
Top-k Query Processing in the APPA P2P System1

Reza Akbarinia
1,3

,Vidal Martins
1,2

, Esther Pacitti
1
, Patrick Valduriez

1

1ATLAS group, INRIA and LINA, University of Nantes, France
2PPGIA/PUCPR – Pontifical Catholic University of Paraná, Brazil

3Shahid Bahonar University of Kerman, Iran

{FirstName.LastName@univ-nantes.fr, Patrick.Valduriez@inria.fr}

Abstract. Top-k queries are attractive for users in P2P systems with very large

numbers of peers but difficult to support efficiently. In this paper, we propose a

fully distributed algorithm for executing Top-k queries in the context of the

APPA (Atlas Peer-to-Peer Architecture) data management system. APPA has a

network-independent architecture that can be implemented over various P2P

networks. Our algorithm requires no global information, does not depend on the

existence of certain peers and its bandwidth cost is low. We validated our

algorithm through implementation over a 64-node cluster and simulation using

the BRITE topology generator and SimJava. Our performance evaluation shows

that our algorithm has logarithmic scale up and improves Top-k query response

time very well using P2P parallelism in comparison with baseline algorithms.

1 Introduction

Peer-to-peer (P2P) systems adopt a completely decentralized approach to data sharing

and thus can scale to very large amounts of data and users. Popular examples of P2P
systems such as Gnutella [10] and KaZaA [13] have millions of users sharing

petabytes of data over the Internet. Initial research on P2P systems has focused on

improving the performance of query routing in unstructured systems, such as Gnutella

and KaaZa, which rely on flooding. This work led to structured solutions based on
distributed hash tables (DHT), e.g. CAN [16], or hybrid solutions with super-peers

that index subsets of peers [23]. Although these designs can give better performance

guarantees than unstructured systems, more research is needed to understand their

trade-offs between autonomy, fault-tolerance, scalability, self-organization, etc.

Meanwhile, the unstructured model which imposes no constraint on data placement

and topology remains the most used today on the Internet

Recently, other work in P2P systems has concentrated on supporting advanced

applications which must deal with semantically rich data (e.g. XML documents,

relational tables, etc.) using a high-level SQL-like query language, e.g. ActiveXML

 [2], Piazza [20], PIER [12]. High-level queries over a large-scale P2P system may

produce very large numbers of results that may overwhelm the users. To avoid such

overwhelming, a solution is to use Top-k queries whereby the user can specify a

1 Work partially funded by the ARA Massive Data of the Agence Nationale de la Recherche.

2 Reza Akbarinia, Vidal Martins, Esther Pacitti, Patrick Valduriez

limited number (k) of the most relevant answers. Initial work on Top-k queries has

concentrated on SQL-like language extensions [7] [6] . In [6] for instance, there is a

STOP AFTER k clause to express the k most relevant tuples together with a scoring

function to determine their ranking.

Efficient execution of Top-k queries in a large-scale distributed system is difficult.

To process a Top-k query, a naïve solution is that the query originator sends the query

to all nodes and merges all the results, which it gets back. This solution hurts response

time as the central node is a bottleneck and does not scale up. Efficient techniques

have been proposed for Top-k query execution in distributed systems [25] [24]. They

typically use histograms, maintained at a central site, to estimate the score of

databases with respect to the query and send the query to the databases that are more

likely to involve top results. These techniques can somehow be used in super-peer

systems where super-peers maintain the histograms and perform query sending and

result merging. However, keeping histograms up-to-date with autonomous peers that

may join or leave the system at any time is difficult. Furthermore, super-peers can

also be performance bottlenecks. In unstructured or DHT systems, these techniques

which rely on central information no longer apply.

In this paper, we propose a fully distributed algorithm for executing Top-k queries

processing in the context of APPA (Atlas Peer-to-Peer Architecture), a P2P data
management system which we are building [3] [4]. The main objectives of APPA are

scalability, availability and performance for advanced applications. APPA has a

network-independent architecture in terms of advanced services that can be

implemented over different P2P networks (unstructured, DHT, super-peer, etc.). This

allows us to exploit continuing progress in such systems. Our Top-k query processing

algorithm has several distinguishing features. For instance, it requires no central or

global information. Furthermore, its execution is completely distributed and does not

depend on the existence of certain peers. We validated our algorithm through a

combination of implementation and simulation and the performance evaluation shows

very good performance. We have also implemented baseline algorithms for

comparing with our algorithm. Our performance evaluation shows that our algorithm

improves Top-k query response time very well using P2P parallelism in comparison

with baseline algorithms.

