
Model for Simulation of Heterogeneous
High-Performance Computing Environments

Rodrigo Fernandes de Mello1 and Luciano José Senger2?

1 Universidade de São Paulo – Departamento de Computação
Instituto de Ciências Matematicas e de Computação
Av. Trabalhador Saocarlense, 400 Caixa Postal 668

CEP 13560-970 São Carlos, SP, Brazil
mello@icmc.usp.br

2 Universidade Estadual de Ponta Grossa – Departamento de Informatica
Av. Carlos Cavalcanti, 4748

CEP 84030-900 Ponta Grossa, PR, Brazil
ljsenger@icmc.usp.br

Abstract. This paper proposes a new model to predict the process execution be-
havior on heterogeneous multicomputing environments. This model considers the
process execution costs such as processing, hard disk acessing, message transmit-
ting and memory allocation. A simulator of this model was developed which help
to predict the execution behavior of processes on distributed environments under
different scheduling techniques. Besides the simulator, it was developed a suite of
benchmark tools in order to parameterize the proposed model with data collected
from real environments. Experiments were conduced to evaluate the proposed
model which used a parallel application executing on a heterogeneous system.
The obtained results show the model ability to predict the actual system perfor-
mance, providing an useful model for developing and evaluating techniques for
scheduling and resource allocation over heterogeneous and distributed systems.

1 Introduction

The evaluation of a computing system allows the analysis of its technical and economic
feasibility, safety, performance and correct execution of processes. In order to evaluate a
system, techniques that estimate its behavior on different situations are used. Such tech-
niques provide numerical results which allow the comparison among different solutions
for the same problem [1]. The evaluation of a computing system may use elementary
or indirect techniques. The elementary ones are directly applied over the system, so
it is necessary to have it previously implemented. The indirect ones allow the system
evaluation before its implementation, what is relevant at the project phase [2–6].

The indirect techniques use mathematic models to represent the behavior of the
main system components. Such models should be as similar as possible to the real prob-
lems, generating results for a good evaluation without being necessary to implement
? The authors thank to William Voorsluys for improving the source code of the benchmark memo

and the fundings from Capes and Fapesp Brazilian Foundations (under the process number
04/02411-9).

them [6]. Several models have been proposed for the evaluation of the execution time
and the process delay. They consider the CPU consumption, the performance slowdown
due to the use of the virtual memory [7] and the time spent with messages transmitted
through the communication network [8].

Amir et al. [7] have proposed a method for job assignment and reassignment on
cluster computing. This method uses a queuing network model to represent the slow-
down caused by virtual memory usage. In such model the static memorym(j) used by
the process is known. This model defines the load of each computer in accordance with
the equation 1, where:L(t, i) is the load of computer i at the instant t; lc(t, i) is the CPU
occupation; lw(t, i) is the amount of main memory used; rw(i) is maximum capacity
of the main memory; β is the slowdown factor due to the use of virtual memory. Such
factor increases the process response time, what consequently reflects in a lower final
performance. This work attempts to minimize the slowdown by means of scheduling
operations.

L(t, i) =

{
lc(t, i) if lw(t, i) ≤ rw(i)

lc(t, i) ∗ β otherwise
(1)

Mello et al. [9] have proposed improvements to the slowdown model by Amir et
al. [7]. This work includes new parameters which allow a better modelling of process
slowdown. Such parameters are the capacity of CPU and memory, throughput for read-
ing and writing on hard disk and delays generated by the use of the communication net-
work. However, this model presents similar limitations to the work by Amir et al. [7], as
it does not offer any resource to model, through equations, the delay caused by the use
of virtual memory (represented in equation 1 by the parameter β), nor consider other
delays of the process execution time generated by: message transmission, hard disk ac-
cess and other input/output operations. The modeling of message transmission delays
is covered by other works [8, 10].

Culler et al. [8] have proposed the LogP model to quantify the overhead and the
network communication latency among processes. The overhead and latency cause de-
lays among processes which communicate. This model is composed of the following
parameters:Lwhich represents the high latency limit or delay incurred in transmitting a
message containing a word (or a small number of words) from the source computer to a
destination; o represents the overhead which is the time spent by processor to prepare a
message for sending or receiving; g is the minimum time interval between consecutive
message transmittion (sending or receiving); P is the number of processors. The LogP
model assumes a finite capacity network with the maximum transmission defined by
L/g messages.

