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Abstract. Motivated by the inadequacy of current parallel program-
ming artifacts, the # component model was proposed to meet the new
complexity of high performance computing (HPC). It has solid formal
foundations, layed on category theory and Petri nets. This paper presents
some important design and implementation issues on the implementation
of programming frameworks based on the # component model.

1 Introduction

Clusters and grids have brought the processing power of high performance com-
puting (HPC) architectures to a wide number of academic and industrial users,
bringing new challenges to computer scientists. Contemporary parallel program-
ming techniques that can exploit the potential performance of distributed ar-
chitectures, such as the message passing libraries MPI and PVM, provide poor
abstraction, requiring a fair amount of knowledge on architectural details and
parallelism strategies that go far beyond the reach of users in general. On the
other hand, higher level approaches, such as parallel functional programming lan-
guages and scientific computing parallel libraries do not merge efficiency with
generality. Skeletal programming has been considered a promising alternative,
but several reasons have made difficult its dissemination [11]. In fact, the scien-
tific community still looks for parallel programming paradigms that reconciles
portability and efficiency with generality and high-level of abstraction [4].

In recent years, the HPC community has tried to adapt component technol-
ogy, now successfully applied in business applications in dealing with software
complexity and extensibility, to meet the needs of HPC applications. These ef-
forts yielded CCA and its frameworks [2], P-COM [20], Fractal [3], et cetera
[24]. Besides being a potential alternative to reconcile abstraction, portability,
generality, and efficiency in parallel programming, components leverage multi-
disciplinary, multi-physics, and multi-scale software for HPC [5], possibly tar-
geting heterogenous execution environments that are enabled for grid, cluster,
and capability computing [13].



The most important challenge to make components suitable for HPC relies
on their support for parallel programming [1, 10]. Surprisingly, parallel program-
ming based on the current approaches for supporting peer-to-peer components
interaction is not suitable for performance demands of HPC software that are not
embarrassingly parallel [1, 10]. Unfortunately, the presence of complex process
interactions are common in modern HPC software. For this reason, HPC com-
ponents models and architectures have been extended for supporting non-trivial
forms of parallelism [17, 12, 22, 1, 3]. However, such approaches for parallelism do
not reach generality of message-passing based parallel programming. In addition,
they are influenced by the common trend of lower level parallel programming
approaches to treat processes, and not only concerns, as basic units of software
decomposition. We consider that this is one of the main reasons of the difficulty
in adapting current software engineering techniques for the development of par-
allel programs. Software engineering approaches have appeared in the context
of sequential software, where processes do not exist. We advocate orthogonality
between processes and concerns [8]. Thus, they cannot be appropriately viewed
under the same software decomposition dimension.

The # component model was primarily developed for general purpose parallel
programming, taking the orthogonality between processes and concerns as a ba-
sic design premise. Unlike most of the recently proposed components approaches
for HPC, it does not take inspiration in conventional component models. It has
origins in the coordination model of Haskell# [7], a parallel extension to the func-
tional language Haskell. Most possibly, any component model may be defined
in the # component model. Besides to dealing with parallel programming in a
natural way, the # component model is influenced by modern ideas regarding
the notion of separation of concerns [8], one of the main driving forces for recent
advances in software engineering technologies [21]. Indeed, cross-cutting compo-
sition of concerns is supported. The # component model tries to achieve a higher
level of abstraction by employing skeletal programming through parameterized
component types. This paper intends to present the design of a framework based
on the # component model for parallel programming targeting HPC software
on top of IBM Eclipse Platform.

In what follows, Section 2 introduces the basic principles behind the # com-
ponent model, comparing it to other HPC component approaches. Section 3
depicts the general design of # frameworks. Section 4 presents the design of a
general purpose parallel programming framework. Section 5 concludes this pa-
per, describing ongoing and lines for further works regarding the implementation
of programming environments based on the # component model.

