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Abstract. Top-k queries are attractive for users in P2P systems with very large 

numbers of peers but difficult to support efficiently. In this paper, we propose a 

fully distributed algorithm for executing Top-k queries in the context of the 

APPA (Atlas Peer-to-Peer Architecture) data management system. APPA has a 

network-independent architecture that can be implemented over various P2P 

networks. Our algorithm requires no global information, does not depend on the 

existence of certain peers and its bandwidth cost is low. We validated our 

algorithm through implementation over a 64-node cluster and simulation using 

the BRITE topology generator and SimJava. Our performance evaluation shows 

that our algorithm has logarithmic scale up and improves Top-k query response 

time very well using P2P parallelism in comparison with baseline algorithms. 

1   Introduction 

Peer-to-peer (P2P) systems adopt a completely decentralized approach to data sharing 

and thus can scale to very large amounts of data and users. Popular examples of P2P 
systems such as Gnutella  [10] and KaZaA  [13] have millions of users sharing 

petabytes of data over the Internet. Initial research on P2P systems has focused on 

improving the performance of query routing in unstructured systems, such as Gnutella 

and KaaZa, which rely on flooding. This work led to structured solutions based on 
distributed hash tables (DHT), e.g. CAN  [16], or hybrid solutions with super-peers 

that index subsets of peers  [23]. Although these designs can give better performance 

guarantees than unstructured systems, more research is needed to understand their 

trade-offs between autonomy, fault-tolerance, scalability, self-organization, etc. 

Meanwhile, the unstructured model which imposes no constraint on data placement 

and topology remains the most used today on the Internet 

Recently, other work in P2P systems has concentrated on supporting advanced 

applications which must deal with semantically rich data (e.g. XML documents, 

relational tables, etc.) using a high-level SQL-like query language, e.g. ActiveXML 

 [2], Piazza  [20], PIER  [12]. High-level queries over a large-scale P2P system may 

produce very large numbers of results that may overwhelm the users. To avoid such 

overwhelming, a solution is to use Top-k queries whereby the user can specify a 
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limited number (k) of the most relevant answers. Initial work on Top-k queries has 

concentrated on SQL-like language extensions  [7] [6] . In  [6] for instance, there is a 

STOP AFTER k clause to express the k most relevant tuples together with a scoring 

function to determine their ranking.  

Efficient execution of Top-k queries in a large-scale distributed system is difficult. 

To process a Top-k query, a naïve solution is that the query originator sends the query 

to all nodes and merges all the results, which it gets back. This solution hurts response 

time as the central node is a bottleneck and does not scale up. Efficient techniques 

have been proposed for Top-k query execution in distributed systems  [25] [24]. They 

typically use histograms, maintained at a central site, to estimate the score of 

databases with respect to the query and send the query to the databases that are more 

likely to involve top results. These techniques can somehow be used in super-peer 

systems where super-peers maintain the histograms and perform query sending and 

result merging. However, keeping histograms up-to-date with autonomous peers that 

may join or leave the system at any time is difficult. Furthermore, super-peers can 

also be performance bottlenecks. In unstructured or DHT systems, these techniques 

which rely on central information no longer apply. 

In this paper, we propose a fully distributed algorithm for executing Top-k queries 

processing in the context of APPA (Atlas Peer-to-Peer Architecture), a P2P data 
management system which we are building  [3] [4]. The main objectives of APPA are 

scalability, availability and performance for advanced applications. APPA has a 

network-independent architecture in terms of advanced services that can be 

implemented over different P2P networks (unstructured, DHT, super-peer, etc.). This 

allows us to exploit continuing progress in such systems. Our Top-k query processing 

algorithm has several distinguishing features. For instance, it requires no central or 

global information. Furthermore, its execution is completely distributed and does not 

depend on the existence of certain peers. We validated our algorithm through a 

combination of implementation and simulation and the performance evaluation shows 

very good performance. We have also implemented baseline algorithms for 

comparing with our algorithm. Our performance evaluation shows that our algorithm 

improves Top-k query response time very well using P2P parallelism in comparison 

with baseline algorithms. 

