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The aim of this work is to perform numerical simulations of the propagation
of a laser beam in a plasma. At each time step, one has to solve a Helmholtz
equation with variable coefficients in a domain which may contain more than
hundred millions of cells.

One uses an iterative method of Krylov type to deal with this system. At
each inner iteration, the preconditioning amounts essentially to solve a linear
system which corresponds to the same five-diagonal symmetric non-hermitian
matrix. If nx and ny denote the number of discretization points in each spatial
direction, this matrix is block tri-diagonal and the diagonal blocks are equal to
a square matrix A of dimension nx which corresponds to the discretization form
of a one-dimension wave operator. The corresponding linear system is solved by
a block cyclic reduction method.

The crucial point is the product of a full square matrix Q of dimension nx

by a set of ny vectors where Q corresponds to the basis of the nx eigenvectors of
the tri-diagonal symmetric matrix A. We show some results which are obtained
on a parallel architecture. Simulations with 200 millions of cells have run on 200
processors and the results are presented.
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1 Introduction

The numerical simulation of propagation of high power intensity lasers in a
plasma is of importance for the ”NIF project” in USA and ”LMJ Facility project”
in France. It is a very challenging area for scientific computing indeed the wave
length 2π/k0 is equal to a fraction of one micron and the simulation domain
has to be much larger than 500 microns. One knows that in a plasma the index
of refraction is equal to

√

1 −Ne/Nc, where Ne is the electron plasma density
and the critical density Nc is a constant depending only on the wave length.
In macroscopic simulations (where the simulation lengths are in the order of
some millimeters), geometrical optics models are used and numerical solutions
are based on ray tracing methods. To into account more specific phenomena such
as diffraction, autofocusing and filamentation, one generally uses models based
on a paraxial approximation of the full wave equation (see for example [5], [1]



or, for a new approach in a tilted frame, [6]). But this approximation is valid
only if the macroscopic index of refraction is a very smooth function, in such a
way that the wave vector is quite constant in the simulation domain.

There are situations where the macroscopic variations of the plasma density
Ne are not small. Particularly if one considers a laser beam propagating in a
region near the critical density, it undergoes a total change of direction near a
surface called caustic surface and the wave vector is strongly varying near this
surface. So, the paraxial approximation is no more valid and one has to deal
with a model based on a frequency wave equation (obtained by time envelope of
the solution of the full Maxwell system).

Whatever propagation model is used, it is necessary to perform a coupling
with the fluid dynamics system for modelling the plasma behavior. For a deriva-
tion of the models and a physical exposition of the phenomena under interest,
see e.g. [13] or [7]. This paper is aiming at describing the numerical methods for
solving the frequency wave equation. Notice that our simulation have been per-
formed to take into account diffraction, refraction and auto-focusing phenomena
but the Brillouin parametric instabilities which create laser backscattering are
not taken into account up to now.

In the section 2, we describe the model based on the frequency wave equation.
In this paper, only 2D problems are considered but the method may be extended
to 3D computations. Denote by x the space variable and set x = (x, y) the two
spatial coordinates. After time discretization, to find the laser field ψ at each
time step, one has to solve a Helmholtz equation of the following form

∆ψ +
(

k2
0(1 −N) + ik0µ0

)

ψ = f (1)

where f is a given complex function and µ0 a real coefficient. We assume that
the gradient of the macrocsopic non-dimension density N(x) = Ne/Nc is parallel
to the x-axis, then we set

N(x, y) = N0(x) + δN(x, y) (2)

whereN0 depends on the x variable only and δN is small compared to 1. To solve
accurately equation (1), one considers a spatial discretization of finite difference
type with a spatial step equal to a fraction of the wave length. If nx and ny

denote the number of discretization points in each direction, it leads to solve a
the linear system with nxny degrees of freedom (which may be equal to 108 for
a typical 2D spatial domain). One chooses an iterative method of Krylov type
with a preconditioning which amounts to solve a linear system corresponding to
a five-diagonal symmetric non-hermitian matrix AI

AI =









α+ A/2 −T
−T A −T

−T A −T ...
−T A ...









where T is equal to a constant times the identity matrix of dimension nx, the
matrix A of dimension nx is equal to 2T plus the matrix of discretization of
one-dimension Helmholtz operator and α is a constant.