2 The # Component Model: Principles and Intuitions

Motivated by the success of the component technology in software industry,
scientific computing community has proposed component models, architectures
and frameworks for leveraging multi-disciplinary, multi-physics, and multi-scale
HPC software, possibly targeted at HPC architectures enabled for grid, cluster,



and capability computing [24]. Unfortunately, their requirements for the support
of parallelism and high processing efficiency make usual forms of peer-to-peer
component interaction unsuitable [10, 5]. For this reason, specific parallel pro-
gramming extensions have been proposed to current component technology. For
example, CCA specification includes SCMD3 extensions for supporting SPMD
style of parallel programming [1]. PARDIS[17], PADICO[12], and GridCCM[22]
have also adopted a similar concept for supporting parallel objects inside compo-
nents. Fractal proposes collective ports that may dispatch method calls to a set
of inner parallel components [3]. In general, such extensions cover requirements
of a wide range of parallel programs in certain domains of interest, but they do
not provide full generality of message-passing parallel programming. It is usual
to find papers on HPC components that include “support for richer forms of
parallelism” in the list of lines for further works. For example, CCA attempts
to move from SCMD to MCMD, a simple conceptual extension, but difficult to
reach in practice. In fact, to support general purpose parallel programming is
still a challenge for HPC component technology.

The inductive approach to augment component technology with new paral-
lel programming extensions breaks down conceptual homogeneity of component
models, making them more complex to be grasped by informal means and math-
ematically formalized. The # component model comes from the “opposite direc-
tion”, taking a deductive generalization of channel-based parallel programming
for supporting a suitable notion of component. The # component model has its
origins in Haskell# [7], a parallel extension to the functional language Haskell,
inheriting their design premisses, including Petri nets translation [9].

2.1 From Processes to Concerns

The basic principles behind the # component model come from message passing
programming, notably represented by PVM and MPI. They have successfully
exploited peak performance of parallel architectures, reconciling generality and
portability, but with hard convergence with software engineering disciplines for
supporting productive software development. The following paragraphs intro-
duce fundamental principles behind the # component model: the separation of
concerns through process slicing ; and orthogonality between processes and con-
cerns as units of software decomposition. Familiarity of readers with parallel
programming is needed to understand the # component model from the intu-
ition behind their underlying basic principles. Induction from examples must be
avoided. Readers may concentrate on fundamental ideas and try to build their
own examples from their experience and interests. Figures 1 and 2 complemen-
tarily present a simple parallel program that is used for exemplifying the idea of
slicing processes by concerns. Let A and B be n×n matrixes and X and Y be
vectors. The parallel program computes (A×XT )•(B× Y T ).

We have searched for the fundamental reasons that make software engineer-
ing disciplines too hard to be applied for parallel programming, concluding that

3 Single Component Multiple Data
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Fig. 1. Slicing a Simple Parallel Program by Concerns

they reside on the tendency to mix processes and concerns in the same dimension
of software decomposition, due to the traditional process-centric perspective of
parallel programming practice. Software engineering disciplines assume concerns
as basic units of software decomposition [21]. We advocate that processes and
concerns are orthogonal concepts. Without loss of generality, aiming at to clarify
intuitions behind the enunciated orthogonality hypothesis, let P be an arbitrary
parallel program formed by a set {p1, p2, . . . , pn} of processes that synchronize
through message-passing. By looking at each process individually, it may be split
in a set of slices, each one addressing a concern. Figure 1 shows an example of
process slicing in a simple parallel program. Examples of typical concerns are:
(a) a piece of code that represents some meaningful calculation, for example,
a local matrix-vector multiplication; (b) a collective synchronization operation,
which may be represented by a sequence of send/recv operations; (c) a set of
non-contiguous pieces of code including debugging code of the process; (d) the
identity of the processing unit where the process executes; (e) the location of
a process in a given process topology. The reader may be convinced that there
is a hierarchical dependency between process slices. For instance: (a) the slice
representing collective synchronization operation is formed by a set of slices
representing send/recv point-to-point operations; (b) a local matrix-vector mul-
tiplication slice may include a slice that represent the local calculation performed
by the process and another one representing the collective synchronization oper-
ation that follows it. If we take all the processes into consideration, it is easy to
see existence of concerns that cross-cuts processes. For example: (a) the concern
of parallel matrix-vector multiplication includes all slices, from individual pro-
cesses, related to local matrix-vector multiplication; (2) the concern of process-
to-processor allocation is formed by the set of slices that define the identities of
processors where each process executes. It is easy to see that, from the overall



perspective of processes, most of slices inside individual processes does not make
sense when observed in isolation. Individually, they do not define concerns in
the overall parallel program. The cross-cutting nature of decompositions based
on concerns and processes strongly enforces the orthogonality hypothesis.
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Fig. 2. #-Components From The Example in Figure 1

