
A Versatile Pipelined Hardware Implementation

for Encryption and Decryption using Advanced

Encryption Standard

Nadia Nedjah1 and Luiza de Macedo Mourelle2

1 Department of Electronics Engineering and Telecommunications,
Faculty of Engineering, State University of Rio de Janeiro, Brazil

nadia@eng.uerj.br
2 Department of Systems Engineering and Computation,

Faculty of Engineering, State University of Rio de Janeiro, Brazil
ldmm@eng.uerj.br

Abstract. The Advanced Encryption System – AES is now used in
almost all network-based applications to ensure security. In this paper,
we propose a very efficient pipelined hardware implementation of AES-
128. The design is versatile as it allows both encryption and decryption.
The core computation of AES, which is performed on data blocks of
128 bits, is iterated for several rounds, depending on the key size. The
security strength of AES has been proven proportional to the number
of rounds applied. we show that if the required number of rounds must
increase to defeat attackers, the proposed implementation stays efficient.

1 Introduction

Cryptographic algorithms used by nowadays cryptosystems fall into two main
categories: symmetric key and asymmetric-key algorithms [8]. Symmetric-key
ciphers use the same key for encryption and decryption, or to be more precise,
the key used for decryption is computationally easy to compute given the key
used for encryption. In turn, symmetric-key ciphers, fall into two categories:
block ciphers and stream ciphers. Stream ciphers encrypt the plaintext one bit
at a time, in contrast to block ciphers, which operate on a block of bits of a
predefined length. Most popular block ciphers are DES, IDEA [7] and AES, and
most popular stream cipher is RC6 [9].

The Advanced Encryption System – AES is a block cipher, adopted as the
new encryption standard in substitution to its predecessor Data Encryption
Standard – DES [2]. AES main scrambling computation is performed on a fixed
block size of 128 bits with a key size of 128, 192 or 256 bits. This core compu-
tation is iterated for many rounds. The number of rounds depends on the key
size. Currently, it is set to 10, 12 and 14 for the cited keys sizes respectively.
The resistance of AES against breaking attacks depends entirely on the num-
ber of rounds used. So far, the best known attacks are on 7 rounds for 128-bit
keys, 8 rounds for 192-bit keys, and 9 rounds for 256-bit keys [5]. The small



margin between these round numbers and the actual ones is very worrying for
the cryptographer’s community.

In this paper, we propose a novel hardware implementation of AES-128. The
architecture allows one to perform the core computation of the algorithm is a
pipelined manner. The throughput of the cryptographic hardware is 1Gbits per
second. A unique hardware is used for encryption and decryption. The pipelined
encryption and decryption allows an increase of the number of rounds without
much loss of efficiency. Recall that increasing the number of rounds applied,
increases the resistance of the AES algorithm.

This rest of this paper is organised in 4 subsequent sections. First, in Section
2, we give a brief description of the AES encryption and decryption algorithms
as well as the modified version of these two algorithms, which are the basis of
the proposed hardware architecture. Thereafter, in Section 3, we describe in a
structured manner, the pipelined hardware architecture of AES-128 for encryp-
tion and decryption. Subsequently, in Section 4, we present some experimental
result and compare our implementation to existing ones. Last but not least, in
Section 5, we draw some conclusions and introduce some directions for future
work.

2 Advanced Encryption Standard

AES is an elegant and a so-far-secure cipher. Encryption using AES proceeds as
described in Algorithm 1, wherein functions SubBytes, ShiftRows, MixColumns

and AddroundKey are defined as follows:

– Function SubBytes yields a new state simply by substituting each of the 16
bytes of state using a substitution box. The four most significant bits of the
byte in question is used as the S-box row index while the remaining four bits
are used as the S-box column index.

– Function ShiftRows obtains a new state by cyclically shifting the state rows.
The bytes of row i are shifted i times, where 0 ≤ i ≤ 4.

– Function MixColumns operates on the states columns. The bytes of a given
column are used as coefficients of a polynomial over GF(28). The formed
polynomial is multiplied by a fixed polynomial P (x) modulo x4 + 1, wherein
P (x) = {03}x3 + {01}x2 + {01}x + {02}. The details of the multiplication
operation can be found in [3], [1].