Sivasubramaniam [10] used the LogP model to propose a framework to quantify the
overhead of parallel applications. In such framework are considered aspects such as the
processing capacity and the communication system usage. This framework joins efforts
of actual experiments and simulations to refine and define analytic models. The major
limitation of this work is that it does not present a complete case study.

The LogP model can be aggregated to the model by Amir et al. [7] and Mello et
al. [9], permitting to evaluate the process execution time and slowdowns considering
the resources of CPU, memory and transmitted messages on the network. Although

unifying the models, they are still incomplete because do not consider the spatial and
message generation probability distributions. Motivated by such limitations, some stud-
ies have been proposed [11, 12].

Chodnekar et al. [11] have presented a study to characterize the probability distri-
bution of messages on communication systems. In such work, the 1D-FFT and IS [13],
Cholesky and Nbody [14], Maxflow [15], 3D-FFT and MG [16] parallel applications are
evaluated executing on real environments. In the experiments, some informations have
been captured such as the message sending and receiving moments, size of messages
and destination. These informations were analyzed through statistic tools, and the spa-
tial and message generation probability distributions obtained. The spatial distribution
defines the frequency each process communicates with others. The message generation
distribution defines the probability that each process sends messages to others.

They have concluded that the most usual message generation probability distribu-
tion for parallel applications are the exponential, hyperexponential and Weibull. It has
also been concluded that the spatial distribution is not uniform and there are different
traffic patterns during the applications’ execution. In the most part of applications there
is a process which receives and sends a large number of messages to the remainder pro-
cesses (like a master for PVM – Parallel Virtual Machine – and MPI – Message Passing
Interface – applications). The work also presents some features about message volume
distribution, but there is not a precise analysis about the message size, overhead and
latency.

Vetter and Mueller [12] have studied the communication behavior of scientific ap-
plications using MPI (Message Passing Interface). This study quantifies the average
volume of transmitted messages and their size. It has been concluded that in peer-to-
peer systems 99% of the transmitted messages vary from 4 to 16384 bytes. In collective
calls this number varies from 2 to 256 bytes. This was combined with the studies on
spatial and message generation distributions by Chodnekar et al. in [11] and to the
LogP model [8] which allow the identification of overhead and communication latency
in computing systems. By unifying these studies to the previously described slowdown
models it is possible to evaluate the process behavior considering CPU, virtual memory
and message transmittion. However, it is not possible to model voluntary delays in the
execution of processes (generated by sleep calls) and accesses to hard disks.

Motivated by the unification of the previously presented models, the aggregation of
the applications’ voluntary delays and hard disk access, this paper presents the UniMPP
(Unified Modeling for Predicting Performance) model. This model unifies the CPU
consumption considered in the models by Amir et al. [7] and Mello et al. [9], the time
spent to transmit messages modeled by Culler et al. [8] and Sivasubramaniam [13],
the message volume and the spatial and message generation probability distributions
by Chodnekar et al. [11], and Vetter and Mueller [12]. Experiments confirmed that
this model can be used to predict the behavior of process execution on heterogeneous
environments, once it generates the process response times very similar to the observed
on real executions.

This model was implemented in a simulator which is parameterized with system
configurations (CPUs, main and virtual memories, hard disk thoughput and network
capacity) and receives processes for execution. Distribution functions are used to char-

acterize the process CPU, memory, hard disk and network occupations. The simulator
also generates new processes according to a probability distribution function, allowing
to evaluate different scheduling and load balancing policies without needing the real
execution.

As presented before, the simulator needs to be parameterized with the actual system
configurations. For this purpose, a suite of benchmark tools was developed to collect in-
formations such as the capacity of CPUs in MIPS (millions of instructions per second),
the main and virtual memory behavior under a progressive occupation (this generates
delay functions), the hard disk throughput in reading and writing operations (in MBytes
per second) and the network delay (considering the overhead and latency in seconds).

