spatial discretization for equation (1). For this , the reactor
is divided in cells or nodes and a nodal collocation method is applied[10][11].
In this collocation method, neutron flux is expressed as a series of Legendre
Polynomials.

After a relatively standard process (setting boundary conditions, making use
of the orthonormality conditions, using continuity conditions between cells) we
obtain the following systems of ordinary differential equations:

[v−1]ψ̇ + Lψ = (1 − β)Mψ +X

K
∑

k=1

λkCk, (3)

Ċk = βk[M11M12]ψ − λkCk, k = 1, . . . ,K, (4)

where unknowns ψ and Ck are vectors whose components are the Legendre
coefficients of φ and Ck in each cell, and L, M , [v−1] are matrices with the
following block structure:

L =

[

L11 0
−L21 L22

]

,M =

[

M11 M12

0 0

]

, v−1 =

[

v−1 0
0 v−1

]

, X =

[

I

0

]

.

Depending on flux continuity conditions imposed among the discretisation
cells of the nuclear reactor, the blocks L11 and L22 can be symmetric or not.
For our test case, these blocks are symmetric positive definite matrices[12], while
blocks L21, M11 and M12 are diagonal.

The next step consists of integrating the above ordinary differential equations
over a series of time interval, [tn, tn+1]. Equation (4) is integrated under the
assumption that the term [M11M12]ψ varies linearly from tn to tn+1, obtaining
the solution Ck at tn+1 expressed as

Cn+1
k = Cn

k e
λkh + βk(ak[M11M12]

nψn + bk[M11M12]
n+1ψn+1 (5)

where h = tn+1 − tn is a fixed time step size, and the coefficients ak and bk are
given by

ak =
(1 + λkh)(1 − eλkh)

λ2
kh

−
1

λk

, bk =
λkh− 1 + eλkh

λ2
kh

.

To integrate (3), we must take into account that it constitutes a system of
stiff differential equations, mainly due to the elements of the diagonal matrix
[v−1]. Hence, for its integration, it is convenient to use an implicit backward
difference formula (BDF). A stable one-step BDF to integrate (3) is given by

[v−1]

h
(ψn+1 − ψn) + Ln+1ψn+1 = (1 − β)Mn+1ψn+1 +X

K
∑

k=1

λkC
n+1
k (6)

Taking into account equation (5) and the structure of matrices L and M , we
rewrite (6) as the system of linear equations

[

T11 T12

T21 T22

][

ψn+1
1

ψn+1
2

]

=

[

R11 R12

0 R22

] [

ψn
1

ψn
2

]

+

K
∑

k=1

λke
−λkh

[

Cn
k

0

]

, (7)

where

T11 =
1

h
v−1
1 + Ln+1

11 − (1 − β)Mn+1
11 −

K
∑

k=1

λkβkbkM
n+1
11 ,

T21 = −Ln+1
21 ,

T12 = −(1 − β)Mn+1
12 −

K
∑

k=1

λkβkbkM
n+1
12 ,

T22 =
1

h
v−1
2 + Ln+1

22 ,

R11 =
1

h
v−1
1 +

K
∑

k=1

λkβkakM
n
11,

R12 =
K

∑

k=1

λkβkakM
n
12, R22 =

1

h
v−1
2 .

Thus, for each time step it is necessary to solve a large and sparse system of
linear equations, with the following block structure:

[

T11 T12

T21 T22

] [

ψ1

ψ2

]

=

[

e1
e2

]

(8)

where the right-hand side depends on both the solution in previous time steps
and the backward difference method used. Usually, the coefficients matrix of
system (8) has similar properties as the matrices L and M in equation (3),
namely blocks T11, T22 are symmetric positive definite matrices, and blocks T12,
T21 are singular diagonal matrices. System (8) will be also denoted as

Tψ = e. (9)

3 Second-Degree Iterative Methods.

We begin this section with a brief introduction to the second-degree methods
presented and applied to a 2D neutron diffusion equation case in [7].

3.1 Second Degree Method A

Consider the coefficient matrix T of the linear system (9) and the Jacobi splitting,
T = M −N , with matrices M and N given by

M =

[

T11 0
0 T22

]

, N =

[

0 −T12

−T21 0

]

where iteration matrix BJ is represented by

BJ = M−1N =

[

0 −T−1
11 T12

−T−1
22 T21 0

]

Now, considering the matrices G1 = ωBJ , G0 = (1 − ω)BJ , where ω is an
extrapolation factor, and the vector k = M−1e, we can write the following
second degree method based on the Jacobi Over-relaxation (JOR) splitting

ψ(n+1) = G1ψ
(n) +G0ψ

(n−1) + k = BJ (ωψ(n) + (1 − ω)ψ(n−1)) + k,

which corresponds to the following operations

T11ψ
l+1
1 = e1 − T12(ωψ

l
2 + (1 − ω)ψl−1

2),

T22ψ
l+1
2 = e2 − T21(ωψ

l
1 + (1 − ω)ψl−1

1).
(10)

Let us identify these operations as Method A.