– Function AddRoundKey computes the new state using a xor of the columns
bytes and the key schedule of the current round.

Before the cipher operation takes place, a key schedule is generated. Four
subkeys are required for each round of the cipher algorithm. The subkeys for
the first round are the private cipher key. For a given round, the first subkey is
obtained by first rotating once the last subkey form the previous round, then
substituting each of byte using the S-box used by function subBytes, thereafter
xoring the result with a given constant and finally xoring the result with first
subkey of the previous round. The subsequent subkeys of the current round are



computed using a xor of the previous key in the current round and the one
inversely respective from the previous round.

Algorithm 1. AES-Cipher
input: Byte T [4 × nb], Word K[nb × (nr + 1)];
output: Byte C[4 × nb],

Byte state[4, nb];
state := T ;
AddRoundKey(state, K[0, nb − 1];
for round := 1 to nr − 1 do

SubBytes(state);
ShiftRows(state);
MixColumns(state);
AddRoundKey(state, K[round × nb, nb(round + 1) − 1]);

SubBytes(state);
ShiftRows(state);
AddRoundKey(state, K[nr × nb, nb(nr + 1) − 1]);
C := state;
return C;

end

For hardware efficiency reasons, we modified the AES cipher algorithm as in
Algorithm 2. Note that Algorithm 1 and Algorithm 2 are equivalent and yield
the same output.

Algorithm 2. Modified-AES-Cipher
input: Byte C[4 × nb], Word K[nb × (nr + 1)];
output: Byte T [4 × nb],

Byte state[4, nb];
state := C;
for round := 0 to nr − 1 do

AddRoundKey(state, K[round × nb, nb(round + 1) − 1]);
SubBytes(state);
ShiftRows(state);
if round < nr − 1 then MixColumns(state);

AddRoundKey(state, K[nr × nb, nb(nr + 1) − 1]);
T := state;
return T ;

end

The decryption of a text that was ciphered using AES can be performed by
Algorithm 3. Comparing Algorithm 1 and Algorithm 3, one can note that each
function was replaced by its inverse. However, the application sequence of these
functions is slightly different. In order to have a unique versatile hardware for



encryption and decryption, this algorithm was modified as in Algorithm 4.

Algorithm 3. AES-Decipher
input: Byte C[4 × nb], Word K[nb × (nr + 1)];
output: Byte T [4 × nb],

Byte state[4, nb];
state := C;
AddRoundKey(state, K[round × nb, nb(nr + 1) − 1]);
for round := nr − 1 downto 1 do

InvShiftRows(state); InvSubBytes(state);
AddRoundKey(state, K[nr × nb, nb(nr + 1) − 1]);
InvMixColumns(state);

InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(state, K[0, nb(nr + 1) − 1]);
T := state;
return T ;

end

Algorithm 3 and Algorithm 4 are equivalent as operations InvSubBytes and
InvShiftRows commute. Moreover, function InvMixColumns is linear so we have
expression InvMixColumns(x xor y) is equivalent to InvMixColumns(x) xor

InvMixColumns(y). Recall that operation AddRoundKey is a xor of its argu-
ments. Using these two facts, we can swap operations AddRoundKey and In-

vMixColumns, provided that the columns of the decryption key schedule are
modified using operation InvMixColumns. Note that functions SubBytes and In-

vSusbytes perm the same process but using distinct S-Boxes.

Algorithm 4. Modified-AES-Decipher
input: Byte C[4 × nb], Word K[nb × (nr + 1)];
output: Byte T [4 × nb],

Byte state[4, nb];
state := C;
for round := nr − 1 to 0 do

AddRoundKey(state, K[round × nb, nb(round + 1) − 1]);
InvSubBytes(state); InvShiftRows(state);
if round < nr − 1 then InvMixColumns(state);

AddRoundKey(state, K[nr × nb, nb(nr + 1) − 1]);
T := state;
return T ;

end



3 Pipelined Hardware Implementation of AES

The overall architecture of the AES hardware mirrors the structure of Algorithm
2 and Algorithm 4. It is a synchronous implementation of both the processes
of cipher and decipher. It uses four 128-registers. Every clock transition, these
registers are loaded, except Register3, which is loaded when an input state is
completely ciphered. In the encryption/decryption process, Register0 is loaded
with the input data or the partially encrypted/decrypted plaintext/ciphertext;
Register1 with the result of the AddRoundKey component; Register2 with the
state after applying functions SubBytes (using the appropriate S-Box) and sub-
sequently ShiftRows/InvShiftRows. The block architecture of the AES cipher and
decipher hardware is shown in Fig. 1.