The main contribution of this work is the UniMPP model which can be used with
the simulator allied to the benchmark tools to predict the process execution time on
heterogeneous environments. The simulator is prepared to receive new scheduling and
load balancing policies and evaluate them using different workload models [17].

This paper is divided into the following sections: 2 The model; 3 Parameterization;
4 Model Validation; 5 Conclusions and References.

2 The Model

Motivated by the unification of the virtual memory slowdown models [7,9], by the mod-
els of delays in process execution caused by messages transmission [8, 10], by studies
about spatial and message generation probability distributions [11], by the slowdown
caused in main and virtual memory ccupation, by the definition of voluntary delay and
access to hard disks, the UniMPP (Unified Modeling for Predicting Performance) model
has been designed. These models are presented in the previous section. Unifying the
ideas of each model and adding voluntary delays and hard disk access, we have defined
a new model to predict the execution behavior of processes running on heterogeneous
computers. By using this model, researchers can evalutate different techniques such as
scheduling and load balancing without being necessary to run an application on an real
environment.

In this model, a process pj arrives at the system, following a probability distribution
function, at the instant aj . Such process is started by the computer ci. Each computer
maintains its queue qi,t of processes at the instant t. In this model, every computer
ci is composed of the sextuple {pci,mmi, vmi, dri, dwi, loi}, where: pci is the total
computing capacity of each computer measured in instructions per unit of time; mmi

is the total main memory; vmi is the total virtual memory capacity; dri is the hard disk
reading throughput; dwi is the hard disk writing throughput; loi is the time spend in
sending and receiving messages.

In the UniMPP, each process is represented by the sextuple {mpj , smj , pdfdmj ,
pdfdrj , pdfdwj , pdfnetj}, where: mpj represents the processing consumption; smj

is the amount of static memory allocated by the process; pdfdmj is the probability
distribution function used to represent the dynamic memory occupation; pdfdrj is the
probability distribution function used to represent the hard disk reading; pdfdwj is the
probability distribution function used to represent the hard disk writing; pdfnetj is the

probability distribution function used to represent the sending and receiving operations
on communication system.

Having formally defined computers and processes, equations were defined to ob-
tain the process response time and delay. The first equation (equation 2) presents the
response time (TEpj ,ci) of a process pj being executed in a computer ci, where the
total computing capacity pci of ci and the processing consumption of pj should be rep-
resented by the same metric, such as MI (millions of instructions when the capacity of
processors was obtained in Mips – Millions of instructions per second) or MF (millions
of float-point instructions when the capacity of processors was obtained in Mflops –
Millions of float-point instructions per second).

TEpj ,ci =
mpj
pci

(2)

The equation 2 presents a calculation method for the execution time of a process un-
der ideal conditions, in which there is no competition nor delays caused by the memory
and input/output usage. The work by Amir et al. [7] presents a more adequate equation
in which, from the moment that the virtual memory starts to be used, there is a delay
in the process execution. These authors use a constant delay in their equations. How-
ever, by using the benchmark tools described in section 3, it was observed that there are
limitations in their model, since the performance slowdown is linear during the main
memory usage and exponential from the moment the virtual memory starts to be used.

TEMpj ,ci = TEpj ,ci ∗ (1 + α) (3)

The Amir’s performance model does not consider this linear performance slowdown
caused by the use of the main memory and considers a constant factor for the perfor-
mance slowdown caused by the use of the virtual memory when, in fact, this slowdown
is exponential. The UniMPP models the process performance slowdown generated by
the use of main and virtual memories, by the equation 3, where α represents a per-
centage obtained from a delay function and TE is presented in equation 2. This delay
function is generated by a benchmark tool (section 3) where in the x−axis is the mem-
ory occupation up to use all the virtual memory and in the y − axis is the α value (the
slowdown imposed in the process execution by the memory occupation).

A model which considers the process execution slowdown caused by the use of
main and virtual memories become more adequate, however, it does not allow the pre-
cise quantification of the total execution time of processes which perform input and
output operations to the hard disk. For this reason, experiments have been conduced
and equations developed to measure the delays generated by accesses to hard disk. The
equation 4 models the process delay generated by reading operations from hard disk,
where: nr represents the number of reading accesses; bsize represents the data buffer
size; dri represents the throughput capacity for reading accesses from hard disk; and
wtdrk represents the waiting time for using the resource.