Since the matrix AI is separable, the corresponding linear system may be
solved by the block cyclic reduction method. This method which is derived from
the classical cyclic reduction method, has been used for instance in [12] for
the numerical solution of Helmholtz problems, but the problem here is a more
complicated, indeed one has to deal with Perfectly Matched Layers on two sides
of the simulation domain.

The crucial point is the multiplication of a full square matrix Q of dimension
nx by the set of ny vectors which are of length nx, where Q corresponds to the
basis of the nx eigenvectors of the tri-diagonal matrix A.

In section 3, we describe the key points of the numerical method for solving
(1). In section 4 we give some details on the parallel implementation ; for that
purpose the processors are shared out according to horizontal slabs. In the last
section we present numerical results in a small simulation domain with only 3
millions of cells and another case of 200 millions of cells which has run on 200
PEs.

2 The model and the boundary conditions.

The laser beam is characterized by an electromagnetic wave with a fixed pulsa-
tion ck0 where c is the light speed and the wave length in vacuum is equal to
2π/k0. For modelling the laser, one considers the time envelope ψ = ψ(t,x) of
the transverse electric field. It is a slowly time varying complex function. On the
other hand, for modelling the plasma behavior one introduces the non-dimension
electron density N = N(t,x) and the plasma velocity U = U(t,x).

Modelling of the plasma. For the plasma, the simplest model is the follow-
ing one. Let P = P (N,x) a smooth function of the density N which may depend
also of the position x , according to the variation of the electron temperature.
Then one has to solve the following barotropic Euler system :

∂

∂t
N + ∇(NU) = 0, (3)

∂

∂t
(NU) + ∇(NUU) + ∇(P (N)) = −Nγp∇|ψ|2. (4)

The term γp∇|ψ|2 corresponds to a ponderomotive force due to a laser pres-
sure (the coefficient γp is a constant depending only on the ion species).

Modelling of the laser beam. The laser field ψ = ψ(t,x) is a solution to
the following frequency wave equation (which is of Schrödinger type)

2i
1

c

∂

∂t
ψ +

1

k0
∆ψ + k0(1 −N)ψ + iνψ = 0, (5)

where the absorption coefficient ν depends on space and the density N = N(t,x)
is solution to the fluid system stated above. Of course, the problem is interesting
only in the region where N(t,x) ≤ 1.

General framework. For the numerical solution of the fluid system, we
use the method described in [8] or [1] which has been implemented in a parallel



platform called HERA. For solving (5), the spatial mesh has to be very fine, at
least 10 cells per wave length in each direction. Generally the modulus |ψ| of the
electric field is slowly varying with respect to the spatial variable, one can use
a crude mesh for the simulation of the Euler system (the mesh size has to be of
order of the 2π/k0). If the modulus |ψ| was not slowly varying in a region, one
would have to solve in this region the Euler system with a fine mesh also.

So we handle a two-level mesh of finite difference type : in a 2D simulation,
each cell of the fluid system is divided into p0 × p0 cells for the Helmholtz level,
with p0 = 10 or 5. We assume in the whole paper that the hypothesis (2) holds,
so it allows to perform a preconditioning of the global linear system by another
system which is simpler since it does not take into account the perturbation
δN(x, y); this last system corresponds to a separable matrix and therefore a
block cyclic reduction method may be used for its numerical solution.

Boundary conditions. The laser beam is assumed to enter in x = 0. Since
the density N depends mainly on the x−variable, we may denote by N in the
mean value of the incoming density on the boundary and by N out the mean
value of the density on the outgoing boundary . Let eb be the unit vector related
to the direction of the incoming laser beam and set Kin = eb

√
1 −N in. The

boundary condition on the part of the boundary (x = 0) reads (with n = (−1, 0)
the outwards normal to the boundary)

(k−1
0 n.∇ + iKin.n)(ψ − αineik0K

in
x) = 0. (6)

where αin = αin(y) is a smooth function which is, roughly speaking, independent
of the time. On the part of the boundary x = xmax, there are two cases according
to the value Nout :

i) If Nout > 1 the wave does not propagate up to the boundary and the
boundary condition may read as ∂ψ/∂x = 0.

ii) If Nout ≤ 1 it is necessary to consider a transparent boundary condition.
Here we take the simplest one, that is to say

(k−1
0 n.∇ + i

√
1 −Nout)(ψ) = 0.

