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Abstract. The main purpose of this paper is to show a domain de-
composition with parallel and serial approaches for a nonlinear diffusion
model used in the processing of digital images suggested by Barcelos,
Boaventura and Silva Jr. [3], in addition to a multi-domain analysis for
the evolution of this equation, which has as its main characteristic a
balanced diffusion with a consequent preservation of boundaries. Some
numerical results will be shown in order to illustrate the performance
obtained in the model.

1 Introduction

The use of partial differential equations (PDE) for digital processing of images
has an intrinsically dynamic character regarding the development of mathemat-
ical models. Several papers have been developed from the anisotropic equation
suggested by Malik Perona (see, [1], [2], [3], [5], [6], [7], [8], [9] and [11]).

The Malik-Perona model has been continually researched considering that
diffusion equations may be successfully used in the noise elimination and seg-
mentation processes, even though it may cause the loss of essential information
on the image, such as boundaries. In order to avoid such an undesirable effect,
several modifications were introduced into the original model. To reduce the de-
generative effects of the diffusion to acceptable levels Nörstrom, [10], suggested
the introduction of a new term, into the Malik-Perona model, which maintains
the noisy initial matrix close to the smoothed matrix during the whole process
of noise elimination. This procedure eliminates the need to interrupt the evolu-
tional process at a certain time, keeping the original characteristics of the image
such as edge, but causing, as a consequence, insufficient noise elimination.

Aiming to solve this problem Barcelos, Boaventura and Silva Jr. [3] proposed
a balanced diffusion model with boundary preservation. The introduction of
the term suggested by Nördstrom has been maintained with a introduction of
the a moderation selector function, keeping the image’s original characteristics
effectively in the boundary or textured regions, so keeping the main structure
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of the image and intensifying the smoothing of the image in the homogeneous
regions, eliminating the noise presented in the image.

In this work the domain of the image is split into several subdomains making
the processing carried out by the proposed model in [3] naturally paralleliz-
able. The main computational and theoretical aspects related to the parallel
implementation of the algorithm are presented. To reach good results using the
parallel procedure two points were proposed, the first related to the parameter
k present in the border detector, the second regarding the use of appropriate
boundary conditions applied to each subdomain avoiding spurious results when
the subdomain are grouped to define the processed image at the end of the PDE
time evolution process. In general the Neumann’s boundary condition is used for
the time evolution process for noise removal, however the use of such a condi-
tion allows that undesired perturbations in the boundary regions, be propagated
into the image domain, causing damage in the image obtained by the smoothing
process. In [12], the authors have suggested the use of other border conditions
for treating images through PDE, which have shown better practical results, de-
creasing the propagation errors. As in [12], here also the Neumann-Median Filter
condition is adopted, which was obtained by use of the Neumann’s condition and
Median Filters. These facts have contributed to obtaining a highly parallelizable
algorithm.

Numerical results show the good performance reached by the parallel imple-
mentation.

This paper is organized as follows: in section (2) the mathematical model
and its discretization are presented; section (3) presents the proposed domain
decomposition; section (4) shows some experimental results; section (5) presents
some results showing the performance of the proposed domain decomposition
and, finally, section (6) presents some general conclusions.

2 Model and Discretization

We can consider an image as a limited function u : Ω ⊂ R2 → R which associates
each coordinate (x, y) ∈ R2 to u(x, y) ∈ R, as an intensity of gray level.

The model of nonlinear diffusion presented by Barcelos, Boaventura and Silva
Jr.[3] is given by the equation:

ut = g|∇u|div(
∇u

|∇u| )− (1− g)(u− I), (x, y) ∈ Ω, t > 0, (1)

u(x, y, 0) = I(x, y), (x, y) ∈ Ω

∂u

∂n
|∂Ω×R+ = 0, (x, y) ∈ ∂Ω, t > 0,

where g = g(|Gσ ∗ ∇u|) = 1
1+k|Gσ∗∇u| , I(x, y) is an image to be processed,

u(x, y, t) is its smoothed version in the scale “t”, Gσ is a convolution kernel
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(here, a Gaussian function), Gσ ∗ ∇u is the local estimate of ∇u used for noise
elimination, and k is a parameter. u− I is the term suggested by Nördstron and
(1− g) is the moderation selector introduced in this model.