SLDRpj ,ci =

nr∑

k=1

bsizek
dri

+ wtdrk (4)

The hard disk writing delay is defined by equation 5, where: nw represents the
number of writing accesses; bsize represents the data buffer size to be written; dwi is
the throughput capacity for writing accesses in hard disk; wtdw is the waiting time for
using the resource.

SLDWpj ,ci =

nw∑

k=1

bsizek
dwi

+ wtdwk (5)

In addition to the delays caused by memory usage and input/output to hard disks,
there are delays generated by sending and receiving messages on communication sys-
tems. Such delays vary according to the network bandwidth, latency and overhead of
communication protocols [18–20]. The protocol latency involves the transmission time
on communication system, which vary in accordance with the message size and control
messages generated by the protocol [18–20]. The protocol overhead is the time involved
for packing and unpacking messages for transmission. This time also varies according
to the messages size [18–20]. The delay for sending and receiving messages is defined
by equation 6, where: nm represents the number of sent and received messages; θs,k,
described in equation 7 is the time used for sending and receiving messages on commu-
nication system, not considering the wait for resources; and wtnk represents the wait
time, the queue time, to send or receive a message, when the resource is busy. The
components of equation 7 are: os,k overhead, which when multiplied by two allows the
quantification of packing time (by the sender) and the unpacking time (by the receiver)
of a message; and ls,k is the latency to transmit a message.

SLNpj ,ci =

nm∑

k=1

θs,k + wtnk (6)

θs,k = 2 ∗ os,k + ls,k (7)

Aiming the unification of all previously described delay models, it is proposed the
equation 8, which allows the definition of the response time (the prediction of this time
in a real enviroment) of a process pj in a computer ci, where: lz is the process voluntary
delay generated by the system calls sleep. In the case of load transference (that is, pro-
cess migration) the communication channels may modify their behaviors and perform
a higher or lower number of input/output operations (a process migrating to a computer
where there are others which it communicates, reduces the latency and overhead be-
cause does not use the communication system, although it can overload the CPU). The
equation 9 is the response time of a process pj transferred among n computers.

SLpj = SLpj,ci = TEMpj ,ci + SLDRpj ,ci +

SLDWpj ,ci + SLNpj ,ci +

lz (8)

SLpj =

n∑

k=1

SLpj,ck (9)

The UniMPP model unifies the concepts from models by Amir et al. [7], Mello et
al. [9] and Culler et al. [8] and extends them by adding voluntary delay equations and
the time for reading and writing accesses to hard disks. In addition, based on experi-
ments, this work proposes new equations to define the main and virtual memory slow-
down. By these equations, it was observed that the slowdown is linear when using the
main memory, and exponential using the virtual. Such experiments were carried though
using the benchmark tools from section 3. This model allows studies of scheduling,
load balancing algorithms and prediction of process response times on heterogeneous
environments.

The proposed model has been implemented in a simulator, named SchedSim 3,
which allows other researchers to conduct related studies. Such simulator is imple-
mented in Java language and uses the object oriented concepts that simplify its exten-
sion and functionality additions. The simulator is parameterized with system configu-
rations (CPUs, main and virtual memories, hard disk thoughput and network capacity)
and receives processes for execution. It generates new processes according to a proba-
bility distribution function, allowing to evaluate different scheduling and load balancing
policies without needing the real execution.

3 Parameterization

In order to parameterize the SchedSim simulator using real environment characteris-
tics, a suite of benchmark tools4 was developed. These tools measure the capacity of
CPU, reading and writing hard disk throughput and the message transmission delays.
Such tools evaluate these characteristics until they reach a minimum sample size based
on the central limit theorem, allowing to apply statistical summary measures such as
confidence interval, standard deviation and average [21]. This suite is composed by the
following tools:

1. mips: it measures the capacity of a processor, in millions of instructions per sec-
ond. This tool uses a bench() function implemented by Kerrigan [22];

2. memo: it creates child processes until all main and virtual memories are filled up,
measuring the delays of the context switches among processes. The child processes
only allocate the memory and then sleep for some seconds, thus it does not consider
the processor usage;

3. discio: it measures the average writing throughput (buffered and unbuffered)
and the average reading throughput in local storage devices (hard disks) or remote
storage devices (via network file systems);

4. net - it is composed of two applications, a customer and a server, which allow
the evaluation of the time spent to send and receive messages over communication
networks (based on the equation 7).