3.2 Second Degree Method B

In the same manner, we can construct another method based on the accelerated
Gauss-Seidel splitting, whose iteration matrix BGS is given by

BGS = M−1N =

[

T11 0
T21 T22

]

−1 [

0 −T12

0 0

]

,

The operations that correspond to this method are represented by

T11ψ
l+1
1 = e1 − T12(ωψ

l
2 + (1 − ω)ψl−1

2),

T22ψ
l+1
2 = e2 − T21(ωψ

l+1
1 + (1 − ω)ψl

1).
(11)

Methods A and B, can be described by the following algorithmic scheme

Second-Degree Iterative Method Algorithm

(1) Set ψ0
2; {ψ0

2 := ψ∗

2}
(2) Solve T11ψ

1
1 = e1 − T12ψ

0
2

(3) Solve T22ψ
1
2 = e2 − T21ψ

1
1

(4) Do l = 0, 1, 2, . . .
(4a) Solve ψl+1

1 in accordance with A or B method.

(4b) Solve ψl+1
2 in accordance with A or B method.

until ‖ψl+1
1 − ψl

1‖ < tol and ‖ψl+1
2 − ψl

2‖ < tol

where, ψ∗

2 represents the solution of a previous time step.
As we can see, the main difference between methods (10) and (11), is that

in (11), the new solution for ψ1 is used as soon as it is available to compute
ψ2. Therefore, a faster convergence rate may be expected. In both methods, we
distinguish between outer and inner iterations. The outer iterations are identified
by the Step (4), and inner iterations are represented by Step (4a) and (4b), which
correspond to iterations needed for solving the linear systems with matrices T11

and T22 respectively. Since these blocks are symmetric positive-definite matrices
the Conjugate-Gradient method[16] was applied. General theorems about the
convergence of second-degree methods can be found in [8].

The next section presents the hardware and software tools that we have used
to carry out the numerical experiments.

4 Hardware and Software Platform

Sequential and parallel experiments have been performed on a 12-node biproces-
sor cluster with Red Hat 8.0 operating system, using only one CPU per node at
the Polytechnic University of Valencia. Each CPU is a 2 GHz Intel Xeon proces-
sor and has 1 GB of RAM memory. All nodes are connected by a SCI network
with a Torus 2D topology in a 4x5 mesh.

The Portable, Extensible Toolkit for Scientific Computation (PETSc)[1][2][3],
is a suite of data structures and routines that provide the building blocks for
the implementation of large-scale application codes on parallel (and serial) com-
puters. PETSc uses the MPI Standard for all message-passing communication.
Some of the PETSc modules deal with vectors, matrices (generally sparse), dis-
tributed arrays, Krylov subspace methods, preconditioners including multigrid
and sparse direct solvers, etc.

Figure 1 illustrates the PETSc library hierarchical organization, which en-
ables users to employ the level of abstraction that is most appropriate for a
particular problem.

PETSc uses the message-passing model for parallel programming and em-
ploys MPI for all interprocessor communication. In PETSc the user is free to
employ MPI routines as needed throught an application code. However, by de-
fault the user is shielded from many of the details of message passing within
PETSc, since these are hidden within parallel objects, such as vectors, matri-
ces, and solvers. In addition, PETSc provides tools such as generalized vector

Fig. 1: Organization of PETSc library.

scatter/gathers and distributed arrays to assist in the management of parallel
data.