The balanced diffusion of the image allows the homogeneous regions (g ∼ 1)
to be smoothed even more in relation to the boundary regions (g ∼ 0). This is
obtained through the moderation selector (1 − g) that by being in function of
g(|∇Gσ ∗ u|) allows the identification of these different regions of image since
|∇Gσ ∗ u| is an approximation to |∇u|.

An important fact in the proposition of this model is the introduction of the
parameter σ, used in the Gaussian kernel convolution, as the standard deviation
of the noisy image, σnoise. Other authors have arbitrarily chosen this parameter.
The choice σ = σnoise, justified by the authors, represents a measure of error
dispersion in the image and, thus, it functions appropriately as a size of the
Gaussian filter.

Another important point presented in [3] is the introduction of the smoothing
optimal time concept, which gives us an estimate of the necessary time to stop
the evolutional process in the time scale. This estimate is given in the formula:

To =
σ2

a
,

where a is a parameter. The smoothing optimal time concept has been improved
in [4], where the parameter a has been changed, appropriately, by σnoise.

The discretizations used in the implementation of the model [3] are very
simple taking into account the explicit character used. Let us consider a matrix
of intensity values u(x, y), at the points x = xi = i∆x and y = yi = i∆y. Let us
denote u(xi, yi, tn) as un

i,j where tn = n∆t and ∆t is the step time.
The derivative of u in relation to the time, ut, calculated in (xi, yj , tn) is

approximated by Euler’s method, i.e., ut ∼ un+1
i,j −un

i,j

∆t , and the diffusion term

|∇u|(div(
∇u

|∇u| )) =
u2

xuyy − 2uxuyuxy + u2
yuxx

u2
x + u2

y

is approximated by using central differences.
By using Neumann’s boundary conditions, also approximated by using cen-

tral differences, we calculate un+1
ij , n = 1, 2, · · · , N , by

un+1
ij = un

ij + ∆tL(un
ij)

with u0
ij = I(xi, yi) and

L(u) = g|∇u|div(
∇u

|∇u| )− (1− g)(u− I).

3 The Domain Decomposition

The domain decomposition is based on data partitioning, which consists of parti-
tioning the matrix input data A into several matrices Ai that will be distributed



4

among the processors. This means that the image spatial domain is decomposed
into s sub-domains of suitable size and form. The domain will be split, in this
work, in a regular form, but different forms could be used. For instance, consid-
ering a image A (figure 1) split into four subdomains Ai i = 1, 2, 3, 4, we reach
the result show in figure 2:

Figure 1: Image in a single domain

Figure 2: The image A partitioned image into four sub-domains

Following this idea, the diffusion equation given by equation (1), will be
applied to each sub-domains ωi ⊂ Ω. That is:

ut = g|∇u|div(
∇u

|∇u| )− (1− g)(u− I), (x, y) ∈ ωi, t > 0 (2)

u(x, y, 0) = I(x, y), (x, y) ∈ ωi,
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where g = g(|Gσi ∗ ∇u|), I(x, y) is an image to be processed, u(x, y, ti) is its smoothed
version in the scale “ti”, Gσi is a convolution kernel (here, a Gaussian function), and
Gσi ∗ ∇u is the regional estimate of ∇u used for noise elimination, and

S
ωi = Ω and

the
T

ωi = ∅
In the same way the σnoise parameter, presented in the Gaussian function, was

used to smooth the image u(x, y) throughout the entire domain, the local parameter
σi is used in each subdomain ωi ⊂ Ω. This choice is justified considering the local
characteristics of the image. Consequently, there will be a better parametrization, which
will result in a different time evolution according to ωi, considering that each subdomain
can have their proper and independent characteristics from the other sub-domains. For
instance, considering two sub-domains ωi and ωj , with standard noise deviation σi and
σj , respectively, such that σi < σj , which means that the region ωi is more homogeneous
than the region ωj , we will have in ωj an evolutional process more accentuated than in

ωi, once that the stop time is given by To = σ2

σnoise
[3]. In summary, each subdomain

can have a different scale space.