Above, some examples of #-components extracted from slicing of the parallel program
in Figure 1. Some of them are non-functional concerns: (a) debugging code and (b)
process-to-processor mapping. The #-components V = A×X and r = V •U addresses
functional concerns: parallel matrix-vector multiplication and parallel dot product,
respectively. The #-components “broadcast Y” and “redistribute V (2)” address data
distribution concerns, acting as synchronization protocols. The #-component “input
Y” is a local concern of a process (root) that is responsible to read vector Y .

The # component model moves parallel programming from the process-based
perspective to a concern-oriented one. In fact, through a Front-End, # program-
mers may build applications through composition of concerns. Then, a Back-
End may synthesize the process topology of the intended parallel program. A
#-component is a software entity that encapsulates a concern. Such definition
covers usual notions of components, because concerns are elementary units of
software decomposition. The units of a #-component correspond to the slices
(of processes) that constitutes its addressed concern. A #-component may be
inductively built from other #-components through unification of their units,
forming units of the resultant #-component. Thus, units also form a hierar-
chical structure, attempting to resemble hierarchical structure of process slices,
where units may be formed by other units (unit slices). Sharing between compo-
nents is supported through fusion of unit slices in unification. Sharing of data
structures is a fundamental feature for ensuring high performance in scientific
software. Another component model that supports sharing between components
is Fractal [6]. The protocol of a unit is specified by a labelled Petri net whose
labels are identifiers of their slices. It determines a Petri net formal language
which dictates the possible activation traces for slices. Intuitively, it defines the
order in which processes execute their functional slices. Petri nets allows for
analysis of formal properties and performance evaluation of parallel programs.
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Class

component type
              e <: Environment] (initial object)

Fig. 3. Component Class for LSSolver

A component class for LSSolver components, represented by the component type
inside the gray box. Lowercase identifiers are formal parameters. The notation x <: C
says that x may be replaced by any sub-type of component type C. Arrows indicate
instantiations, which replace a formal parameter by an actual component. For example,
there are four components that implement solutions for dense linear systems using the
Jacobi iterative method. They target different architectures. The component type MPI
is parameterized by the intended architecture (MPI[a <: Architecture]).

2.2 Skeletal Programming and Parameterized Component Types

The simpler form of abstraction in # programming is to hide lower level op-
erations in higher level ones encapsulated in components. For example, a pro-
grammer that makes use of a component LSSolver for solving a linear system
A.x = B does not need to be aware about synchronization operations inside
the component, resembling linear algebra parallelized libraries. Partitioning of
parallel programs by concerns suggests richer abstraction mechanisms, such as
skeletal programming through component types, representing a class of com-
ponents that address the same concern through distinct implementations, each
one appropriate to a specific execution environment. For example, there may
exist several possible implementations for LSSolver, adapted to specific par-
allel architectures, process topologies, and density properties of matrix A. Such
parameters are known by programmers before execution. Figure 3 exemplifies
a component class for dealing with implementations of LSSolver. The idea
of parameterized component types have appeared due to the formalization of
the # component model using Theory of Institutions [15], firstly intended to
study its formal properties and to formalize the notions of component types
and their recursive composition. Because Theory of Institutions have been used
to formalize logical independence in algebraic software specification, some ideas
from this context have been brought to # programming, including parameterized
programming [14], which gives rise to polymorphic component types.
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Fig. 4. The # Framework and #-Components Life Cycle