3 Source code available at http://www.icmc.usp.br/˜mello/outr.html
4 Benchmark – source code available at http://www.icmc.usp.br/˜mello/outr.html

4 Validation

In order to validate the proposed model, executions of a parallel application developed
in PVM (Parallel Virtual Machine) [23] in a scenario composed of two homogeneous
computers have been considered. This adopted application is composed of a master
and worker processes. The master process launches one worker on each computer and
defines three parameters: the problem size, that is, the number of mathematic operations
executed to solve an integral (eq. 10) defined between two points a and b using the
trapezium rule [24, 25], the number of bytes that will be transferred over the network
and recorded in the hard disk. These workers are composed of four stages: message
receiving, processing, writing into the hard disk and message sending. The message
exchange happens between master and worker at the beginning and at the end of the
workers’ execution. The workers are instrumented to account the time consumed in
operations.

∫ b

a

2 ∗ sinx+ ex (10)

Scenario details are presented on the table 1 and they have been obtained with the
benchmark suite. A message size of 32 bytes has been considered for the benchmark
net. The table 2 presents the slowdown equations generated by using main and virtual
memories, respectively, on the computers c1 and c2. Such equations have been obtained
through the experiments with the benchmark memo. The linear format of the equations
is used when the main memory is not completely filled up, for instance, in the case
of computers c1 and c2 not exceed 1 Gbyte of its memory capacity. After exceeding
such limit, the virtual memory is used and the delay is represented by the exponential
funtion.

Table 1. System details

Resource c1 c2
CPU (Mips) 1145.86 1148.65
Main memory (Mbytes) 1Gbyte 1Gbyte
Virtual memory (Mbytes) 1Gbyte 1Gbyte
Disk writing throughput (MBytes/seg) 65.55 66.56
Disk reading throughput (MBytes/seg) 76.28 75.21
Overhead + Latency (seconds) 0.000040

The experiment results are presented in the table 3. It may be observed that the
error among the curves is low, close to zero. Ten experiments have been conduced
for different numbers of applications, each one composed of two workers executing
on two computers. Such experiment was used to saturate the capacity of all computing
resources of the environment. The figure 1 shows the experiment and simulation results.

Table 2. Memory slowdown functions for computers c1 and c2

Memory Regression Equation R2

Main memory Linear y = 0.0012x− 0.0065 0.991
Main and

Virtual memory Exponential y = 0.0938 ∗ e0.0039x 0.8898

Table 3. Simulation results for computers c1 and c2

Processes Actual Average Predicted Error (%)
10 151.40 149.51 0.012
20 301.05 293.47 0.025
30 447.70 437.46 0.022
40 578.29 573.58 0.008
50 730.84 714.92 0.021
60 856.76 862.52 0.006
70 1002.10 1012.17 0.009
80 1147.44 1165.24 0.015
90 1245.40 1318.37 0.055
100 1396.80 1471.88 0.051

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Number of Processes

Actual average response time
Predicted average response time

Fig. 1. Actual and predicted average response times for computers c1 and c2

The simulation obtained results show the model ability to reproduce the real system
behavior. It is important to notice the increasing of the prediction errors when the system
runs a number of processes between 90 and 100.

The real executions, using 90 and 100 processes, overloaded the computers and
some processes were killed by the PVM system. The premature stopping of processes

(at about 5 processes where killed) decreases the computer’s load, justifiyng the model
prediction error. The simulator was used aiming to predict the system behavior consid-
ering a number of processes greater than the number of processes executed by PVM.

After experiments in an homogeneous system, a new environment composed of
heterogeneous computers were parameterized using the benchmark tools. In this envi-
ronment, it was executed the same application, which computes an integral function
between two points using the trapezium rule. The features of the heterogeneous com-
puters are presented in the table 4.