The rest of this paper is organized as follows. Section 2 describes the APPA 

architecture. In Section 3, we present our algorithm, then we analyzes the bandwidth 

cost of our algorithm and propose techniques in order to reduce this cost. Section 4 

describes a performance evaluation of the algorithm through implementation over a 

64-node cluster and simulation (up to 10,000 peers) using the BRITE topology 

generator  [5] and SimJava  [11]. Section 5 discusses related work. Section 6 

concludes. 

2   APPA Architecture 

APPA has a layered service-based architecture. Besides the traditional advantages of 

using services (encapsulation, reuse, portability, etc.), APPA is a network-

independent architecture so it can be implemented over different P2P networks 
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(unstructured, DHT, super-peer, etc.). The main reason for this choice is to be able to 

exploit rapid and continuing progress in P2P networks. Another reason is that it is 

unlikely that a single P2P network design will be able to address the specific 

requirements of many different applications. Obviously, different implementations 

will yield different trade-offs between performance, fault-tolerance, scalability, 

quality of service, etc. For instance, fault-tolerance can be higher in unstructured P2P 

systems because no peer is a single point of failure. On the other hand, through index 

servers, super-peer systems enable more efficient query processing. Furthermore, 

different P2P networks could be combined in order to exploit their relative 

advantages, e.g. DHT for key-based search and super-peer for more complex 

searching. 

There are three layers of services in APPA: P2P network, basic services and 

advanced services. 

P2P network. This layer provides network independence with services that are 

common to all P2P networks, for instance: 

• Peer id assignment: assigns a unique id to a peer using a specific method, e.g. a 

combination of super-peer id and counter in a super-peer network. 

• Peer linking: links a peer to some other peers, e.g. by setting neighbors in an 
unstructured network, by locating a zone in CAN  [16], etc. It also maintains the 

address and id of the peer’s neighbors. 

• Peer communication: enables peers to exchange messages (i.e. service calls). 

Basic services. This layer provides elementary services for the advanced services 

using the P2P network layer, for instance: 

• P2P data management: stores and retrieves P2P data (e.g. meta-data, index 

data) in the P2P network.  

• Peer management: provides support for peer joining, rejoining, and for updating 

peer address (the peer ID is permanent but its address may be changed). 

• Group membership management: allows peers to join an abstract group, 

become members of the group and send and receive membership notifications. 

Advanced services. This layer provides advanced services for semantically rich data 

sharing including schema management, replication, query processing, security, etc. 

using the basic services.  

 

Fig. 1. APPA architecture over an unstructured network 
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For the cases where APPA is based on a DHT or an unstructured network, the three 

service layers are completely distributed over all peers, but in a super-peer network 

the super-peers provide P2P network services and basic services while other peers 

provide only the advanced services. Figure 1 shows an APPA architecture based on 

an unstructured network. 

3   Top-k Query Processing 

In this section, we first make precise our assumptions and define the problem. Then, 

we present a basic algorithm for Top-k query processing in APPA when it is based on 

an unstructured P2P system. Finally, we analyze the bandwidth cost of our algorithm 

and propose some techniques for reducing it. 

3.1   Problem Definition 

We first give our assumptions regarding schema management and Top-k queries. 

Then we can precisely state the problem we address in this paper. 

In a P2P system, peers should be able to express queries over their own schema 
without relying on a centralized global schema as in data integration systems  [20]. 

Several solutions have been proposed to support decentralized schema mapping. 

However, this issue is out of the scope of this paper and we assume it is provided 
using one of the existing techniques, e.g.  [15] and  [20]. Furthermore, also for 

simplicity, we assume relational data.  