3 An Architecture for # Programming Frameworks

Figure 4 depicts an architecture proposal for # programming frameworks. Like
CCA and Fractal, # compliant frameworks be built from instantiation of a set
of interfaces that define the # component model architecture, whose interfaces
are depicted in the UML diagram of Figure 5. Frameworks control life cycle
of components by means of the interfaces that components must provide. CCA
targets simplicity, by adopting a lightweight interface for components to interact
with the framework, including only the method setServices, where programmers
register their uses ports and provides ports for dynamic binding. Fractal com-
pliant components also support dynamic bindings, also targeting hierarchical
composition from primitive components. As already shown, the # component
model supports recursive composition, but their “bindings” are static, which, at
a first glance, appears to restrict the application domain of #-components. For
this reason, the # component model is not yet proposed for general distributed
applications, but only for applications in high performance computing domain.
In fact, most of parallel programs are static, avoiding performance overheads
of run-time control. However, #-frameworks can still deal with dynamic execu-
tion scenarios needed by HPC applications. In fact, static configuration does not
imply static execution. A #-framework may encapsulate predictable dynamic
adaptations of programs, supported by some underlying programming artifact,
as concerns of #-components.

Unlike CCA and Fractal, # programmers does not glue components to frame-
works by direct implementation of architecture interfaces for programming mod-
ules, but using an architecture description language (ADL). This is motivated
by the requirement to place coordination and computation concerns at separate
programming layers, and to facilitate support for overlapping composition, since
current usual programming artifacts does not support to overlap implementation
of modules. As depicted in Figure 4, the Front-End of a #-framework deals with
component views of a component model, managed by the Framework-Core and
accessed by the Front-End through the interface HFrameworkFrontEndPort. The
Framework-Core is also responsible to manage a library of #-components placed
at registered locations. In Fractal and CCA, programmers directly manipulates



the component model. The # component model delegates to #-frameworks to
define one or more appropriate ADL’s, managed by distinct Front-End ’s. ADL’s
may be graphical, using visual metaphors, or textual. A textual ADL may be
XML-based, making possible interoperability at the level of component views.
Indeed, general framework interoperability can be achieved at the level of compo-
nent models. In visual programming, the MVC (Model-View-Controller) pattern
is a good design pattern for interpreting component views as component models.

<<interface>>

HConfigureReplicator

newReplicator() : HRNaming
removeReplicator(r : HRNaming) : void
fuseReplicators(rs : List<HRNaming>) : void
linkToReplicator(e : HReplicatable,r : HReplicator) : HRLNaming
unlinkReplicator(l : HRLNaming) : void
splitReplicatorLink(ls : HList<HRLNaming>,n : Integer) : HSNaming
unSplitReplicatorLink(ss : HSNaming) : void

<<interface>>

HConfigureComponent

getComponent() : HComponent
setComponentName(name : String) : void
useComponent(name : HCNaming) : void
unUseComponent(name : HCNaming) : void
getConfigurationElement() : HConfigurationElement

<<interface>>

HProtocolConfiguration

<<interface>>

HConfigureParameter

newParameter(c : HCNaming) : HPNaming
removeParameter(HPNaming : void) : void
setParameterName(v : HPNaming,s : String) : void
supplyParameter(p : HPNaming,c : HCNaming) : void
unSupplyParameter(p : HPNaming) : void

<<interface>>

HConfigureUnit

newUnit() : HUNaming
removeUnit(u : HUNaming) : void
setUnitName(unit : HUNaming,name : String) : void
unifyTo(unit : HUNaming,unitWith : HUNaming) : void
unUnifyTo(unit : HUNaming,unitWith : HUNaming) : void
consolidateInterface(unit : HUNaming) : HINaming
fuseSlices(s1 : HUNaming,s2 : HUNaming) : HUNaming
unFuseSlice(s : HUNaming) : void
hide(u : HUNaming) : void
show(u : HUNaming) : void

<<interface>>

HConfigureInterface

setInterfaceName(i : HIName,name : String) : void
linkToInterface(unit : HUNaming,i : HINaming) : void
unlinkInterface(l : HILinkNaming) : void

<<interface>>

HFrameworkFrontEndPort

openConfigurationSession() : HConfiguration
closeSession(c : HConfiguration) : void
fetchCatalog() : List<HLocation>

<<interface>>

HLocationService

fetchPackges() : List<HPackage>
createPackage(path : List<String>) : HPackage
removePackage(p : HPackage) : void
registerComponent(c : HComponent) : HCNaming
unRegisterComponent(c : HCNaming) : void