Table 4. System details

Resource c3 c4
CPU (Mips) 927.55 1600.40
Main memory (Mbytes) 256 512
Virtual memory (Mbytes) 400 512
Disk write throughput (MBytes/seg) 47.64 15.99
Disk read throughput (MBytes/seg) 41.34 32.55
Overhead + Latency (seconds) 0.000056924

The tables 5 and 6 present the slowdown equations, obtained by the memo bench-
marking, considering the main and virtual memory usage.

Table 5. Memory slowdown functions for computer c3

Memory Regression Equation R2

Main memory Linear y = 0.0018x− 0.0007 0.9998
Main and

Virtual memory Exponential y = 0.7335 ∗ e0.0097x 0.8856

Table 6. Memory slowdown functions for computer c4

Memory Regression Equation R2

Main memory Linear y = 0.0018x− 0.0035 0.9821
Main and

Virtual memory Exponential y = 0.0924 ∗ e0.0095x 0.8912

The experiment results are presented in the table 7. The error values obtained com-
paring the simulated and the actual execution time values are close to 0, allowing to
confirm the model ability in predicting real executions. The figure 2 shows the experi-
ment and simulation results.

Table 7. Simulation results for computers c3 and c4

Processes Actual Average Predicted Error (%)
10 153.29 152.38 0.0059
20 306.63 304.66 0.0064
30 457.93 457.46 0.0010
40 593.66 610.78 0.0280
50 760.02 764.65 0.0060
60 892.29 918.97 0.0290
70 1040.21 1074.18 0.0316
80 1188.14 1230.75 0.0346
90 1333.70 1388.14 0.0392
100 1488.97 1572.22 0.0529

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Number of Processes

Actual average response time
Predicted average response time

Fig. 2. Actual and predicted average response times for computers c3 and c4

When a number at about 60 processes are running, some problems were observed,
due to PVM process management. It was observed that using some computers with less
processing power, PVM started to kill processes earlier, when running more than 60
processes. These problems explain the difference between the actual and the simulated
time values and the increasing in predicting errors.

The experiments presented in this section validate the model used by the simulator.
The model and the simulator is able to predict the behavior of a real and dynamic sys-
tem, modelling distinct parallel applications which solve problems from different areas,
such as: aeronautics, fluid dynamics and geoprocessing. Thus, the system behavior can
be predicted earlier, in project phase, minimizing the development costs.

5 Conclusions

Several models have been proposed to measure the response time of processes in com-
puting systems [7,9]. Such models have presented some contributions, considering that
the virtual memory occupation causes delays in process executions [7,9], as well as de-
lays generated by the message transmissions on communication systems [8, 10]. Nev-
ertheless, such models do not unify all possible delays of a process execution.

Motivated by such limitations, this work has presented a new unified model to
predict the applications’ execution running on heterogeneous distributed envionments.
This model considers the process execution time in accordance with the processing,
accesses to hard disk, message transmissions on communication networks, main and
virtual memory slowdowns.

This work has contributed by modeling the delays in reading and writing accesses to
hard disks and presenting a new technique which uses equations to represent the delays
generated by the main and virtual memory usage. This has complemented studies by
Amir et al. [7] and Mello et al. [9], which consider a constant delay.

In addition it was developed a simulator of the proposed model which can be used to
predict the execution of applications on heterogeneous multicomputing environments.
Such simulator has been developed considering extensions such as the design of new
scheduling and load balancing policies. This simulator is licensed under GNU/GPL
which allows its broad use by the researchers interested in developing and evaluating
resource allocation techniques. In order to complement this simulator and allow its
parameterization using real environment information, a suite of benchmark tools was
developed and is also available under the GNU/GPL license.

In order to validate the simulator, a parallel application was implemented, simulated
and executed on a real environment. It was observed that the percentage error obtained
between the actual and the predicted execution times was lower than 1%, what confirms
the accuracy of the proposed model to predict the application execution on heteroge-
neous multicomputing environments.