On the other hand, on the part of the boundary corresponding to y = 0 and
y = ymax, it is crucial to have a good transparent boundary condition, so we
introduce perfectly matched layers (the P.M.L. of [2]). For the simple equation
−∆ψ − ω2ψ = f, this technique amounts to replace in the neighborhood of the

boundary, the operator ∂
∂y

by
(

1 + σ

iω

)−1
∂
∂y
, where σ is a damping function

which is not zero only on two or three wave lengths and which increases very
fast up to the boundary. Notice that the feature of this method is that it is
necessary to modify the discretization of the Laplace operator on a small zone
near the boundary.

At each time step δt determined by the CFL criterion for the Euler system,
one solves first the Euler system with the ponderomotive force and afterwards
the frequency wave equation (5). For the time discretization of this equation, an
implicit scheme is used. The length cδt is very large compared to the spatial step



therefore the time derivative term may be considered as a perturbation and one
has to solve the following equation of the Helmholtz type

∆ψ +
(

k2
0(1 −N) + ik0(µ0 + ν)

)

ψ = iµ0ψ
ini (7)

where µ0 = 2k0/(cδt). The boundary conditions are the same as above.

3 Principle of the Numerical methods for the Helmholtz

equation

The spatial discretization (7) is the classical one of finite difference type. Denote
by nx and ny the number of discretization points in each direction.

Beside the interior domain, there are two zones corresponding to the two
PMLs near the boundary y = 0 and y = ymax, the width of these layers cor-
responds to 2p0 points. Then the linear system to be solved has the following
form





P1 C1 0
E1 AI +D E2

0 C2 P2



Ψ = F (8)

where P1 and P2 are square matrices whose dimension is 2p0nx , it corre-
sponds to the discretization of the equation in the P.M.L. On the other hand
Ci, Ei are coupling matrices (whose dimensions are nxny, times 2p0nx ). The
square matrix AI whose dimension is nxny, corresponds to the discretization of

(∆+ k2
0(1 −N0) + ik0µ0)•

in the interior domain. Moreover, D is a diagonal matrix corresponding to the
terms δN(x, y) + ik0ν(x, y). Notice that the domain decomposition method is
used with Robin interface conditions (see [10], [3]) which corresponds to a dis-
cretization of the condition on the interfaces between subdomains

∂

∂n
ψ + αψ =

∂

∂n
ψneib + αψneib

(α is a complex parameter and ψneib is the value in the other subdomain).

3.1 Solution of the linear system

An iterative Krylov method is used to solve (8) : the GMRES method without
restarting seems to be the best choice ; the preconditioning is performed by
solving the linear system based on AI in the interior domain and on P1 and P2

in the P.M.L. domains, that is to say the main point is to solve as fast as possible
a system of the following form

PU = f, where P =





P1 0 0
0 AI 0
0 0 P2



 (9)



Matrices P1 and P2 may be easily factorized in the standard LU product. The
5-diagonal matrix AI is very large but separable and symmetric non-hermitian.
It amounts to the folowing system















B −T
−T A −T

. . .
. . .

. . .

−T A −T
−T B





























u1

u2

...
uny−1

uny















=















f1
f2
...

fny−1

fny















(10)

where the elements um and fm are nx−vectors, T is equal to a constant times
the identity matrix, B = A/2 + αI and A is a tri-diagonal matrix of dimension
nx equal to 2T plus the matrix of discretization of the operator

(
∂2

∂x2
+ k2

0(1 −N0) + ik0µ0) • .

3.2 The cyclic reduction method

To solve the system (10) in the central domain, we use the block cyclic reduction
method. Let us recall the principle of this method. For the sake of simplicity,
assume ny = 2k − 1. We know that A and T are commutative. Consider 3
successive lines of (10) for i = 2, 4, ..., ny − 1 :







−Tui−2 + Aui−1 − Tui = fi−1

− Tui−1 + Aui − Tui+1 = fi

− Tui + Aui+1 − Tui+2 = fi+1.
(11)

After a linear combination of these lines, we get :

−T 2A−1ui−2 +
(

A− 2T 2A−1
)

ui −T 2A−1ui+2 = fi +TA−1 (fi−1 + fi+1) (12)

After this first step, the elimination procedure may be performed again by
induction. That is to say, denote A(0) = A, B(0) = B, T (0) = T and f (0) = f ;
after r elimination steps, the reduced system for 0 ≤ r ≤ k − 1 owns 2k−r − 1
blocs and reads as:















B(r) −T (r)

−T (r) A(r) −T (r)

. . .
. . .