<<interface>>

HPackage

getPath() : List<String>
getStringPath() : String

<<interface>>

HFrameworkBackEndPort

<<interface>>

HRetrieveComponent

fetchComponent(c : HCNaming) : HComponent

<<interface>>

HNaming

<<interface>>

HCNaming

<<interface>>

HUNaming

<<interface>>

HINaming

<<interface>>

HRNaming

<<interface>>

HLRNaming

<<interface>>

HUnit

getName() : String
getComponent() : HComponent
getInterface() : HInterface
getSlices() : List<HUnit>
isHidden() : boolean
getInterfaceSlice() : HInterfaceSlice
getId() : HUNaming

<<interface>>

HInterface

getName() : String
getProtocol() : HProtocol
getSignature() : HSignature
isSubTypeOf(hInterface : HInterface) : boolean

<<interface>>

HProtocol

getInterface() :

<<interface>>

HParameter

getName() : String
getType() : HComponent
isSupplied() : boolean
getSupplyingComponent() : HComponent
getId() : HPNaming

<<interface>>

HReplicatable

isReplicated() : boolean
getReplicatorLinks() : Set<HReplicatorLink>

<<interface>>

HReplicator

getName() : String
getExpression() : String
getId() : HRNaming
getSplitters() : Set<HReplicatorSplitter>
getLinks() : Set<HReplicatorLink>

<<interface>>

HComponent

getName() : String
getUnits() : Set
getInnerComponents() : Set<HComponent>
getParameters() : Set<HParameter>
getParameter(hParameter : String) : HParameter
isSubTypeOf(hComponent : HComponent) : boolean
getId() : HCNaming

<<interface>>

HSignature

getSlices() : Set<HInterfaceSlice>
getTopSlice() : HInterfaceSlice

<<interface>>

HInterfaceSlice

getName() : String
getType() : HInterface
getSons() : List<HInterfaceSlice>

<<interface>>

HReplicatorSplitter

getOwnerReplicator() : HReplicator
getSpplitingReplicators() : List<HReplicator>

<<interface>>

HReplicatorLink

getReplicator() : HReplicator
getReplicated() : HReplicatable

Fig. 5. The Framework Core and the # Component Model Architecture

The Back-End of #-frameworks synthesizes a parallel program from the com-
ponent model, targeting their supported execution environments. This is needed
due to orthogonality between #-components and processes, a fundamental dis-
tinction from CCA and Fractal, where component models are the units of pro-
gramming and deployment. For this reason, CCA and Fractal do not need a
Front-End and a Back-End (Figure 4). In fact, #-frameworks act as bridges be-
tween component views and parallel programming artifacts. The # component
model does not intend to be “yet another parallel programming technology”, but
to be a components-based layer on top of which existing ones can take advan-
tage of software engineering disciplines. It is conjectured that any programming



technology may be defined in terms of the # component model, including CCA
and Fractal frameworks. The interoperability hypothesis has been verified by ex-
perimental evaluation with #-frameworks. The Back-End of #-frameworks may
perform optimization steps for reducing synchronization costs in the resultant
parallel program. For example, if all slices of a #-process are programmed in
the same language, they can be fused (inlined) in a single procedure, avoiding
unnecessary costs of procedure calls and improving cache behavior. It is intended
that the synthesized parallel program be similar or better than programmed by
hand, since programmers have explicit control over all parallelism concerns.

A #-framework defines a set of specialized components kinds, each one
containing a set of component types with an intended meaning, which may im-
ply in different visual metaphors and model interpretations at the Front-End and
Back-End sides. In fact, component kinds are supported by the specialization of
the interfaces of the # component model architecture, presented in Figure 5. The
use of component kinds for designing of # compliant PSE’s (Problem Solving
Environments) that uses visual metaphors that are near to the knowledge of
specialists have been investigated. The # component model goes far beyond the
idea to raise connectors to first-class citizens [23], by promoting them to com-
ponents. For example, a CCA binding could be implemented as a #-component
Binding. Such approach leads to uniformity of concepts. Fractal also exercises
the idea of components as connectors, by means of composite bindings, but prim-
itive bindings are not components, breaking homogeneity. The # connectors are
exogenous[19], like in P-COM, while they are endogenous in CCA and Fractal.