References

1. de Mello, R.F.: Proposta e Avaliacão de Desempenho de um Algoritmo de Balanceamento de
Carga para Ambientes Distribuídos Heterogêneos Escaláveis. PhD thesis, SEL-EESC-USP
(2003)

2. et. al, E.L.: Quantitative System Performance: Computer System Analysis Using Queueing
Networks Models. Prentice Hall (1984)

3. et. al, P.B.: A Guide to Simulation. Spring-Verlag (1987)
4. Kleinrock, L.: Queueing Systems - Volume II: Computer Applications. John Wiley & Sons

(1976)
5. Lavenberg, S.S.: Computer Performance Modeling Handbook. Academic Press (1983)
6. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimental

Design, Measurements, Simulation and Modeling. John Wiley & Sons (1991)
7. Amir, Y.: An opportunity cost approach for job assignment in a scalable computing cluster.

IEEE Transactions on Parallel and Distributed Systems 11(7) (2000) 760–768

8. Culler, D.E., Karp, R.M., Patterson, D.A., Sahay, A., Schauser, K.E., Santos, E., Subramo-
nian, R., von Eicken, T.: LogP: Towards a realistic model of parallel computation. In:
Principles Practice of Parallel Programming. (1993) 1–12

9. et. al, R.F.M.: Analysis on the significant information to update the tables on occupation
of resources by using a peer-to-peer protocol. In: 16th Annual International Symposium
on High Performance Computing Systems and Applications, Moncton, New-Brunswick,
Canada (2002)

10. Sivasubramaniam, A.: Execution-driven simulators for parallel systems design. In: Winter
Simulation Conference. (1997) 1021–1028

11. et. al, S.C.: Towards a communication characterization methodology for parallel applica-
tions. In: Proceedings of the 3rd IEEE Symposium on High-Performance Computer Archi-
tecture (HPCA ’97), IEEE Computer Society (1997) 310

12. Vetter, J.S., Mueller, F.: Communication characteristics of large-scale scientific applications
for contemporary cluster architectures. J. Parallel Distrib. Comput. 63(9) (2003) 853–865

13. Sivasubramaniam, A., Singla, A., Ramachandran, U., Venkateswaran, H.: An approach to
scalability study of shared memory parallel systems. In: Measurement and Modeling of
Computer Systems. (1994) 171–180

14. Singh, J.P., Weber, W., Gupta, A.: Splash: Stanford parallel applications for shared-memory.
Technical report (1991)

15. Anderson, R.J., Setubal, J.C.: On the parallel implementation of goldberg’s maximum flow
algorithm. In: Proceedings of the fourth annual ACM symposium on Parallel algorithms and
architectures, San Diego, California, United States, ACM Press (1992) 168–177

16. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, D., Fatoohi,
R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D., Venkatakrishnan, V.,
Weeratunga, S.K.: The NAS Parallel Benchmarks. The International Journal of Supercom-
puter Applications 5(3) (1991) 63–73

17. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Sevcik, K.C., Wong, P.: Theory and
Practice in Parallel Job Scheduling. In: Job Scheduling Strategies for Parallel Processing.
Volume 1291. Springer (1997) 1–34 Lect. Notes Comput. Sci. vol. 1291.

18. Chiola, G., Ciaccio, G.: A performance-oriented operating system approach to fast commu-
nications in a cluster of personal computers. In: In Proc. 1998 International Conference on
Parallel and Distributed Processing, Techniques and Applications (PDPTA’98). Volume 1.,
Las Vegas, Nevada (1998) 259–266

19. Chiola, G., Ciaccio, G.: (Gamma: Architecture, programming interface and preliminary
benchmarking)

20. Chiola, G., Ciaccio, G.: Gamma: a low cost network of workstations based on active mes-
sages. In: Proc. Euromicro PDP’97, London, UK, January 1997, IEEE Computer Society
(1997)

21. W.C.Shefler: Statistics: Concepts and Applications. The Benjamin/Cummings (1988)
22. Kerrigan, T.: Tscp benchmark (2004)
23. Beguelin, A., Gueist, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.: PVM: Parallel

Virtual Machine: User’s Guide and tutorial for Networked Parallel Computing. MIT Press
(1994)

24. Pacheco, P.S.: Parallel Programming with MPI. Morgan Kaufmann Publichers (1997)
25. Burden, R.L., Faires, J.D.: Análise Numérica. Thomson (2001)