Now we can define the problem as follows. Let Q be a Top-k query, i.e. the user is 

interested to receive k top answers to Q. Let TTL (Time-To-Live) determine the 

maximum hop distance which the user wants her query be sent. Let D be the set of all 

data items (i.e. tuples) that can be accessed through ttl hops in the P2P system during 

the execution of Q. Let Sc(d, Q) be a scoring function that denotes the score of 

relevance of a data item d∈D to Q. Our goal is to find the set T ⊆ D, such that: 

T = k and ∀ d1∈ T, ∀ d2 ∈ (D – T) then Sc(d1, Q) ≥  Sc(d2, Q) 

while minimizing the response time of Q and the bandwidth cost. 

3.2   Algorithm 

The algorithm starts at the query originator, the peer at which a user issues a Top-k 

query Q. The query originator performs some initialization. First, it sets TTL with a 

value which is either specified by the user or default. Second, it gives Q a unique 

identifier, denoted by QID, which is made of a unique peer-ID and a query counter 

managed by the query originator. Peers use QID to distinguish between new queries 

and those received before. After initialization, the query originator triggers the 

sequence of the following four phases: query forward, local query execution, merge-

and-backward, and data retrieval. In all of these four phases, the communication 

between peers is done via APPA’s Peer Communication service. 
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Query Forward 

Q is included in a message that is broadcast to all reachable peers. Thus, like other 

flooding algorithms, each peer that receives Q tries to send it to its neighbors. Each 

peer p that receives the message including Q performs the following steps. 

1. Check QID: if Q has been already received, then discard the message else save 

the address of the sender as the parent of p.  

2. Decrement TTL by one: if TTL > 0, make a new message including Q, QID, 

new TTL and the query originator’s address and send the message to all 

neighbors (except parent). 

In order to know their neighbors, the peers use the Peer Linking service of APPA.  

Local Query Execution 

After the query-forward phase, each peer p executes Q locally, i.e. accesses the local 

data items that match the query predicate, scores them using a scoring function, 

selects the k top data items and saves them as well as their scores locally. For scoring 

the data items, we can use one of the scoring functions proposed for relational data, 
e.g. Euclidean function  [7] [6]. These functions require no global information and can 

score peer’s data items only using local information. The scoring function can also be 

specified explicitly by the user.  

After selecting the k local top data items, p must wait to receive its neighbors’ 

score-lists before starting the next phase. However, since some of the neighbors may 

leave the P2P system and never send a score-list to p, we must set a limit for the wait 

time. We compute p’s wait time using a cost function based on TTL, network 

dependent parameters and p’s local processing parameters. However, because of 

space limitations, we do not give the details of the cost function here.  

Merge-and-Backward 

After the wait time has expired, each peer merges its local top scores with those 

received from its neighbors and sends the result to its parent (the peer from which it 

received Q) in the form of a score-list. In order to minimize network traffic, we do not 

“bubble up” the top data items (which could be large), only their addresses. A score-

list is simply a list of k couples (p, s), such that p is the address of the peer owning the 

data item and s its score. Thus, each peer performs the following steps: 

1. Merge the score-lists received from the neighbors with its local top scores and 

extracting the k top scores (along with the peer addresses).  

2. Send the merged score-list to its parent. 

Data Retrieval 

After the query originator has produced the final score-list (gained by merging its 

local top scores with those received from its neighbors), it directly retrieves the k top 

data items from the peers in the list as follows. For each peer address p in the final 

score-list: 

1. Determine the number of times p appears in the final score-list, e.g. m times. 

2. Ask the peer at p to return its m top scored items. 
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Formally, consider the final score-list Lf which is a set of at most k couples (p, s), 

in this phase for each p∈Domain(Lf), the query originator determines Tp = {s  (p, s) 

∈ Lf } and asks peer p to return Tp  of its top scored items.  