Fig. 1. Overall hardware architecture for the AES cipher/decipher

The component that implements function AddRoundKey is simply a net of
xor gates that adds in GF (28) the key schedule to the current state. The com-
ponent implementing function SubBytes uses 16 S-boxes (8 for ciphering and 8
for deciphering) stored in a Read-Only Memory (rom). The obtained state is
row-shifted before its storage in Register2. The component architecture is given
in Fig. 2.



Fig. 2. The structure of Substitute/Shif component

Function MixColumns is implemented by a massively parallel component that
computes all the bytes of the new state in a single clock. It uses four components
of the same architecture. This basic component produces one column os the new
state. Its architecture is described in Fig. 3, wherein component mult yields the
a special product of a given byte from the state times {01}, {02}, {03}, {09},
{0B}, {0D} or {0E} (see [3], [1] for details on the operation). The architecture
of component mult is presented in Fig. 4. Component xtime computes the xtime

operation as defined in [3] and its architecture is given in Fig. 5.

For component synchronisation purposes, the architecture includes a con-
troller. Among other actions, the controller determines when to reset the cipher
hardware, accept input data, to register output results. As the excution of func-
tion MixColumn/InvMixColumn is conditional (see Algorithm 2), the controller
decides when the result obtained by associated component can be used or must
be ignored. Recall the hardware allows both encryption and decryption. When
data is being deciphered, the key schedule generated by component KeyExpan-

sion must be ordered differently [3]. The AES hardware of Fig. 1 takes advantage
of component MixColumn to schedule the subkeys in the required order. The
controller also controls this operation.

The controller is structured as in Fig. 6. The included combinational logic
permits the conversion of the 5-bit count to a single bit that triggers state tran-
sition. The sate machine includes six states. As long as control signal keyExpand

is set, the current state is kept unchanged in S0. As soon as this signal is re-
set by the keyExpansion component, which means that the step of key schedule
generation is complete, the machine transits to state S1, wherein it stays for 3
clock cycles, which is the required time to complete the processing of one 128-bit



Fig. 3. Basic component in Mix component

Fig. 4. Architecture of the mult component



Fig. 5. Architecture of the xtime component

state. Also, during this period of time, the data input signal is active, which al-
lows the hardware to accept the three states that will be ciphered/deciphered in
pipelined manner. Synchronously with the fourth clock transition, the machine
transits to state S2 allowing to deactivate the data input signal and wait for the
three accepted states are almost processed as only the last AddRoundKey is yet
to be performed to complete the encryption/decryption process. At the 30th.
clock transition, the machine state changes to S3 to activate output result sig-
nal, which is maintained for the two subsequent clock periods. A the 33rd. clock
transition, the encryption/decryption of the three accepted states is completed
and therefore, the control is returned to state S1, where in data input signal is
reactivated to allow more date to be entered and processed. The state machine
transition diagram is shown in Fig. 7.

Fig. 6. Controller architecture



Fig. 7. State machine transition diagram

4 Experimental Results

The pipelined execution of the AES cipher using the architecture of Fig. 1 is illus-
trated in Fig. 8. We implemented the hardware described throughout this paper
using reconfigurable hardware. The FPGA family used is VIRTEX-II. Compo-
nent KeyExpansion introduces a delay of 78.3ns. The clock cycle is 10.44ns. Every
33 clock cycles, the hardware can yield an encrypted datastream of 3× 128 bits.
The throughput, say tp can then be calculated as in (1). The throughput is a
little more than 1Gbps.

Tp =
3 × 128

33 × clockcycle
=

128

11 × 10.44
= 1062.9Mbs (1)

As far as the authors know, the versatile hardware implementation of AES
algorithm that performs both encryption and decryption is novel. We compared
our implementation to the ones from [6] and [10]. Note that these implemen-
tations are for the cipher algorithm only while our implementation ciphers and
deciphers. One may think that the implementation proposed and those from [6]
and [10] are incomparable. They are cited here for reference only. The through-
put, expressed in Mbps, as well as the hardware area required, expressed in
number of CLBs, are given in Table 1.

Recall that the resistance of AES-based encryption against cryptanalysis at-
tacks depends entirely on the number of rounds used. The pipelined implementa-
tion we propose throughout this paper can be easily adapted to a higher round
number. The chart of Fig. 9 shows that this can be done without much loss
in efficiency and with much gain of security strength. To be able to increase
the number of round, component KeyExpansion needs to generate more key
schedules and therefore the delay introduced by it increases with the number of



Table 1. Performance comparison

Implementation Throughput Area CLB/Mbs

Our’s: cipher& decipher 1063 9937 9.35
[6]: cipher only 1911 8767 4.59
[10]: cipher only 1450 542 0.37

rounds. The throughput, say tp, can be expressed in terms of the round number,
say rn, is as in (2). The security strength, say st is proportional to the number
of rounds applied. So, considering the security strength provided by applying 10
rounds as a reference, st would be defined as in (3).

Tp(rn) =
128

(rn + 1) × clockcycle
(2)

St(rn) =
rn

10
(3)

Fig. 8. Pipelined execution of the AES algorithm using the hardware of Fig. 1

5 Conclusion

In this paper, we propose a novel pipelined hardware implementation of AES-
128 that can be used for both encryption and decryption. Besides, we show
that if the required number of rounds must increase to defeat attackers, the



rn

tp
/
st

��
��
��
��
��������������������������������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

0

1

2

10 15 20 25 30

st

tp

Fig. 9. The impact of increase in the round number

proposed implementation stays efficient. The hardware proposed is massively
parallel and executes the four main steps of the algorithm in a pipelined manner,
which allows a reasonable throughput fo a little more of 1Gbs. Compared to
existing implementations of the cipher algorithm, this kind of throughput may be
considered somehow low. However, considering the 2-in-1 aspect of the hardware
as it allows encryption and decryption, it comes handy for devices with restricted
hardware area with a not too bad throughput of 1Gbs.

In future research work, we intend to investigate further the proposed imple-
mentation, with the hope to improve the throughput without much increase in
required hardware area.

References

1. J. Daemen and V. Rijmen, The Design of Rijndael: AES – The Advanced Encryp-
tion Standard, Springer-Verlag, 2002.

2. National Institute of Standard and Technology, Data Encryption Standard, Federal
Information Processing Standards 46, November 1977.

3. National Institute of Standard and Technology, Advanced Encryption Standard,
Federal Information Processing Standards 197, November 2001.

4. Nicolas Courtois, Josef Pieprzyk, Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations, Proceedings of ASIACRYPT 2002, pp 267-287, 2002.

5. N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner and D. Whiting,
Improved Cryptanalysis of Rijndael, Proceedings of FSE 2000, pp. 213-230, 2000.

6. A. Labbe, A. Perez, AES Implementation on FPGA: Time and Flexibility Tradeoff,
in Proceedings of FPL, pp. 836-844, 2002.

7. X. Lai, J. L. Massey, A Proposal for a New Block Encryption Standard, EURO-
CRYPT’90, pp. 389–404, 1990.

8. A.J. Menezes, S.A. Vanstone and P.J. Van Oorschot, Handbook of Applied Cryprog-
raphy, CRC Press, USA, 1997.

9. R. Rivest, M. Robshaw, R. Sidney, and Y.L. Yin. The RC6 block cipher, First AES
Candidate Conference, 1998.

10. F. Standaert, G. Rouvroy, J. Quisquater, J. Legat, A Methodology to Implement
Block Ciphers in Reconfigurable Hardware and its Application to Fast and Compact
AES RIJNDAEL, in Proceedings of FPGA, 2003.