4 A # Environment for Parallel Programming

Now, the design of a #-framework for general purpose parallel programming on
top of common message-passing programming technologies, called HPE (# Pro-
gramming Environment), is presented. It is an extension to the Eclipse frame-
work. GEF (Graphical Editing Framework) has been used to build an ADL
for dealing with visual configuration of #-components. GEF adopts the MVC
(Model-View-Controller) design pattern. A XML format for describing configu-
rations have been also designed. The framework complies to the # component
model architecture, specializing it to support the component kinds supported
by HPE, including component types for qualifiers, architectures, environments,
data structures, computations and synchronization concerns. Some built-in com-
ponent types are supported by the framework, whose sub-typing hierarchy is
depicted in Figure 6. For each component kind there is a proper top component
type. Programmers may build their own component types and programs on top
of component kinds and component types natively supported by the framework.

Figure 7(a) presents a screenshot of the the HPE’s Front-End, showing a #
program (application component) that solves a linear system A×x = B. Inputs
(matrix A and vector B), and output (vector x), are retrieved/saved in a remote
data center defined by the component DataCenter. It will illustrate the idea of
component kinds. Input data is distributed across processes using the collective



communication component Scatter, while output is joined in the root process
using Gather. In Figure 7(b), the protocol of the unit peer is depicted, defining
that scattering operations must be performed in parallel, followed by the solution
computation and gathering.

Channel[a <: Architecture, 

RemoteServiceInvocation[e<:Environment,
m <: RSIMode,
s <: Service

Data[a<:Architecture, e<:Environment]

Computation[a<:Architecture, e<:Environment]

Synchronization[a<:Architecture, e<:Environment]

Component

RPCModeSynchronousRPCMode

ChannelMode

Qualifier

PVM

Globus

MPI

Cluster

Grid

Environment

Architecture

Sub−Typing Hierarchy for the Component Types

ChanReady

Natively Supported by the Framework

ChanAsynchronous

ChanSynchronous

e <: Environment,
m <: ChanMode,
d <: Data]

Fig. 6. The # Component Kinds of the Framework

4.1 Component Kinds

Qualifier components address non-functional concerns intended to describe
characteristics of components. In practice, they may act selectively among com-
ponents in a component class, allowing programmers to control choice of com-
ponent instances from its representant component type. For example, suppose a
component class for point-to-point communication channels, represented by the
component type Channel[· · · ,mode <: ChannelMode]. The syntax says that,
among other parameters (reticences), their component instances may vary ac-
cording to the intended communication semantics. For that, the parameter mode
must be supplied with a sub-type of the qualifier component ChannelMode,
which comprises two units, respectively intended to be slices of sender and
receiver units of a channel component. The natively supported sub-types of
ChannelMode in the framework are ChanSynchronous, ChanAsynchronous,
and ChanReady. Programmers may define other channel modes. The compo-
nent type Channel[· · · ,ChanSynchronous] represents the class of channel
components with synchronous semantics. In Figure 7, qualifier components are
also used to describe the solution method in a LSSolver component.

Architecture components intend to describe parallel architectures where
#-components intends to run. Their units are their processing nodes. Using sub-
typing capabilities, supported architectures must be organized in hierarchies, in
order to be classified according to their common characteristics. For example, a
Cluster architecture component type may be specialized in component types
referring to common cluster designs, possibly distinguished by the processor
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type, communication network type, homogeneity/heterogeneity, and so on. At
the leaves of the hierarchy, there are component types for describing specific
clusters. Thus, a programmer may target a class of architectures by using archi-
tecture types at non-leave nodes. A specific architecture could be in more than
one intersecting classes. Similarly, grid-based architectures could be classified.
The example in Figure 7 runs in a specific cluster, named Pargo’s cluster.

Environment components define the parallelism enabling software tech-
nology intended for a component. Typical examples are message-passing li-
braries, such as MPI and PVM, for cluster and capability computing, and Globus
and OurGrid, for grid computing. Some MPI implementations also target grids.
Notice that a pair architecture/environment defines a complete parallel run-time
execution context for a component. Hierarchies of component types may also be
used to define classes of environments of special interest, for example, software
technologies for enabling message-passing or bag-of-tasks parallelism.

Data components are formed by one unit, whose interface is attached to
a SIDL (Scientific Interface Description Language) interface. SIDL has been
supported by the Babel toolkit [18] to be a neutral language for specification
of CCA components interfaces. Sub-typing is supported for data components,
resembling multiple inheritance in object-oriented programming. For that, a data
component type D must be composed from a set of data components super-



types, whose units becomes slices of the units of D. In Figure 7, there are data
component types Vector and Matrix, sub-types of the component type Data.

Synchronization components allows inter-process communication. There
are synchronization components for dealing with point-to-point message-passing
(the usual send and receive primitives), collective communication (structure par-
allel programming [16]), and remote service invocation (such as RPC, RMI, and
so on). The class of all channel components is represented by the component type
Channel[a<:Architecture, s<:Environment, d<:Data,m<:ChanMode ].
A highly tuned member of the component class of Channel[· · ·] may be specific
to a given architecture, environment, data type, and channel semantics. The class
of remote service invocation components is represented by the component type
RemoteServiceInvocation[e<:Environment, m<:RSIMode, s<:Service].
They comprise two externally visible units: client and server. The activation of
a client slice is a null operation. Client slices only carries stub objects for each
interface provided by the service. A server slice only implements methods of
the service interfaces. Collective communication components correspond to that
supported by MPI. All of them comprise only one replicated unit. Some of them,
such as Broadcast, Scatter, and Gather distinguish a root unit, the first one
in the replication enumeration. Qualifier components are used to define channel
communication semantics, as described above.

Computation components specify parallel computations over distributed
data structures encapsulated in data components that makes part of their con-
stitution. Their units define state transformer procedures over a set of local data
slices, units of the inner data components. Data slices may be private or public.
Private data slices become local variables in the unit procedure, where public
ones become their parameters and return values, which are visible to procedure
callers. There are three kinds of public data slices: in, for input data; out, for
output data; in/out, for input and output data. Such modifiers are supported
by SIDL, covering possible parameter passing semantics. Slices that comes from
other inner computation components are called computation slices. Computa-
tion slices also define procedures whose parameters are their public data slices.
Data slices from different unified computation slices may be fused to refer to
the same data item (data sharing mentioned in Section 2.1). The protocol of
the unit dictates a control flow for calling the procedures of computation slices
(denotation of slice activation for computation slices). In HPE, behavior ex-
pressions are used for specifying protocols, with combinators from synchronized
regular expressions, a formalism that reaches expressiveness of terminal labelled
Petri nets. The Front-End may partially generate the code for procedures, us-
ing the signature and protocol of the computation slice to define parameters,
local variables, and control flow. In Figure 7, the root process comprises three
data slices (one input vector B, one input matrix A, and one output vector
X), two service slices, for accessing a data center (DataCenter component)
where input data is retrieved and where output data is stored for further analy-
sis, three synchronization slices, for data distribution across processes (Gather
and Scatter operations for collective synchronization), and one computation



slice, whose procedure computes a solution to the linear system A×x = B. The
peer process does not have a service slice for accessing the remote data center,
because only root needs to access it. Fusion of data slices, represented by circles
attached to the synchronization and computation slices involved, is used to set
input data (A and B) and output data (x) for the LSSolve component.

5 Conclusions and Lines for Further Work

This paper sketched the architecture of frameworks that complies the # com-
ponent model. The design of a #-framework for general purpose parallel pro-
gramming was presented. The # component model intends to reconcile software
engineering disciplines with efficient parallel programming, meeting the needs of
the HPC community. Besides that, it is another attempt to adapt component
technology to the demands of HPC software development. Compared to other
HPC component models, the # component model is parallel by nature, target-
ing expressiveness of message passing parallel programming. Its main principles
comes from the study of reasons that make difficult software engineering disci-
plines and parallel software development to be compatible with each other. The
implementation of # compliant frameworks intends to make possible experimen-
tal evaluation of the hypothesis underlying the # component model principles.

The authors are currently working in the design and implementation of #
compliant frameworks. Its formal semantics and analysis of the properties of the
# component model are been studied under Category Theory and the Theory of
Institutions. The study the use of #-frameworks as a platform for implementa-
tion of interoperable PSE’s (Problem Solving Environments) is already planned.
For that, the use of visual metaphors for component kinds is proposed to bring
closer together programming abstractions and the needs of users of HPC.
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