3.3   Analysis of Bandwidth Cost 

One main concern with flooding algorithms is their bandwidth cost. In this section, 

we analyze our algorithm’s bandwidth cost. As we will see, it is not very high. We 

also propose strategies to reduce it more. We measure the bandwidth cost in terms of 

number of messages and number of bytes which should be transferred over the 

network in order to execute a query by our algorithm. The messages transferred can 

be classified as: 1) forward messages, for forwarding the query to peers. 2) backward 

messages, for returning the score-lists from peers to the query originator. 3) retrieve 

messages, to request and retrieve the k top results. We first present a model 

representing the peers that collaborate on executing our algorithm, and then analyze 

the bandwidth cost of backward, retrieve and forward messages.  

Model 

Let P be the set of the peers in the P2P system. Given a query Q, let PQ ⊆ P be a set 

containing the query originator and all peers that receive Q. We model the peers in PQ 

and the links between them by a graph G(PQ, E) where PQ is the set of vertices in G 

and E is the set of the edges. There is an edge p-q in E if and only if there is a link 

between the peers p and q in the P2P system. Two peers are called neighbor, if and 

only if there is an edge between them in G. The number of neighbors of each peer 

p∈PQ is called the degree of p and is denoted by d(p). The average degree of peers in 

G is called the average degree of G and is denoted by d(G). The average degree of G 

can be computed as ∑
∈

=

QPp

QPpdGd /))(()(  

During the execution of our algorithm, p∈PQ may receive Q from some of its 

neighbors. The first peer, say q, which p receives Q from, is the parent of p in G, and 

thereby p is a child of q. A peer may have some neighbors that are neither its parent 

nor its children.  

Backward Messages 

In the Merge-and-Backward phase, each peer in PQ, except the query originator, sends 

its merged score-list to its parent. Therefore, the number of backward messages, 

denoted by mbw, is mbw= PQ-1. 

Let L be the size of each element of a score-list in bytes (i.e. the size of a score and 

an address), then the size of the score-list is k×L, where k is the number of top results 

specified in Q. Since the number of score-lists transferred by backward messages is 

PQ-1, then the total size of data transferred by backward messages, denoted by bbw, 

can be computed as bbw = k× L× (PQ-1). If we set L=10, i.e. 4 bytes for the score 

and 6 bytes for the address (4 bytes for IP address and 2 bytes for the port number), 

then bbw = k× 10× (PQ-1). 
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Let us show with an example that bbw is not significant. Consider that 10,000 peers 

receive Q (including the query originator), thus PQ=10,000. Since users are 

interested in a few results and k is usually small, we set k=20. As a result, bbw is less 

than 2 megabytes. Compared with the tens of megabytes of music and video files, 

which are typically downloaded in P2P systems, this is small. 

Retrieve Messages 

By retrieve messages, we mean the messages sent by the query originator to request 

the k top results and the messages sent by the peers owning the top results to return 

these results. In the Data Retrieval phase, the query originator sends at most k 

messages to the peers owning the top results (there may be peers owning more than 

one top result) for requesting their top results and these peers return their top results 

by at most k messages. Therefore, the number of retrieve messages, denoted by mrt, is 

mrt ≤ 2× k. 

Forward Messages 

Forward messages are the messages that we use to forward Q to the peers. According 

to the basic design of our algorithm, each peer in PQ sends Q to all its neighbors 

except its parent. Let po denote the query originator. Consider the graph G(PQ, E) 

described before, each p∈( PQ – {po}), sends Q to d(p)–1 peers, where d(p) is the 

degree of p in G. The query originator sends Q to all of its neighbors, in other words 

to d(po) peers. Then, the sum of all forward messages mfw can be computed as 

)())1)(((
}){p( o

o

Pp

fw pdpdm
Q

+−= ∑
−∈

 

We can write mfw as follows:  

1))(((1))1)((( +−=+−= ∑∑
∈∈

Q

PpPp

fw Ppdpdm
QQ

 

Based on the definition of d(G), mfw can be written as mfw = (d(G) -1)×PQ+1, 
where d(G) is the average degree of G. According to the measurements in  [17], the 

average degree of Gnutella is 4. If we take this value as the average degree of the P2P 

system, i.e. d(G)=4, we have mfw = 3×PQ+1. From the above discussion, we can 

derive the following lemma. 

Lemma 1: The number of forward messages in the basic form of our algorithm is 

(d(G) -1)×PQ+1. 

Proof: Implied by the above discussion.  

To determine the minimum number of messages necessary for forwarding Q, we 

prove the following lemma. 

Lemma 2: The lower bound of the number of forward messages for sending Q to all 

peers in PQ is PQ - 1. 

Proof: For sending Q to each peer p∈PQ, we need at least one forward message. Only 

one peer in PQ has Q, i.e. the query originator, thus Q should be sent to PQ - 1 peers. 

Consequently, we need at least PQ - 1 forward messages to send Q to all peers in 

PQ. 

Thus, the number of forward messages in the basic form of our algorithm is far 

from the lower bound. 
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3.4   Reducing the Number of Messages 

We can still reduce the number of forward messages using the following strategies. 1) 

sending Q across each edge only once. 2) Sending with Q a list of peers that have 

received it.  

Sending Q Across each Edge only once 

In graph G, there may be many cases that two peers p and q are neighbors and none of 

them is the parent of the other, e.g. two neighbors which are children of the same 

parent. In these cases, in the basic form of our algorithm, both peers send Q to the 

other, i.e. Q is sent across the edge p-q twice. We develop the following strategy to 

send Q across an edge only once.  

Strategy 1: When a peer p receives Q, say at time t, from its parent (which is the first 

time that p receives Q from), it waits for a random, small time, say λ, and then sends 

Q only to the neighbors which p has not received Q from them before t + λ.  

Lemma 3: With a high probability, the number of forward messages with Strategy 1 

is reduced to d(G)×PQ / 2.  

Proof: Since λ is a random number and different peers generate independent random 

values for λ, the probability that two neighbors send Q to each other simultaneously is 

very low. Ignoring the cases where two neighbors send Q to the other simultaneously, 

with Strategy 1, Q is sent across an edge only once. Therefore, the number of forward 

messages can be computed as mfw = E. Since E= d(G)×PQ/2, then mfw= 

d(G)×PQ/2.  
Considering d(G)=4 (similar to  [17]), the number of forward messages is mfw= 

2×PQ.  
With Strategy 1, mfw is closer to the lower bound than the basic form of our 

algorithm. However, we are still far from the lower bound. By combining Strategy 1 

and another strategy, we can reduce the number of forward messages much more. 

Attaching to Forward Messages the List of Peers that have received Q 

Even with Strategy 1, between two neighbors, which are children of the same parent 

p, one forward message is sent although it is useless (because both of them have 

received Q from p). If p attaches a list of its neighbors to Q, then its children can 

avoid sending Q to each other. Thus, we propose a second strategy.  

Strategy 2: Before sending Q to its neighbors, a peer p attaches to Q a list containing 

its Id and the Id of its neighbors and sends this list along with Q. Each peer that 

receives the Q’s message, verifies the list and does not send Q to the peers involved in 

the list.  

Theorem 1: By combining Strategy 1 and Strategy 2, with a high probability, the 

number of forward messages is less than d(G)×PQ/2. 

Proof: With Strategy 2, two neighbors, which have the same parent, do not send any 

forward message to each other. If we use Strategy 1, with a high probability at most 

one forward message is sent across each edge. Using Strategy 2, there may be some 

edges such that no forward message is sent across them, e.g. edges between two 

neighbors with the same parent. Therefore, by combining Strategy 1 and Strategy 2, 

the number of forward messages is mfw ≤ E, and thus mfw ≤ d(G)×PQ/2.  
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Considering d(G)=4, the number of forward messages is mfw ≤ 2×PQ. 

4   Performance Evaluation 

We evaluated the performance of our Fully Distributed algorithm (FD for short) 

through implementation and simulation. The implementation over a 64-node cluster 

was useful to validate our algorithm and calibrate our simulator. The simulation 

allows us to study scale up to high numbers of peers (up to 10,000 peers). 