The parameter k present in the edge detector, defined by the g function, is fre-
quently taken as an arbitrary parameter chosen by the user and it is intrinsically
related to the amount of detail we want to preserve. The success of the model depends
on the correct finding of the edges, which, in turn, depends on the appropriate choice
for the constant k. When working with several different subdomain an appropriate
choice parameter for each region is required for a better performance.

Since σi is distinct for each subdomain ωi, we should expect to have distinct values
for the constant k, once it is directly related to the quantity of detail we want to keep in
the image, and also with the amount of noise we want to eliminate. In [4], the authors
suggested an automatic method to estimate the value of k. From the analysis of a set S
of different images with different levels of noise and different complexities, a k versus σ
dispersion diagram was defined, which was used to find the best fitting curve for that
data. The parameter σ represents the noisy image standard deviation and the used k
values were obtained from the images belonging to S. This value was taking as that
produced as the best result for each image in S. Using the least square approximation
they found a fitting curve k(σ) = a× ebσ, with constants a and b real and positives.

Thus, the parameter k was automatically obtained using this approximation, which
can take different values in each subdomain, since they can have different complexities
and proper characteristics, eliminating in this way, the necessity of the the arbitrary
definition, by the user, of the different values of k for different subdomains.

Another very important fact for suitable parallelization of the model is the use of
suitable boundary conditions, which does not introduces interferences in the numerical
noise elimination process, that is, conditions that do not introduce great perturbations
in the process, given more stability to the numerical process. Neumann’s boundary
condition is usually used to obtain the PDE through time evolution, however, the use
of such a condition may produce undesirable perturbations in the boundary regions,
which can be propagated into the domain, resulting in an inefficient image smoothing
process.

One can easily see how the use of Neumann’s boundary conditions can interfere in
the result. The image contrast was changed completely.

Figure 3 (a) shows the original image and the image processed by use of Neumann’s
boundary conditions and Figure 3 (b) shows the same image, where the first and last
lines and columns, of the processed matrix, have been withdrawn after processing.
These regions are those which suffer the most influence from the boundary condition.
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(a) (b)

Figure 3: (a) Image processed with Neumann’s boundary condition and (b) image
processed with Neumann’s boundary condition without the first and last lines and

columns

This example illustrate how the boundary condition used may interfere with the
final result. The proliferation of these effects may lead to rather unsatisfactory results,
when dealing with several subdomains.

In [12], the authors suggest the use of others different boundary conditions, which
can lead to better practical results, minimizing the error propagation into the image
domain.

In this work, as suggest in [12], the condition called, by the authors, Neumann-
Median Filter condition is used, which is defined by the use of Neumann’s condition
with Median Filters.

The Neumann-Median Filter condition is defined as:

∂u

∂n
|∂ωi×R+ = 0, (x, y) ∈ ∂ωi, t > 0

and

u|∂ωi×R+ =

8><>:m, if |u−m|2 > Aρ2

u, otherwise

where m = u(x,y−1)+u(x,y+1)+u(x−1,y)+u(x+1,y)
4

is a pixel value mean in the neighboring

region of a pixel (x, y) and ρ2 = u2(x,y−1)+u2(x,y+1)+u2(x−1,y)+u2(x+1,y)
4

− m2 is its
variance.

The use of the k parameter obtained automatically, associated with the use of a
more appropriate boundary condition, has allowed each subdomain to be processed
independently one from another, without causing great visual damage when joining
the processed data in the subdomain.

The processes generated by this decomposition of the domains are all independent
from one to another and so, the exchange of information among the processes is not
needed. Only at the end of the execution of each process is there the need to join the
results obtained from each individual process separately in order to obtain the entire
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final image. This fact leads to a method with maximum use of parallelism, that is, a
highly parallelizable algorithm, leading to an excellent performance. In addition, the
total independence among the processes allows for the use of essentially sequential
machines, even when dividing the original domain into several subdomains, without
any increase the processing time when compared to the single domain processing. this
domain decomposition, could be also used in a shared memory environment, in this
situation we do not need any communication among de processors.

In this work we use a distributed memory environment. For the parallel implemen-
tation the basic idea of using parallel programming has been used by message passing,
that is, a number of serial processes exchanging information (data) through messages.
The public domain package MPI was used for message passing. The message passing
process is needed only at the beginning of the parallel application, in order to initialize
the processor, and in the final running, where it is necessary to grouping the data
of each available processor. It is an opportunity to emphasize that there is no other
message passing during the run code.

4 Experimental Results

Some results obtained with the application of the described models are presented in
several images with different complexity levels.

The images used are represented by N ×M matrices where each matrix element
ui,j is a real value correspondent to the grayscale level of the image u(x, y).

The original images (noiseless) are represented in using the grayscale levels. Al-
though they present gray intensity levels in the range from 0 to 255, the addition of
noise to the intensity values is far beyond the 0-255 range. For example, the noisy image
shown in Fig.4. contains pixels with intensities as low as -870 and as high as 1150. The
noise levels (SNR) for each of the considered pictures are shown on each of the picture
descriptions respective legends. For visualization of the images the Matlab c© code was
used.

The first experiment (Figures 4-5) a synthetic image containing geometric objects
was considered. Figure 4 presents the original and noisy images.

Figure 4: (a) and (b) - Original and Noisy Image (SNR = -6 db)

Figure 5 shows the processed image using four subdomains. Each of these shown
in Figure 6.
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Figure 5: Processed image in four sub-domains

Figure 6: Image partitioned in four sub-domains

Figure 7 shows the same image processed with four subdomains and using Neu-
mann’s boundary conditions. In this case, one notes that there is a clear contrast
problem.

Figure 7: Processed image in four sub-domains using Neumann´s condition
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Figure 8 (a) and (b) shows the original and noisy Lenna pictures, respectively. In
Fig.9 (a) and (b), the processed version of the images it is presented with 1 and 4
subdomains, respectively.

(a) (b)

Figure 8: Original and Noisy Image (SNR = 9 dB)

(a) (b)

Figure 9: Processed image in (a) 1 sub-domain (b) 4 sub-domains

One can see in Figure 9 (a) and (b) that the processed image in four subdomains
shows, subtly, better quality in the smoothing aspect without boundary losses, conse-
quently offering better visualization.

The next experiments consist of the decomposition of the image presented in (Fig-
ure 10 (b)). Figure 10 (a) the noiseless version.

(a) (b)

Figure 10: Original and Noisy Image (SNR = 12 dB)
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In Figure 11 (a), (b), (c) and (d)the processed images with 1, 4, 16 and 64 sub-
domains, from left to right and top to bottom are presented.

(a) (b)

(c) (d)

Figure 11: Processed image in (a) 1, (b) 4, (c) 16 and (d) 64 sub-domains

By analyzing these images (Figure 11 (c) and (d)), one notices that the great num-
ber of subdomains used for its processing have not affected the final result, preserving
its visual quality.

The following figure refers to another synthetic image, where good results can be
seen.

(a) (b)

Figure 12: Original and Noisy Image (SNR = 0 dB)
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(a) (b)

Figure 13: Processed image in (a) 1 sub-domain (b) 16 sub-domains

The following figure refers to a real life image, where good results can be seen.

(a) (b)

Figure 14: Original and Noisy Image (SNR = 6 dB)

(a) (b)

Figure 15: Processed image in (a) 1 sub-domain (b) 16 sub-domains
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5 Performance Analysis

In order to analyze the performance the parallel code efficiency is measured by:

E =
TP

p× Ts
,

where p denotes the number of processors, Ts denote the time spent by the sequential
process, Ti, denotes the time spent by process i, and TP = max(T1, T2, · · · , Tp).