The rest of this paper is organized as follows. Section 2 describes the APPA

architecture. In Section 3, we present our algorithm, then we analyzes the bandwidth

cost of our algorithm and propose techniques in order to reduce this cost. Section 4

describes a performance evaluation of the algorithm through implementation over a

64-node cluster and simulation (up to 10,000 peers) using the BRITE topology

generator [5] and SimJava [11]. Section 5 discusses related work. Section 6

concludes.

2 APPA Architecture

APPA has a layered service-based architecture. Besides the traditional advantages of

using services (encapsulation, reuse, portability, etc.), APPA is a network-

independent architecture so it can be implemented over different P2P networks

Top-k Query Processing in the APPA P2P System 3

(unstructured, DHT, super-peer, etc.). The main reason for this choice is to be able to

exploit rapid and continuing progress in P2P networks. Another reason is that it is

unlikely that a single P2P network design will be able to address the specific

requirements of many different applications. Obviously, different implementations

will yield different trade-offs between performance, fault-tolerance, scalability,

quality of service, etc. For instance, fault-tolerance can be higher in unstructured P2P

systems because no peer is a single point of failure. On the other hand, through index

servers, super-peer systems enable more efficient query processing. Furthermore,

different P2P networks could be combined in order to exploit their relative

advantages, e.g. DHT for key-based search and super-peer for more complex

searching.

There are three layers of services in APPA: P2P network, basic services and

advanced services.

P2P network. This layer provides network independence with services that are

common to all P2P networks, for instance:

• Peer id assignment: assigns a unique id to a peer using a specific method, e.g. a

combination of super-peer id and counter in a super-peer network.

• Peer linking: links a peer to some other peers, e.g. by setting neighbors in an
unstructured network, by locating a zone in CAN [16], etc. It also maintains the

address and id of the peer’s neighbors.

• Peer communication: enables peers to exchange messages (i.e. service calls).

Basic services. This layer provides elementary services for the advanced services

using the P2P network layer, for instance:

• P2P data management: stores and retrieves P2P data (e.g. meta-data, index

data) in the P2P network.

• Peer management: provides support for peer joining, rejoining, and for updating

peer address (the peer ID is permanent but its address may be changed).

• Group membership management: allows peers to join an abstract group,

become members of the group and send and receive membership notifications.

Advanced services. This layer provides advanced services for semantically rich data

sharing including schema management, replication, query processing, security, etc.

using the basic services.

Fig. 1. APPA architecture over an unstructured network

Advanced

services

Local

Data

Peer1

Peer2

Unstructured

network

Basic

services

P2P network

services

P2P

Data

4 Reza Akbarinia, Vidal Martins, Esther Pacitti, Patrick Valduriez

For the cases where APPA is based on a DHT or an unstructured network, the three

service layers are completely distributed over all peers, but in a super-peer network

the super-peers provide P2P network services and basic services while other peers

provide only the advanced services. Figure 1 shows an APPA architecture based on

an unstructured network.

3 Top-k Query Processing

In this section, we first make precise our assumptions and define the problem. Then,

we present a basic algorithm for Top-k query processing in APPA when it is based on

an unstructured P2P system. Finally, we analyze the bandwidth cost of our algorithm

and propose some techniques for reducing it.

3.1 Problem Definition

We first give our assumptions regarding schema management and Top-k queries.

Then we can precisely state the problem we address in this paper.

In a P2P system, peers should be able to express queries over their own schema
without relying on a centralized global schema as in data integration systems [20].

Several solutions have been proposed to support decentralized schema mapping.

However, this issue is out of the scope of this paper and we assume it is provided
using one of the existing techniques, e.g. [15] and [20]. Furthermore, also for

simplicity, we assume relational data.