The rest of this section is organized as follows. In Section 4.1, we describe our 

experimental and simulation setup, and the algorithms used for comparison. In 

Section 4.2, we evaluate the response time of our algorithm. We first present 

experimental results using the implementation of our algorithm and four other 

baseline algorithms on a 64-node cluster, and then we present simulation results on 

the response time by increasing the number of peers up to 10,000. We also did other 

experiments on the response time by varying other parameters, e.g. data item size, 

connection bandwidth, latency and k, but due to space limitation we cannot present 

them.  

4.1   Experimental and Simulation Setup 

For our implementation and simulation, we used the Java programming language, the 

SimJava package and the BRITE universal topology generator.  
SimJava  [11] is a process based discrete event simulation package for Java. Based 

on a discrete event simulation kernel, SimJava includes facilities for representing 

simulation objects as animated icons on screen. A SimJava simulation is a collection 

of entities each running in its own thread. These entities are connected together by 

ports and can communicate with each other by sending and receiving event objects.  
BRITE  [5] has recently emerged as one of the most promising universal topology 

generators. The objective of BRITE is to produce a general and powerful topology 

generation framework. Using BRITE, we generated topologies similar to those of P2P 

systems and we used them for determining the linkage between peers in our tests. 

We first implemented our algorithm in Java on the largest set of machines that was 

directly available to us. The cluster has 64 nodes connected by a 1-Gbps network. 

Each node has an Intel Pentium 2.4 GHz processor, and runs the Linux operating 

system. We make each node act as a peer in the P2P system. To have a P2P topology 

close to real P2P overlay topologies, we determined the peer neighbors using the 
topologies generated by the BRITE universal topology generator  [5]. Thus, each node 

only is allowed to communicate with the nodes that are its neighbors in the topology 

generated by BRITE. 

To study the scalability of our algorithm far beyond 64 peers and to play with 

various performance parameters, we implemented a simulator using SimJava. To 

simulate a peer, we use a SimJava entity that performs all tasks that must be done by a 

peer for executing our algorithm. We assign a delay to communication ports to 
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simulate the delay for sending a message between two peers in a real P2P system. For 

determining the links between peers, we used the topologies generated by BRITE. 

In all our tests, we use the following simple query as workload:        

       SELECT  R.data  FROM R  ORDER BY R.score  

       STOP AFTER k 

Each peer has a table R(score, data) in which attribute score is a random real 

number in the interval [0..1]  with uniform distribution, and attribute data is a random 

variable with normal distribution with a mean of 1 (kilo bytes) and a variance of 64. 

Attribute score represents the score of data items and attribute data represents (the 

description of) the data item that will be returned back to the user as the result of 

query processing. The number of tuples of R at each peer is a random number 

(uniformly distributed over all peers) greater than 1000 and less than 20,000. 

The simulation parameters are shown in Table 1. Unless otherwise specified, the 

latency between any two peers is a normally distributed random number with a mean 

of 200 (ms) and a variance of 100. The bandwidth between peers is also a random 

number with normal distribution with a mean of 56 (kbps) and a variance of 32. Since 

users are usually interested in a small number of top results, we set k=20.  

The simulator allows us to perform tests up to 10,000 peers, after which the 

simulation data no longer fit in RAM and makes our tests difficult. This is quite 

sufficient for our tests. Therefore, the number of peers of P2P system is set to be 

10,000, unless otherwise specified. In all tests, TTL is set as the maximum hop-

distance to other peers from the query originator, thus all peers of the P2P system can 

receive Q. We observed that in the topologies with 10,000 nodes, with TTL=12 all 

peers could receive Q. Our observations correspond to those based on experiments 
with the Gnutella network  [17]; for instance, with 50,000 nodes, the maximum hop-

distance between any two nodes is 14. 

Table 1. Simulation parameters 

Parameter Values 

Bandwidth Normally distributed random, Mean = 56 Kbps, Variance = 32 

Latency Normally distributed random, Mean = 200 ms, Variance = 100 

Number of peers  10,000 peers  

TTL Large enough such that all of peers can receive the query 

K 20  

Result items size Normally distributed random, Mean = 1 KB, Variance = 64 

 

In our simulation, we compare our FD algorithm with four other algorithms. The 

first algorithm is a Naïve algorithm that works as follows. Each peer receiving Q 

sends its k top relevant items directly to the query originator. The query originator 

merges the received results and extracts the k overall top scored data items from them. 
The second algorithm is an adaptation of Edutella’s algorithm  [21] which is 

designed for super-peer.  We adapt this algorithm for an unstructured system and call 

it Sequential Merging (SM) as it sequentially merges top data items. The original 

Edutella algorithm works as follows. The query originator sends Q to its super-peer, 

and it sends Q to all other super-peers. The super-peers send Q to the peers connected 

to them. Each peer that has data items relevant to Q scores them and sends its 
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maximum scored data item to its super-peer. Each super-peer chooses the overall 

maximum scored item from all received data items. For determining the second best 

item, it only asks one peer, the one which returned the first top item, to return its 

second top scored item. Then, the super-peer selects the overall second top item from 

the previously received items and the newly received item. Then, it asks the peer 

which returned the second top item and so on until all k top items will be retrieved. 

Finally the super-peers send their top items to the super-peer of the query originator, 

to extract overall k top items, and to send them to the query originator. In Edutella, a 

very small percentage of nodes are super-peers, e.g. in  [19] it is 0.64, i.e. 64 super-

peers for 10,000 peers. In our tests, we consider the same percentage, and we select 

the super-peers randomly from the peers of P2P system. We consider the same 

computing capacity for the super-peers as for the other peers.  

We also propose the optimized versions of Naïve and SM algorithms that bubble 

up only the score-lists, as in our algorithm, and we denote them Naïve* and SM* 

respectively. In our tests, in addition to Naïve and SM algorithms, we compare our 

algorithm with Naïve* and SM*. 

4.2   Scale up 

In this section, we investigate the scalability of our algorithm. We use both our 

implementation and simulator to study response time while varying the number of 

peers. The response time includes local processing time and data transfers, i.e. 

sending query messages, score-lists and data items. 

Using our implementation over the cluster, we ran experiments to study how 

response time increases with the addition of peers. Figure 2 shows excellent scale up 

of our algorithm since response time logarithmically increases with the addition of 

peers until 64. Using simulation, Figure 3 shows the response times of the five 

algorithms with a number of peers increasing up to 10000 and the other simulation 

parameters set as in Table 1. 

FD always outperforms the four other algorithms and the performance difference 

increases significantly in favor of FD as the number of peers increases. The main 

reason for FD’s excellent scalability is its fully distributed execution. With the SM, 

SM*, Naive and Naïve*, a central node is responsible for query execution, and this 

creates two problems. First, the central node becomes a communication bottleneck 

since it must receive a large amount of data from other peers that all compete for 

bandwidth. Second, the central node becomes a processing bottleneck, as it must 

merge many answers to extract the k top results. 

Another advantage of FD is that it does not transfer useless data items over the 

network. For determining top items, FD only bubbles up the score-lists (which are 

small) while SM and Naive algorithms transfer many data items of which only a small 

fraction makes the final top results. SM transfers the first top-scored item of every 

peer and Naïve transfers k top-scored data items of all peers. With a large number of 

peers, data transfer is a dominant factor in response time and FD reduces it to 

minimum. 
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Fig. 2. Response time vs. number of peers Fig. 3. Response time vs. number of peers 

Overall, the experimental results correspond with the simulation results. However, 

the response time gained from our experiments over the cluster is a little better than 

that of simulation because the cluster has a high-speed network.  

We also did experiments on the response time by varying data item size, 

connection bandwidth, latency and k. The item size has little impact on the response 

time of FD, SM* and Naïve*, but has strong impact on SM and Naïve. The response 

time decreases with increasing the connection bandwidth in all five algorithms. 

However, FD outperforms the other algorithms for all the tested bandwidths. FD also 

outperforms the other algorithms for the tested values of latency (up to 10,000 ms). 

However, high latency, e.g. more than 2000 ms, has strong impact and increases 

response time much, but below 2000 ms, latency has not much effect on FD’s 
response time. According to studies reported in  [18], more than 80% of links between 

peers have good latency, less than 280 ms, for which FD has very good performance. 

k has little impact on the response time of SM, but has some impact on FD, SM*, 

Naïve and Naïve*. Despite the effect of k on FD, it is by far the superior algorithm for 

the tested values of k (k<200). Since users are usually interested in a small number of 

top results, e.g. less than 20 results, the performance advantage for FD remains high. 

5   Related Work 

In the context of P2P systems, little research has concentrated on Top-k query 

processing. In  [21] the authors present a Top-k query processing algorithm for 

Edutella which is a super-peer network. The technique which Edutella uses for 

processing Top-k queries is explained in Section 4.1. Although very good for super-

peer networks, this technique cannot apply efficiently to other networks, in particular, 

unstructured, since there may be no peer with higher reliability and computing power. 

In contrast, our algorithm makes no assumptions about the P2P network topology and 

the existence of certain peers. 
A good formal framework for ranking is introduced in  [1] based on a ranking 

algebra. The authors show that not only one global ranking should be taken into 

account, but also several in different contexts. The ranking algebra allows aggregating 

the local rankings into global rankings. 



Top-k Query Processing in the APPA P2P System      13 

PlanetP  [8] is a P2P system that constructs a content addressable publish/subscribe 

service using gossiping to replicate global documents across P2P communities up to 

ten thousand peers. In PlanetP, a Top-k query processing method is proposed that 

works as follows. Given a query Q , the query originator computes a relevance 

ranking of peers with respect to Q, contacts them one by one from top to bottom of 

ranking and asks them to return a set of their top-scored document names together 

with their scores. To compute the relevance of peers, a global fully replicated index is 

used that contains term-to-peer mappings. In a large P2P system, keeping up-to-date 

the replicated index is a major problem that hurts scalability. In contrast, our 

algorithm does not use any replicated data. 

For the cases where a data item can have multiple scores at different sites, e.g. the 

amount of a customer’s purchase in several stores, the TA family of algorithms for 

monotonic score aggregation  [9] stands out as an efficient and highly versatile 

method. There have been many algorithms in order to optimize the TA algorithm in 

terms of bandwidth cost and response time, e.g.  [22] and  [14]. 

6   Conclusion 

In this paper, we proposed a fully distributed algorithm for Top-k query processing in 

the context of the APPA data management system. APPA has a network-independent 

design that can be implemented over different P2P networks (unstructured, DHT, 

super-peer, etc.), thus allowing us to exploit continuing progress in such systems. We 

presented our algorithm for the case of unstructured systems, thus with minimal 

assumptions. Our algorithm requires no global information, does not depend on the 

existence of certain peers and its bandwidth cost is low. 

For determining the k top results, we use the concept of score-list which reduces 

the bandwidth consumption and also reduces the response time. We analyzed the 

bandwidth cost of our algorithm and we proposed efficient techniques in order to 

reduce it.  

We validated the performance of our algorithm through implementation over a 64-

node cluster and simulation using the BRITE topology generator and SimJava. The 

experimental and simulation results showed that our algorithm can have logarithmic 

scale up. The simulation also showed the excellent performance of our algorithm 

compared with a naïve algorithm and an adaptation of an existing algorithm.  

As future work, we plan to deal with replicated data in P2P Top-k query 

processing. In this paper, we assumed that data items are not replicated. In the case of 

data replication, with our algorithm, there may be replicated data items in the final 

score-list. This may be fine for the user as it is an indication of the items’ usefulness 

(in a P2P system, the most useful data get most replicated). But we could also identify 

replicated items.  
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