The first experiment refers to Figure 4, with N = M = 256 and 4t = 0.1 in
equation (2). The following table, table 1, show the time (in seconds) spent for each
processor (Pi), using 4 processors, the sequential code time, and other parameters are
also presented.

Table 1: Time in seconds

processors P1 P2 P3 P4 Sequential

Time(s) 183 192 180 193 756

σ 276 273 269 275 273

iterations 929 953 956 925 939

The second experiment, a synthetic image, refers to the image present in Figure 12
with N = M = 1024. In this case, 4t = 0.25 it was used. The following table, Table 2,
show time in seconds obtained by each processor (Pi), for 4 processors, the sequential
code time, and other parameters.

Table 2: Time in seconds

processors P1 P2 P3 P4 Sequential

Time(s) 830 625 775 763 3300

σ 73 102 79 82 87

iterations 204 146 190 182 171

The third experiment, a real life image, refers to the image present in Figure 15
with N = M = 2560. In this case, 4t = 0.1 it was used. The Table 3 following show
time in seconds obtained by each processor (Pi), for 4 processors, the sequential code
time, and other parameters.

Table 3: Time in seconds

processors P1 P2 P3 P4 Sequential

Time(s) 429 397 401 383 1634

σ 33.69 33.68 33.70 33.73 33.70

iterations 168 165 156 149 150

The efficiency measurements obtained in the first example were E = 0.98 and
E = 0.84, obtained with 4 and 16 subdomains, respectively. In the second example,
E = 0.99 and E = 0.86 with 4 and 16 subdomains, respectively. In the third example,
for the problems with dimensions 2560×2560, the efficiency was E = 0.95 and E = 0.78,
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with 4 and 16 subdomains, respectively. However, for the problem with dimensions
256 × 256, E = 0.92 and E = 0.65, with 4 and 16 subdomains, respectively. These
results indicate that the efficiency is better for large problems.

The efficiency was worse in the third example, where the first process needed more
iterations in the time scale space and this fact resulted in an unbalance among the
processors. Nevertheless, these results can still be considered excellent.

For the Lenna picture, the computational results were similar to the ones from
third example.

One can also note that, when one uses several subdomains in serial machines, the
total processing time is lower than the processing time resulting from a single domain.
For instance, for the third example, with dimensions 2560 × 2560, when running in a
single domain, the processing time was 1634s; with 64 subdomains the processing times
was 1204s and with 256 subdomains it was 1187s. This is justified for two reasons: first,
splitting the domain in several subdomains there can exist some of the subdomains that
use a shorter time of PDE evolution to reach an appropriate smoothing level; second,
for large scale problems, if all the elements of the image matrix can not be stored in
the cache memory, the processing time can be slow. However, with the use of domain
decomposition, one reduces the dimensions of the problem, possibly storing all the
required data in the cache memory, thus accelerating the computational process.

6 Conclusion

The use of the concept of optimal smoothing time and the automatic estimating of the
k parameter, present in the boundary detector, was essential for the development of
the proposed parallel model taking into accounting that each has a specific k value.

The parallel code has presented a considerable computational gain, reaching an
excellent performance.

The total processing time, in serial architectures when using several subdomains,
can be inferior to the processing time of the problem when we dealing with a single
domain. Due fact that splitting the domain in several subdomains there can exist some
of the subdomains that use a shorter time of PDE evolution to reach an appropriate
smoothing level and due to the influence of cache memory in the processing time.

The use of the proposed parallel technique makes it possible that large images are
quickly processed without any quality loss in the final result.

An important aspect of parallel computing is load balancing. Balancing the work
load fairly among the available processors is crucial for the good performance of the
parallel code. With the domain decomposition presented, the processors do not need
data exchange with each other during the computation process. From time to time,
one or another process might need to develop less in the time scale and this fact may
cause a certain unbalance.

At this moment the code is being finely tuned, so that we hope to report an even
better study of the performance in the near future.

This domain decomposition can be used by distributed and shared memory en-
vironment. This domain decomposition can also be used by serial process with great
success for large images, especially when working with low memory capacity.
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