. . .

−T (r) A(r) −T (r)

−T (r) B(r)





























u2r

u2.2r

...
u(ny−1)−2r+1

uny−2r+1















=



















f
(r)
2r

f
(r)
2.2r

...

f
(r)
(ny−1)−2r+1

f
(r)
ny−2r+1





















where for r = 1, ..., k − 2 :

A(r) = A(r−1) − 2
(

T (r−1)
)2 (

A(r−1)
)−1

B(r) = A(r−1) −
(

T (r−1)
)2

(

(

A(r−1)
)−1

+
(

B(r−1)
)−1

)

(13)

T (r) =
(

T (r−1)
)2 (

A(r−1)
)−1

For the right hand side, we get the induction formula :

f
(r)
i.2r = f

(r−1)
i.2r + T (r−1)

(

A(r−1)
)−1 (

f
(r−1)
i.2r−2r−1 + f

(r−1)
i.2r+2r−1

)

(14)

After all the elimination steps, it remains only one equation for finding u2k−1 .
Once this value is obtained, one deduces all the other values step by step by
induction.

4 Parallel implementation

Notice first that A = ik0µ0 + A0 where A0 is a symmetric tri-diagonal matrix
whose coefficients are real except the one in the first line and the first column
(due to the boundary condition (6) ). We have checked that it is possible to find
a basis of eigenvectors of A0 which are orthogonal for the pseudo scalar product
< u, v >= uT .v. They are computed by using the algorithm of Parlett (cf. [11])
although it was designed for Hermitian matrices. So denote Q the matrix whose
columns are the eigenvectors of A0 , the matrix Q is orthonormal for the pseudo
scalar product, that is to say

QQT = QTQ = I

Since T is the identity matrix up to a multiplicative constant, one can intro-
duce the diagonal matrices Λ(0) and Γ (0)

A = QΛ(0)QT , T = QΓ (0)QT . (15)

So we get

A(r) = QΛ(r)QT , T (r) = QΓ (r)QT (16)

with the following induction formulas

Λ(r) = Λ(r−1) − 2
(

Γ (r−1)
)2 (

Λ(r−1)
)−1

, Γ (r) =
(

Γ (r−1)
)2 (

Λ(r−1)
)−1

(17)

Let us summarize the algorithm
• Introduce the vectors f̃i transformed of fi in the eigenvector basis

f̃i = QT fi for i = 1, . . . , ny.



• At each step r, the vector f̃r
i transformed of f r

i of the right hand side,
reads

f̃
(r)
i.2r = f̃

(r−1)
i.2r + Γ (r−1)

(

Λ(r−1)
)−1 (

f̃
(r−1)
i.2r−2r−1 + f̃

(r−1)
i.2r+2r−1

)

• One computes the vectors ũ2k−1 by solving

Λ(k−1)ũ2k−1 = f̃
(k−1)

2k−1

• One recursively distributes the solutions by solving sub-systems of the
following type

Λ(r)ũj.2r+1−2r = g̃
(r)
j.2r+1−2r

where g̃
(r)
j.2r+1−2r = f̃

(r)
j.2r+1−2r + Γ (r)

(

ũ(j−1).2r+1 + ũ(j).2r+1

)

• Lastly, the solution u is given by

ui = Qũi pour i = 1, . . . , ny.

For the parallel implementation, the processors are shared out according to
horizontal slabs. The crucial point is the product of a full matrix Q of dimension
nx × nx by the set of ny vectors. Multi-thread techniques are used to deal with
this point. On each node of the architecture, there are 4 processors. So each node
is devoted to 4 subdomains, the matrix Q is stored on the local memory of the
node and the products of the matrix by the vectors are performed simultaneously
by the 4 processors.

Scalability. The code has run on a massively parallel architecture with HP-
Compaq processors of the EV67 type. For a typical problem, with 40 106 complex
unknowns, when the CPU time for one Krilov iteration is equal to 1 with 16
processors, it is equal to 0.98 with 32 processors and 0.96 with 64 processors, so
the efficiency of the parallelism is very good.