Now we can define the problem as follows. Let Q be a Top-k query, i.e. the user is

interested to receive k top answers to Q. Let TTL (Time-To-Live) determine the

maximum hop distance which the user wants her query be sent. Let D be the set of all

data items (i.e. tuples) that can be accessed through ttl hops in the P2P system during

the execution of Q. Let Sc(d, Q) be a scoring function that denotes the score of

relevance of a data item d∈D to Q. Our goal is to find the set T ⊆ D, such that:

T = k and ∀ d1∈ T, ∀ d2 ∈ (D – T) then Sc(d1, Q) ≥ Sc(d2, Q)

while minimizing the response time of Q and the bandwidth cost.

3.2 Algorithm

The algorithm starts at the query originator, the peer at which a user issues a Top-k

query Q. The query originator performs some initialization. First, it sets TTL with a

value which is either specified by the user or default. Second, it gives Q a unique

identifier, denoted by QID, which is made of a unique peer-ID and a query counter

managed by the query originator. Peers use QID to distinguish between new queries

and those received before. After initialization, the query originator triggers the

sequence of the following four phases: query forward, local query execution, merge-

and-backward, and data retrieval. In all of these four phases, the communication

between peers is done via APPA’s Peer Communication service.

Top-k Query Processing in the APPA P2P System 5

Query Forward

Q is included in a message that is broadcast to all reachable peers. Thus, like other

flooding algorithms, each peer that receives Q tries to send it to its neighbors. Each

peer p that receives the message including Q performs the following steps.

1. Check QID: if Q has been already received, then discard the message else save

the address of the sender as the parent of p.

2. Decrement TTL by one: if TTL > 0, make a new message including Q, QID,

new TTL and the query originator’s address and send the message to all

neighbors (except parent).

In order to know their neighbors, the peers use the Peer Linking service of APPA.

Local Query Execution

After the query-forward phase, each peer p executes Q locally, i.e. accesses the local

data items that match the query predicate, scores them using a scoring function,

selects the k top data items and saves them as well as their scores locally. For scoring

the data items, we can use one of the scoring functions proposed for relational data,
e.g. Euclidean function [7] [6]. These functions require no global information and can

score peer’s data items only using local information. The scoring function can also be

specified explicitly by the user.

After selecting the k local top data items, p must wait to receive its neighbors’

score-lists before starting the next phase. However, since some of the neighbors may

leave the P2P system and never send a score-list to p, we must set a limit for the wait

time. We compute p’s wait time using a cost function based on TTL, network

dependent parameters and p’s local processing parameters. However, because of

space limitations, we do not give the details of the cost function here.

Merge-and-Backward

After the wait time has expired, each peer merges its local top scores with those

received from its neighbors and sends the result to its parent (the peer from which it

received Q) in the form of a score-list. In order to minimize network traffic, we do not

“bubble up” the top data items (which could be large), only their addresses. A score-

list is simply a list of k couples (p, s), such that p is the address of the peer owning the

data item and s its score. Thus, each peer performs the following steps:

1. Merge the score-lists received from the neighbors with its local top scores and

extracting the k top scores (along with the peer addresses).

2. Send the merged score-list to its parent.

Data Retrieval

After the query originator has produced the final score-list (gained by merging its

local top scores with those received from its neighbors), it directly retrieves the k top

data items from the peers in the list as follows. For each peer address p in the final

score-list:

1. Determine the number of times p appears in the final score-list, e.g. m times.

2. Ask the peer at p to return its m top scored items.

6 Reza Akbarinia, Vidal Martins, Esther Pacitti, Patrick Valduriez

Formally, consider the final score-list Lf which is a set of at most k couples (p, s),

in this phase for each p∈Domain(Lf), the query originator determines Tp = {s  (p, s)

∈ Lf } and asks peer p to return Tp  of its top scored items.

3.3 Analysis of Bandwidth Cost

One main concern with flooding algorithms is their bandwidth cost. In this section,

we analyze our algorithm’s bandwidth cost. As we will see, it is not very high. We

also propose strategies to reduce it more. We measure the bandwidth cost in terms of

number of messages and number of bytes which should be transferred over the

network in order to execute a query by our algorithm. The messages transferred can

be classified as: 1) forward messages, for forwarding the query to peers. 2) backward

messages, for returning the score-lists from peers to the query originator. 3) retrieve

messages, to request and retrieve the k top results. We first present a model

representing the peers that collaborate on executing our algorithm, and then analyze

the bandwidth cost of backward, retrieve and forward messages.

Model

Let P be the set of the peers in the P2P system. