
OMP: A One-sided Message Passing

Programming Model for P2HP⋆

Hai Jin, Fei Luo, Qin Zhang, Xiaofei Liao, and Hao Zhang

Cluster and Grid Computing Laboratory,
Huazhong University of Science and Technology, Wuhan, 430074, China

{hjin, luofeiren, qzhang, xfliao, haozhang}@hust.edu.cn

Abstract. P2HP is a Peer-to-Peer (P2P)-based high performance dis-

tributed computing (HPDC) platform. Since the programming model is
critical to HPDC systems, this paper focuses on the design and imple-
mentation of OMP, a One-sided Message Passing programming model for
P2HP, which presents a general way to design the programming model
for HPDC systems and shows that P2HP is a practical and efficient
HPDC platform. OMP provides a one-sided message-passing communi-
cation library. And based on it, a software development kit with rich
APIs for user applications is designed and implemented. The perfor-
mance of OMP on P2HP is evaluated through an application benchmark
of sequence alignment.

1 Introduction

P2P-based HPDC systems have powerful computing and storage capability to
resolve large-scale scientific computing problems. For their unprecedented scale,
many basic issues have to be reinvestigated, such as programming models, per-
formance models, and class of applications or algorithms suitable to this ar-
chitecture [1]. The programming model attacks the problem at the level of the
model that acts as an interface between software and hardware issues, and it is
one of the main approaches to drive the development of HPDC systems. P2HP
is one of such systems, which is exploited by our research group. This paper
focuses on the design and implementation of the OMP programming model for
P2HP.

With well-defined Application Programming Interfaces (API), a program-
ming model is for users to write applications, which are used in various parallel
platforms [2]. It depends on the communication environment which is an ab-
stract machine providing certain operations to the programming level above and
requires implementations for each of these operations on all of the architectures
below.

Shared-memory and message passing are the two common communication
models in parallel programming [3]. In the shared-memory programming model,

⋆ This paper is supported by National Science Foundation of China under grant
60433040, China CNGI project under grant CNGI-04-12-2A and CNGI-04-12-1D.



threads are employed to communicate by storing to and loading a shared location
in the address space. It simplifies programming by hiding communication details
such as control over communication and computation costs. For the limitation
of the scalability, this model is not commonly used in wide area environments.

For the message passing paradigm, processes communicate with each other
by sending and receiving messages mutually. It simplifies writing applications
involving a large number of nodes by providing a simple flat name space with
which nodes can communicate with each other [4]. It is hard to be utilized in
dynamic environments for the nature of its simple name space.

One-sided communication combines some of the strengths of shared-memory
and message passing together, while currently it is still utilized in cluster com-
puting environments. One-sided communications in MPI defines communication
routines that can be completed by a single process. These include shared-memory
operations (put/get) and remote accumulate operations [5].

The most widely used programming models for distributed computation will
be socket, RPC [6], and Java RMI (remote method invocations) [7]. RPC and
RMI communication raise the level of communication abstraction, and they do
not adaptively coordinate to the customized environment of P2HP. The pro-
gramming model of P2HP, OMP, is just based on the socket communication
primitives.

OMP consists of a communication library and a software development kit.
In the communication library, OMP provides simple one-sided message pass-
ing communication primitives. Based on the communication library, the SDK
presents a software development methodology for user applications, which re-
leases the burden of the programmer. An application instance in bioinformatics,
sequence alignment, is programmed in OMP and run in P2HP, which shows that
OMP is easy to program, architecture-independent, and easy to understand.

The contribution of this paper is as follows. First, a general way to design
and implementation of a programming model for P2P-based HPDC platforms
is presented. Currently, there are no universal programming models for such
systems, while they are platform-specific. Associated with the programming en-
vironments, the communication library and APIs of OMP are designed and im-
plemented. Then, an Internet-wide one-sided message passing protocol is intro-
duced. Unlike the regular send/receive communication with matching operations
by sender and receiver in traditional message passing programming models, a
task accesses remote data without a matching communication call. Finally, ap-
proaches to parallelize applications whose parallelism is in the task-level are
shown in this paper. Divided tasks of applications are programmed with OMP
as work units which are performed in the distributed environment of P2HP.

The rest of the paper is organized as follows. The programming environment
is shown in Section 2. Section 3 and Section 4 detail the design and implemen-
tation of OMP, respectively. In Section 5, a benchmark is programmed with this
model to evaluate the performance. Related works are presented in Section 6
and conclusions are drawn in Section 7.



2 The Programming Environment of P2HP

Based on P2P networks, P2HP is a testbed for high performance distributed
computing, which supports applications without data-dependence between tasks.
As shown in Figure 1, P2HP is composed of Monitor Group (MG), Dispatcher

Group (DG), Worker Group (WG), a Datapool and User. Each MG, DG or WG
comprises multi-nodes which are voluntarily self-organized in the Internet.

MG is responsible for monitoring the whole system, such as the submission
of new jobs from users, the disposal for the joining and leaving of dispatchers
and workers in the system. DG schedules its workers to execute work units and
monitors their working states. Voluntary nodes in the Internet make up of WGs,
and each WG is managed by some DGs, in which workers execute subtasks
of applications. The User is an interface for users to submit applications to
the system, and all data related to the applications’ subtasks is stored in the
Datapool.

Monitor Monitor

Dispatcher 

Group

Dispatcher 

Group

...

Fault tolerant

Dispatching tasks ...

Workers

User

Datapool

Project 
Submission

Project 

D
iscription

Fig. 1. Architecture of P2HP

The parallelism of applications in P2HP is in the task level. Applications
in P2HP are divided into many small work units, and all the divided units
are distinguished as the main task and the subtasks. Each task finishes some
computing job for the application. One of them participates in the control of
the tasks’ execution flow, and it is defined as the main task, while the others
are defined as subtasks. There is only one main task and many subtasks for an
application. The job of the main task includes the creation of new subtasks,
the control of subtasks’ execution, and the collection of the final result of the
application.

To execute an application in its distributed environment, P2HP works as fol-
lows. After programming the application according to the programming model,
OMP, the resulting data is transferred into the Datapool, and a project file
(JobDesc) is generated. The file is submitted to a monitor in MG and batches of
subtasks are then redirected to a dispatcher by the monitor when the main task
begins. The dispatcher which accepts subtasks allocates them to the attached



workers. The workers get their related data from the Datapool and perform
them, and results are transferred to the Datapool, which are collected and fur-
ther disposed by the main task to present the application’s final result.

3 Design of OMP

With regard to its programming environment, the programming model of P2HP,
OMP, has been deliberately kept simple with minimal conceptual overhead. As
shown in Figure 2, OMP consists of a communication library (ComLib) and a
software development kit (SDK) for users. The ComLib is maintained by the
runtime of P2HP, and is used for the communication between tasks and the
Datapool. The SDK is the interface between the project and the runtime, and is
responsible for providing programming interfaces for the main task (MainAPI)
and subtasks (SubAPI) of the application.

Subtasks are independent of each other, so there is no communication among
them. All the data related to subtasks are stored in the Datapool, and tasks
exchange data with the Datapool during their execution. Therefore, the ComLib
has been designed for the subtasks’ communication with the Datapool. It consists
of a Transformation Protocol to transfer data, and a Storage Management to
manage the local storage of the transferred data. Transformation Protocol and
Storage Management are combined with the storage subsystem and network I/O
subsystem of the platform.

Networks

MainAPI SubAPI

Storage 

Mangement

Communication 

Protocols

ComLib

SDK

User 

Applications

Storage 

Subsystem

OMP

OS

Fig. 2. Architecture of OMP

In the SDK, the APIs in SubAPI collaborate with the runtime of P2HP
to perform subtasks, and the APIs in MainAPI control the workflow of the
application in P2HP. These APIs of the SDK pack the user requests into a



message, which implements a one-sided message passing model. When the clients
with a task need correlative data, they only locally trigger off a message like
sending or receiving. Because tasks are maintained by the system runtime of
P2HP, the corresponding system call is resolved by the Datapool. The requested
data is transferred by the ComLib between the Datapool and clients.

4 Implementation of OMP

We have implemented the OMP of P2HP in Java which is critical to the platform-
independence characteristic of P2HP. In the rest of this paper, we will describe
the basic mechanisms used to implement the ComLib and SDK of OMP.

4.1 Implementation of ComLib

The communication between the worker and the Datapool passes through three
processes, such as Construct Channel, Request Transaction, and Close Chan-

nel. First, the communication procedure begins with Construct Channel, which
constructs a pipeline between the client (a worker) and the server (Datapool).
Then the process of Request Transaction is triggered off to transfer the requested
data files between them. Finally, after they finish disposing all the requests, the
process of Close Chunnel is turned on to close the data channel. All the re-
quested data is transferred by the Transformation Protocol and locally managed
by Storage Management.

Transformation Protocol. A transformation protocol [8] to transfer requested
data files has been implemented in OMP. As shown in Figure 3, the transfor-
mation process for data between the client and the server is expressed by the
transition of a finite state machine of the defined states, including three trans-
formation states and two synchronization states, which are depicted in Table
1.

Both the client and the server start the transformation from the IDLE
state. After sending the request message for data, the client enters the state of
SYN_RECV. Receiving the message, the server sends back the response (SEND/SYN),
and enters the state of SYN_SENT. If an error occurs, both sides become IDLE,
or they initialize the pipeline and enter the state of BEGIN_TRANS. One of them
sends the data file, and the other receives it.

Having finished transferring a file and been synchronized with the message
of SEND/SYN, the server enters the state of SYN_SENT, and the client enters
the SYN_RECV. If an error occurs, the transfer fails and both of the client and
the server become IDLE and prepare the next transaction for the next request
message. If the transfer is successful, both of them are FINISH_ONCE. Then they
check whether it is the end of the transaction.

If there are other data files to be transferred, both of them enter the state
of BEGIN_TRANS and begin to transfer the next data file, or the server enters the



(Begin)

ANOTHER
PREPARE PREPARE

REQ/RECV

IDLE

BEGIN_TRANS

FINISH ONCE

SYN SENTSYN RECV

REQ/SENT

SEND/SYN

SYN SENTSYN RECV SEND/SYN

FINFIN

ANOTHER

SYN SENTSYN RECV
SEND/SYN

R/S S/R

ENDEND

IDLE
(Over)

OKOK
ERR

ERR
ERR

ERR

Fig. 3. States Transition during Data’s Transformation. The real line represents the
server’s state transition, while the dashed represents clients’ state transition.

SYN_SENT, and the client enters the SYN_RECV. Confirmed through the synchro-
nization with the message of SEND/SYN, both of them again become IDLE,
and prepare for the transaction of the next request message. The procedure is
iterated until all data files have been transferred, or an error occurs during the
transaction.

Table 1. States’ Description during Data’s Transformation

Classification State Description

Transformation IDLE There is no data being transferred.
BEGIN_TRANS Begin to transfer data and prepare for it.
FINISH_ONCE One data file has been transferred.

Synchronization SYN_RECV A synchronization message has been received.
SYN_SENT A synchronization message has been sent.

Storage Management. In the workplace of the Datapool, the data is accessed
in the form of files, and all files of a subtask are assembled in a directory.

To transfer a subtask’s data, its files are formatted as an I/O stream (Figure
4) which consists of multiple file streams (AFileStream) and an end token (End-
Trans) in the end (Figure 4-a). Each AFileStream comprises a beginning token



(BeginFile), a prefix of the stream (Prefix), and the file (File), shown in Figure
4-b. The Prefix is the relative directory (Directory) of the file, which ends with
a token (EndDir). The byte stream is the content (Content) of the file, and is
surrounded with the size of the file (FileSize) and an end token (EndFile), as
shown in Figure 4-c.