On the other hand, consider now problems whose size is multiplied by 2 in
each direction. When the number of degrees of freedom is nxny =1.6 106, the
CPU time with 4 processors is equal to 1 for one Krilov iteration, it is equal to
2.1 with 16 processors for nxny =6.4 106, and it is equal to 4.2 with 32 processors
for nxny =25.6 106. That is to say the CPU is about two time larger when the
number of processors and the number of degrees of freedom are 4 times larger
; this is coherent with the fact that the number of operations for the cyclic
reduction method grows like n2

xny.

5 Numerical results.

The incoming boundary condition is roughly speaking equal to a sum of narrow
Gaussian functions depending of the y variable ; the half height width of each
Gaussian function is equal to 8 wave lengths and is assumed to describe a speckle
(a speckle is a light spot of high intensity). One considers first a simulation do-
main of 100× 300 wave lengths ; the initial profile of density is a linear function



increasing from 0.1 at x = 0 to 1.1 at x = xmax. The incoming boundary condi-
tion consists in three speckles with the same incidence angle. At the Helmholtz
level, one handles only 3 millions of cells. With 32 PEs, the CPU time is about
20 seconds per time step for approximately 10 Krylov iterations at each time
step. Without the coupling with the plasma, it is well known that the solution is
very close to the one given by the geometrical optics ; the speckles propagate in a
parallel way, undergo macroscopic refraction when the electron density increases
and are tangent to a caustic line (here it is the line corresponding to x = x? such
that N0(x?) = cos2(θ), where θ is the incidence angle of the speckles). With our
model, if the laser intensity is low (which corresponds to a weak coupling with
the plasma), one notices that a small digging of the plasma density occurs. This
digging is more significant when the laser intensity is larger, then an autofocus-
ing phenomenon takes place. On figure 1, one sees the map of the laser intensity
that is to say the quantity |ψ|2, which corresponds to this situation after some
picoseconds, knowing that the time step in about 0.05 picosecond. We notice
here that the speckles undergo autofocusing phenomena and some filamentation
may be observed.

Fig. 1. Laser intensity at time 3 ps. Incoming boundary condition with 3 speckles

Another case will be presented, corresponding to simulation domain of 2000×
2000 wave lengths. In the left half of the domain, the electron density is constant
and equal to 0.15 and one uses the paraxial model ; in the right half of the domain
the density increases from 0.15 to 0.95 and the Helmholtz model is used. The
incoming boundary condition consists in 20 speckles with various intensity. In
this domain, one handles 200 millions of cells (whose size is 1/10 of the wave
length) and the simulation have run on 200 PEs. The map of the laser intensity
is shown on figure 2 after 22 ps (the time step is roughly equal to 0.02 ps).
We have chosen a small absorption coefficient ν = 2.10−5N2 so the problem is



quite sharp. Here the digging of the plasma is locally very important since the
variation of density δN reaches 0.05 in a region where N(x) = 0.8, see a map
of the non-dimension density on the figure 3. About 13 iterations of the Krilov
method are enough to converge. The CPU time is equal to 240 s for solving the
full linear system and 270 s for each time step (including the solution of the LR
method and the hydrodynamics of the plasma).

Fig. 2. Laser intensity at time 22 ps. Incoming condition with 20 speckles.

Conclusion.
In the framework of the hydrodynamics parallel platform HERA, we have

developed a solver for the laser propagation based on the frequency wave equa-
tion. The assumption that the density N depends mainly on the x−variable only
allows to perform a preconditioning by a domain decomposition method (two
PMLs and a large Helmholtz zone) where the linear system corresponding to
the Helmholtz zone is solved by the block cyclic reduction method. This kind of
simulation is new. Up to our knowledge, the solution of this kind of model in a
wide two-dimension domain has been published only in [9], but the framework
is different : the gradient of the electron density is 20 times more larger and the
simulation domain is 100 times smaller than in our problem.

Most of the computer time is spent by the product of the full matrix Q by a
set a ny vectors. In the future some CPU time may be saved if inside the inner
iteration loop of the Krylov method, we do not consider all the spatial domain
that is to say all the ny vectors but only the vectors which does not belong to
some subinterval [n1

y, n
2
y] for instance the ones where the solution varies very few

from an iteration to the other.



Fig. 3. Plasma density at time 22 ps (zoom). Incoming condition with 20 speckles.
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