PETSc provides a variety of matrix implementations because no single matrix
format is appropriate for all problems. Currently PETSc supports dense storage
and compressed sparse row storage, as well as several specialized formats. There
are sequential and parallel AIJ sparse matrix format in PETSc. In the sequential
AIJ sparse matrix, the nonzero elements are stored by rows, along with an array
of corresponding column numbers and an array of pointers to the beginning of
each row. Parallel sparse matrices with the AIJ format can be created with the
command

MatCreateMPIAIJ(MPI Comm comm,int m, int n, int M,int N,

int d nz,int *d nnz,int o nz,int *o nnz, Mat *A);

A is the newly created matrix, while the arguments m, M and N, indicate the
number of local rows and the number of global rows and columns, respectively.
In the PETSc partitioning scheme, all the matrix columns are local and n is
the number of columns corresponding to local part of a parallel vector. Either
the local o global parameters can be replaced with PETSC DECIDE, so that
PETSc will determine them. The matrix is stored with a number of rows on
each process, given by m, or determined by PETSc if m is PETSC DECIDE. If
PETSC DECIDE is not used for the arguments m and n, then the user must
ensure that they are chosen to be compatible with the vectors. To do this, one
first considers the matrix-vector product y = Ax. The m that is used in the
matrix creation routine MatCreateMPIAIJ() must match the local size used
in the vector routine VecCreateMPI() for y. Likewise, the n used must match
that used as the local size in VecCreateMPI() for x. For example, the PETSc
partitioning scheme using the parallel sparse matrix AIJ format for operation
Ax, must be as follows

p0

p1

p2

Ax =

























1 2 0 | 0 3 0 | 0 4
0 5 6 | 7 0 0 | 8 0
9 0 10 | 11 0 0 | 12 0

13 0 14 | 15 16 17 | 0 0
0 18 0 | 19 20 21 | 0 0
0 0 0 | 22 23 0 | 24 0

25 26 27 | 0 0 28 | 29 0
30 0 0 | 31 32 33 | 0 34

















































1
0
5
7
9
0

10
11

























p0

p1

p2

where the local parts of matrix A and vector x stored in processor p0 are

Ap0
=





1 2 0 | 0 3 0 | 0 4
0 5 6 | 7 0 0 | 8 0
9 0 10 | 11 0 0 | 12 0



 and





1
0
5



 = xp0
,

respectively.
In PETSc, user must specify a communicator upon creation of any PETSc

object (such as a vector, matrix or solver) to indicate the processors over which
the object is to be distributed.

Among the most popular Krylov subspace iterative methods contained in
PETSc are Conjugate Gradient, Bi-Conjugate Gradient, Stabilized BCG, Trans-
pose Free Quasi-Minimal Residual, Generalized-Minimal Residual and so on[16].
PETSc offers preconditioners as Additive Schwarz, Block Jacobi, Jacobi, ILU,
ICC, etc. We do not apply preconditioning for our test case due to the good
spectral properties of T11 and T22 blocks, as we can see in the convergence
curves represented in the Figure 2.

Fig. 2: CG convergence curves for T11 and T22 blocks.

Timing is obtained through the use of real-time (wall-clock time) clock func-
tion available in PETSc library. For all methods, we have verified their accuracy

and precision with regard to the global system Tψ = e using the Matlab soft-
ware.

5 Test Case

The test case chosen is the comercial reactor of Leibstadt[13], which has been
discretised in a 3D form. The spatial discretisation has 32*32*27 cells, so that
the total number of equations and cells is quite large: 157248 equations and
796080 nonzero elements in the Jacobian matrix.

We have applied all methods presented here to the set of matrices belongs to
time step t = 0, which corresponds to a stability test carried out in 1990 where
the reactor oscillates out of phase, to test their robustness and efficiency.

In the next section, the sequential performance is analysed, and some varia-
tions to A and B methods are introduced.

6 Sequential study of methods A and B and some

variations.

In order to identify the optimum ω for A and B methods in our test case, we have
carry out a heuristic study. Some results of this study are described in Table 1.

Table 1: Sequential execution times (secs) for method A and B with different ω values.
The symbol † indicates that convergence was not attained.

ω 0.1 0.5 0.8 0.9 1.0 1.3 1.5 1.9

A 252.46 223.97 196.75 187.39 138.08 † † †
B 211.08 175.44 143.61 130.40 116.28 63.98 290.85 †

In accordance with CPU execution times of this table, the optimum ω for
method A is 1.0 and for method B is 1.3.

The errors attained with methods A and B are represented in Table 2, where
rl+1 and ‖ · ‖ represent the residual e− Tψl+1 and the Euclidean norm, respec-
tively.

From Tables 1 and 2, we can observe that method B is twice more efficient
than method A as we had expected.

In order to reduce even more the computational work of method B, we have
modified the operations as follows

T11ψ
l+1
1 = e1 − T12(ω1ψ

l
2 + (1 − ω1)ψ

l−1
2),

T22ψ
l+1
2 = e2 − T21(ω2ψ

l+1
1 + (1 − ω2)ψ

l
1).

(12)

Under this scheme, we have added two different parameters ω1 and ω2. Let us
identify (12) as method C.

From application of method C to the test case, the optimum value of ω1 is
1.0 and for ω2 is 1.9. Table 3 shows a comparison of the number of iterations
and execution times registered by method B and C, and we can see that the goal
of decrease the computational work has been reached without lost of accuracy.
From Table 3 we can observe a time reduction of 43% with regard to method B.

Table 2: Precision of methods A and B with optimum ω value.

‖rl+1‖2 ‖rl+1‖2/‖e‖2 Its.

A 8.83e-6 7.58e-5 394
B 4.91e-6 4.21e-5 183

Table 3: Performance comparison between method B and C

Its. CPU Time (secs.) ‖rl+1‖2/‖e‖2

B 183 63.98 4.21e-5
C 89 36.29 5.42e-5

Since the precision of method C is good as A and B methods, we have exper-
imented with an ’adaptable’ precision technique, achieving some improvements
in the efficiency of the process. This technique solves T11 and T22 blocks with
a cheap precision (ερi

) at initial stages of the method. Then, this precision is
’adapted’ or ’improved’ towards a more demanding one (ερi+1

) in successive it-
erations. Application of this technique to method C give rise to the following
algorithm (method D in this work).

Second-Degree Iterative Algorithm (Adaptable version)

(1) Set ψ0
2; {ψ0

2 := ψ∗

2}
(2) Set ερ = {ερ1

, ερ2
, . . . , ερn

} where ερi
> ερi+1

;

(2) Solve T11ψ
1
1 = e1 − T12ψ

0
2

(3) Solve T22ψ
1
2 = e2 − T21ψ

1
1

(4) Do l = 0, 1, 2, . . .
(4a) Solve for ψl+1

1 with tolerance ερi

(4b) Solve for ψl+1
2 with tolerance ερi

(4c) if precision of rl+1 ≤ rl
i := i+ 1

end if

until ‖ψl+1
1 − ψl

1‖ < tol and ‖ψl+1
2 − ψl

2‖ < tol

Numerical experiments have shown that Method D is 25% more efficient
than method C. Also, it is as exact as the rest of methods for the test case (See
Table 4).

Table 4: Performance comparison between method C and D

Its. CPU Time (secs.) ‖rl+1‖2/‖e‖2

C 89 36.29 5.42e-5
D 90 27.31 5.42e-5

Next section presents the parallel numerical results for all methods.

7 Parallel numerical results

All methods have been coded using the following PETSc operations facilites:

– VecNorm Computes the vector norm.
– VecPointwiseMult Computes the componentwise multiplication w = x*y.
– VecAYPX Computes y = x + alpha y.
– VecCopy Copies a vector.
– KSPSolve Solves a linear system. Steps (4a) and (4b) are carry out through

the use of this operation.

Method A presents a good parallelism degree because the different linear
systems of equations in (10) can be simultaneously solved by different groups
of processors, and then interchange their solutions. For that reason, we have
implemented two different parallel versions of this method, based on two different
MPI communication routines: gather/scatter and send/recv. Also, we use the
MPI facility to manage groups of processes through the use of communicators.
For example, for the case of use p = 2 processors in method A, processor p0 is
dedicated to solve system T11 and processor p1 is dedicated to solve system T22.
For the case of use p = 4 processors, p

2 processors are dedicated to solve system
T11 and the rest dedicated to solve T22, and so on.

The timing results for different number of processors (p) are registered in
Table 5. As we can see, version based on send/recv is slightly more efficient than
version based on gather/scatter primitives.

Table 5: Parallel execution times (secs) with method A

p 1 2 4 6 8 12

gather/scatter 138.08 89.33 54.90 40.51 33.86 25.47
send/recv 138.08 88.27 53.07 38.05 31.30 22.60

We have attempted to implement an asynchronous version of method A, but
this was not possible, due to the strong dependency between T11 and T22 blocks.

We present a summary of parallel execution times with all methods in Table 6,
where we can observe that the use of High-Performance Computing has decreased
the sequential execution times for all methods. For example, for A and B methods
the sequential execution times have been reduced until 16% of the original time
value when we use p = 12 processors. For C and D methods, the execution time
was reduce to 14% for the same number of processors.

Table 6: Parallel execution times (secs) for all methods

Method p = 1 p = 2 p = 4 p = 6 p = 8 p = 12

A 138.08 88.27 53.07 38.05 31.30 22.60
B 63.98 36.83 28.78 20.26 11.94 10.41
C 36.29 21.11 12.01 8.68 6.91 5.23
D 27.31 15.83 8.90 6.51 5.17 3.90

From Table 6 we observe that method D offers the best execution time. The
speedup and efficiency[15] of method D are represented in Figure 3, where for all
values of p, parallel efficiency remains above of 50%.

Fig. 3: Speedup and efficiency of method D.

8 Conclusions

We have presented the application and parallelisation of two second-degree meth-
ods (A and B methods) to solve the sparse linear system related to a 3D Neutron-

Diffusion equation of a real nuclear reactor using the numerical parallel library
of PETSc.

In addition, we have modified A and B methods in order to reduce the compu-
tational work. For this, we have implemented two versions: the first one, based on
two different relaxation parameters for each energy group obtaining a great per-
formance which we call method C; and a second one, named method D, which is
based on an adaptable technique that improves even more the performance with
regard to the others methods.

We have carry out a heuristic study of the optimum relaxation parameter
for each one of the methods presented and for our particular test case. These
parameters have helped to accelerate the methods, specially C and D methods.

The main advantage of the second-degree methods presented in this work,
is that matrix T do not need be formed explicitly; thus, simulation with more
than 2 energy groups can be feasible.

It is important to emphasize that the application of High Performance Com-
puting has reduced the sequential time of the different methods presented in this
work.

Future works will contain the integration of these methods to DDASPK and
FCVODE routines and the simulation of a full transient.

Acknowledgement

This work has been supported by Spanish MEC and FEDER under Grant
ENE2005-09219-C02-02 and SEIT-SUPERA-ANUIES (México).

References

1. Balay S., Gropp W.D., McInnes L.C., Smith B.F.: PETSc home page
http://www.mcs.anl.gov/petsc (2002)

2. Balay S., Gropp W.D., McInnes L.C., Smith B.F.: PETSc Users Manual. ANL-
95/11 - Revision 2.1.5, Argonne National Laboratory (1997)

3. Balay S., Gropp W.D., McInnes L.C., Smith B.F.: Efficient Management of Par-
allelism in Object Oriented Numerical Software Libraries. Modern Software Tools
in Scientific Computing (1997) 163-202

4. Weston J.R., Stacey M.: SpaceTime Nuclear Reactor Kinetics. Academic Press
(1970)

5. Henry A.F.: Nuclear Reactor Analysis. The M.I.T Press (1975)
6. Garćıa V.M., Vidal V., Verdú G., Miró R.: Sequential and Parallel Resolution

of the 3D Transient Neutron Diffusion Equation. Mathematics and Computation,
Supercomputing, Reactor Physics and Nuclear and Biological Applications, on
CD-ROM, American Nuclear Society (2005)

7. Bru R., Ginestar D., Maŕın J., Verdú G., Mas J., Manteuffel T.: Iterative Schemes
for the Neutron Diffusion Equation. Computers and Mathematics with Applica-
tions, Vol.44, (2002) 1307-1323

8. D.M. Young.: Iterative Solution of Large Linear Systems. Academic Press Inc.,New
York, N.Y. (1971)

9. Stacey W.M.: Space-Time Nuclear Reactor Kinetics. Academic Press, New York
(1969)

10. Verdú G., Ginestar D., Vidal. V., Muñoz-Cobo J.L.: A Consistent Multidimensional
Nodal Method for Transient Calculation. Ann. Nucl. Energy, 22(6), (1995) 395-410

11. Ginestar D., Verdú G., Vidal V., Bru R., Maŕın J., Muñoz J.L.: High order back-
ward discretization of the neutron diffusion equation. Ann. Nucl. Energy, 25(1-3),
(1998) 47-64

12. Hébert A.: Development of the Nodal Collocation Method for Solving the Neutron
Diffusion Equation. Ann. Nucl. Energy, 14(10), (1987) 527-541

13. Blomstrand J.: The KKL Core Stability Test, conducted in September 1990. ABB
Report, BR91-245 , (1992)

14. D. Ginestar and J. Maŕın and G. Verdú.: Multilevel methods to solve the neutron
diffusion equation. Applied Mathematical Modelling, 25, (2001) 463-477

15. V. Kumar and A. Grama and A. Gupta and G. Karypis.: Introduction to parallel
computing:design and analysis of parallel algorithms. The Benjamin/Cummings
Publishing Company, Inc.,Redwood City, CA (1994)

16. Y. Saad. Iterative Methods for Sparse Linear Systems PWS Publishing Company,
Boston, MA (1996)