AFileStream ... EndTrans

BeginFile Prefix File

Directory EndDir FileSize Content EndFile

(a)

(b)

(c)

Fig. 4. I/O Stream Format

The directory management of the Datapool is combined with a light-weight
database, the Berkeley DB, which is an embedded database that records several
fields related to the tasks’ data, such as the user ID, the task ID, the registering
time. The database is also to record and dynamically update the information of
tasks’ states.

Services are provided by the database for the management of the Datapool,
and they give universal interfaces to the Datapool’s requests from clients. With
it turned on, the process of the usage for these services is shown as follows:

a) Apply a service for the task with a service name and other parameters,
such as the user ID, the task ID;

b) Obtain the information of a task, including its states and the location of
its data, which are used by the data transmission sub-module;

c) Return the result of the service to the database to indicate whether it is
correct or not, and the database updates the task’s states for another request.

4.2 Implementation of the SDK

Based on the communication library, ComLib, the MainAPI for the main task
and the SubAPI for subtasks are implemented in this section.

MainAPI. The main task controls the execution of the application, including
its starting, running and ending. Setting up the job description file (JobDesc)
provided by the user after the project is submitted, the main task is started to
initiate a session with the monitor. MainAPI includes functions such as new-

SubTask, getTaskStatus, updateTaskData, and getResult, which are depicted as
follows.

void newSubTask (int n, Job jobId, Linklist subtasklist): The process-
ing procedure of the project is controlled by the main task which launches the



running of subtasks via calling this interface. One or some (n) new subtasks
are applied from the monitor by the main task. The Job is the abbreviative
form of JobDesc, while the subtasklist stores the parameters of the applied
subtasks. The performance of the platform will be maximized only when it
is not overloaded. The programmer tunes the parallel processing speed ac-
cording to the system environment by applying subtasks in batches through
the interface. The monitor accepts the requisition and redirects it to one of
its registered dispatchers with the least load. Then the dispatcher schedules
some usable workers and dispatches the subtasks to them.

int getTaskStatus (SubTask task, String jobId): Inquire the status of a
subtask of the project with the appointed ID of jobId. The SubTask gives a
description of the special one. The working state of the project is monitored
by the Monitor. During the parallel processing of subtasks, the main task
checks the status of all the subtasks one by one through this interface. Only
when all the applied subtasks have been finished, the project can be further
processed by the main task. Programmers can take fault-tolerant mechanism
in the application level, or the main task will be aborted if an error happens.

String getResult (SubTask task, Job jobId, String filepath): The filename
of the result of the appointed subtask (task) in the project (jobId) is returned
by calling the interface, where the filepath is the path to store it. When all the
subtasks have been finished, the project will be further disposed by the main
task. It collects the results of all the subtasks one by one via this interface,
and then checks the termination condition of the project. If the project is
finished, it gets the final result of the project, or it generates more subtasks
by the updateTaskData interface described below and continues the parallel
processing.

int updateTaskData (String filePath, Job jobId, int nums): Update the
data of the subtasks for a project in the Datapool. The programs of subtasks
are the same, while the parameter data are different. They are all accessed
in files. If the data change, new subtasks are generated. When the project
is an undetermined problem, a program with a data file can be a number of
subtasks. After the old subtasks have be finished, new subtasks have to been
created to fit the terminating condition of the project. The main task dy-
namically creates new subtasks for undetermined projects via this interface,
where the filePath is the path of the new data file, the jobId is the appointed
project being solved, the nums is the number of the new generated subtasks
with this data. An error happens if a nonzero value returns, or the parallel
processing is continued.

SubAPI. Subtasks are programmed by defining the class of usersubtask which
extends the TaskRun class in SubAPI. It is the juncture of the runtime and
the user subtask. Collaborating with the runtime of P2HP, the worker performs
dispatched subtasks. First, it gets the program file and data file from the Dat-
apool through the ComLib and puts them in the workplace. Then it starts the
subtask by scheduling the TaskRun class, where the running environment of the



subtask is set, such as the program file and data file path. In the run function of
TaskRun, the running environment is called and the subprogram is started with
the set environment. Having been finished, the subtask sends its result to the
Datapool, and the running state will be reported to the Monitor by the runtime.

To set the running environment for the subprogram and perform its execu-
tion, the interfaces in SubAPI are provided for the class of usersubtask, which
are depicted in the following.

String getSubTaskId (): The ID of the dispatched subtask is presented by
calling this interface, which can be used to regulate the control to the sub-
task.

String getDataFile (), String getProgramPath (): Get the parameter file
and path for the subprogram, respectively, which are used to set the running
environment.

String getResultPath (): Get the path to store the result file of the subtask,
where the subtask sends its result after finished.

void setTaskState (int state): The state of the subtask is set by calling the
API after its running. The execution can be successful or failed, which is
used for the system runtime to monitor the running state of subtasks.

boolean sendResult (String originalpath, String resultname): Once the
subtask has been finished, its result will be sent to the Datapool by the sub-
task via this interface, where the orignalpath and resultname is the path and
filename of the result, respectively. The returned value indicates whether the
operation is successful or not. Programmers can add fault-tolerant mecha-
nism in the subtask according to the returned boolean value.

With the OMP programming model of P2HP, a project is programmed as a
main task and many subtasks with corresponding APIs described above. Com-
bining with the runtime of P2HP, the classification of the main tasks and sub-
tasks decreases the programming difficulty.

5 Benchmark

We have implemented the proposed design of OMP in P2HP, and applications
can be run in it with the programming model. In this section, we will describe
a benchmark application in bioinformatics to evaluate the performance. The
experiment is conducted in a network with about 50 normal PCs, which are
connected by 3 100M Ethernet switches. It is supposed that each of them has
the interest to be a worker of P2HP, and three of them are configured as the
Monitor, Dispatcher, and Datapool.

Bioinformatics uses computation to advance the scientific understanding of
living systems, in which the most pressing tasks involve the analysis of sequence
information. Computational Biology (CB) is the name given to this process,
which applies a problem of the Sequence Alignment in P2HP with its program-
ming mode. Currently the program of Clustal W [8] is popularly used, and we
parallelize the original Clustal W program with OMP. The evaluation is based



on the performance of the parallelized program to that of the original Clustal
W program.

5.1 Evaluation

Fifty small sequences are selected from NCBI (National Center for Biotechnology

Information), which is one of sequence databases in the world. They are aligned
by the serial Clustal W in a PC. The pairwise (PW) calculation represents
the first stage of the algorithm, followed by the construction of a guide three
(GT), and then the progressive alignments are continued according to the GT.
Through the pairwise calculation in 3 PCs whose Linpack performance values
are 228889Kflops, 343333Kflops and 429167Kflops, the phylogenetic tree of these
sequences attained; averagely it costs about 399.32 seconds.

Then the pairwise calculation of Clustal W is parallelized with the SDK of
OMP and run in P2HP. Programmed with the APIs of MainAPI and SubAPI
presented above, the main task and 130 subtasks are executed in different PCs.
First the main task reads the local sequence file and does some pretreatment.
Then it starts a session with the monitor (BeginSession), and applies new sub-
tasks (newSubTask) in batches which are redirected to a load-least dispatcher.
The dispatcher schedules workers to execute these subtasks.

Subtasks are started by calling the programmed class (usersubtask) during
the runtime of the workers in P2HP. During their execution for these subtasks,
the workers get the data relevant to the subtasks from the Datapool, and send
their running states and results (sendResult) to it. The main task monitors the
subtasks’ executions (GetTaskStatus), collects (GetTaskResult) and disposes of
all the results of the subtasks. Finally, the phylogenetic tree is formed the same
as the one from the serial program above.

The parallelized Clustal W is conducted while workers are idle in the night.
With the rise of the number of workers, the time for the execution of all subtasks
decreases, as shown in Figure 5, where the average time for the serial program is
also presented to contrast with the parallel one. But if the number of workers is
too small, the time for the parallel is more than that for the serial, which means
that the parallel income of a small quantity of workers can not afford the cost
of distributed communication.

The benchmark demonstrates that P2HP is an efficient and practical HPDC
platform, and with the help of OMP, the performance of P2HP increases with
the rise of the workers’ number. To mine the most parallelism, the number of
usable workers should be more and match that of subtasks.

6 Related Work

There have been many programming models for globally distributed comput-
ing environments. OmniRPC [10][11] is a RPC-based programming environment
for cluster and grid computing. OmniRPC allocates calls dynamically on ap-
propriate remote computers. ARMI [7] is a communication library which is an



0

200

400

600

800

1000

1200

1400

0 5 10 15 20

NodeNum

T
im
e
 (
s) Parallel

Serial

Fig. 5. Performance with the increase of the workers’ number

implementation of the RMI protocol. It provides a framework for expressing fine-
grain parallelism and mapping it to a particular machine using shared-memory
and message passing library calls.

Global computing has been popular for the success and huge aggregate com-
puting power of such systems as SETI@home [12], Folding@home [13]. They
focus on solving one scientific or commercial problem, which makes them not a
universal platform without a programming model. For example, SETI@home is a
just special system for massively distributed computing to search extraterrestrial
intelligence.

Provided with programming models, XtremWeb [1] and BOINC [14] are
global distributed computing systems using volunteered computer resources.
The programming model of XtremWeb utilizes the concept of RPC and has
been implemented by P2P-RPC [6], a remote procedure call (RPC) API based
on two interfaces of low-level and XWrpc API. Supporting applications that
have large computation requirements, storage requirements, or both, and low
data/compute ratio, BOINC provides APIs which are a set of C++ functions.
A number of @home public-resource computing projects are now using BOINC,
such as SETI@home, Predictor@home [15].

However, XtremWeb and BOINC do not tailor their APIs according to dif-
ferent requirement of the main task and subtask. The main task is the hinge
of the processing flow, while the subtasks are executed redundantly over the
global resources. Correspondingly their scheduling and programming APIs are
different. They leave the burden of differentiating them to the programmers by
combining the two classes of API together.

Customizing simple programming APIs for the main task and subtask, the
programming model of P2HP is based on message passing mechanism. Currently,
the most novel message passing libraries in distributed computing systems are
MPI [16][17] and PVM [18], which are mainly used in cluster computing environ-
ments. A light-weight Java message-passing library with a deliberately simple
programming interface is presented in [19], which allows developing distributed
algorithms in a message passing model.



7 Conclusion

P2HP is a P2P-based testbed for high performance distributed computing, which
is exploited to support a large range of applications. The parallelism of appli-
cations in P2HP is in the task level, and P2HP provides users with a message-
passing programming environment. Based on the basic communication mech-
anism in P2HP, which is an Internet-wide one-sided message-passing between
entries that are linked by channels, the programming model provides users with
APIs for the main task and other subtasks, respectively. The application of se-
quence alignment in bioinformatics is programmed in OMP and run in P2HP,
which shows that OMP is an easy, architecture-independent, and performance-
guaranteed programming model.

To enhance the performance of P2HP, Datapool is going to be distributed
into the system. ComLib of OMP will be self-adaptive to the system environment
through the runtime, while the SDK will keep stable for users. Furthermore, to
support more applications with data-dependence, ComLib of P2HP will sup-
port the communication between workers, and correspondingly, the SDK will be
enriched with more one-sided message passing interfaces.

References

1. Fedak, G., Germain, G., Neri, V., Cappello, F.: XtremWeb: A Generic Global Com-
puting System. In: Proceedings of the 1st IEEE/ACM International Symposium
on Cluster Computing and the Grid, Brisbane, Australia, 2001. 582-587

2. Sievert, O., Casanova, H.: Policies for Swapping MPI Processes. In: Proceedings of
the 12th IEEE International Symposium on High Performance Distributed Com-
puting (HPDC’03), Washington, DC, USA, 2003

3. Skillicorn, D. B., Talia, D.: Models and Languages for Parallel Computation. ACM
Computing Surveys (CSUR), Vol. 30, No. 2 (1998) 123-169

4. Taura, K., Kaneda, K.: Phoenix: a Parallel Programming Model for Accommo-
dating Dynamically Joining / Leaving Resources. In: Proceedings of the ACM
SIGPLAN 2003 Symposium on Principles and Practice of Parallel Programming
(PPoPP’03), San Diego, CA, 2003. 216-229

5. Message Passing Interface Forum: MPI-2.0: Extensions to the Message-Passing
Interface. Technical report (1997)

6. Djilali, S.: P2P-RPC: Programming Scientific Applications on Peer-to-Peer Sys-
tems with Remote Procedure Call. In: Proceedings of 3rd IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid (CCGrid), Tokyo, Japan,
2003. 406-413

7. Saunders, S., Rauchwerger, L.: ARMI: An Adaptive, Platform Independent Com-
munication Library. In: Proceedings of ACM SIGPLAN 2003 Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP’03), San Diego, CA, 2003.
230-241

8. Jin, H., Luo, F., Zhang, Q., Zhang, H.: An Efficient Data Transfer Protocol for
P2P-Based High Performance Computing. Journal of Computer Research and De-
velopment, Vol. 43 (2006) (In Chinese)



9. Blanchette, M., Kwong, S., Tompa, M.: An Empirical Comparison of Tools for Phy-
logenetic Footprinting. In: Proceedings of the Third IEEE Symposium on Bioin-
formatics and Bioengineering, Bethesda, MD, 2003. 69-78

10. Sato, M., Boku, T., Takahashi, D.: OmniRPC: A Grid RPC System for Parallel
Programming in Cluster and Grid Environment. In: Proceedings of 3rd IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGrid), Tokyo,
Japan, 2003. 206-213

11. Boku, T., Onuma, K., Sato, M., Nakajima, Y., Takahashi, D.: Grid Environment for
Computational Astrophysics Driven by GRAPE-6 with HMCS-G and OmniRPC.
In: Proceedings of the 19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’05), Denver, CO, 2005. 176a

12. Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home:
An Experiment in Public-Resource Computing. Communications of the ACM, Vol.
45, No. 11 (2002) 56-61

13. Pande, V. S., Baker, I., Chapman, J., Elmer, S. P., Khaliq, S., Larson, S. M.,
Rhee, Y. M., Shirts, M. R., Snow, C. D., Sorin, E. J., Zagrovic, B.: Atomistic
Protein Folding Simulations on the Submillisecond Time Scale Using Worldwide
Distributed Computing. Biopolymers, Vol. 68 (2003) 91-109

14. Anderson, D. P.: BOINC: A System for Public-Resource Computing and Storage.
In: Proceedings of the Fifth IEEE/ACM International Workshop on Grid Com-
puting, Pittsburgh, USA, 2004. 4-10

15. Taufer, M., An, C., Kerstens, A., Brooks, C. L.: Predictor@Home: A ”Protein
Structure Prediction Supercomputer” Based on Public-Resource Computing. In:
Proceedings of the 19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’05), Denver, CO, 2005

16. Lusk, E.: MPI-2: Standards beyond the Message-Passing Model. In: Proceedings
of 3rd Working Conference on Massively Parallel Programming Models, London,
1997. 43-49

17. Liu, J. X., Jiang, W., Wychoff, P., Panda, D. K., Ashton, D., Buntinas, D., Gropp,
W., Toonen, B.: Design and Implementation of MPICH2 over InfiniBand with
RDMA Support. In: Proceedings of the 18th International Parallel and Distributed
Processing Symposium (IPDPS’04), Santa Fe, New Mexico, USA, 2004. 16

18. Gropp, W., Lusk, E.: Goals Guiding Design: PVM and MPI. In: Proceedings of the
IEEE International Conference on Cluster Computing (CLUSTER’02) Chicago, IL,
USA, 2002. 257-265

19. Schreiner, W.: A Java Toolkit for Teaching Distributed Algorithms. In: Proceedings
of the 7th Annual Conference on Innovation and Technology in Computer Science
Education, Aarhus, Denmark, 2002. 111-115


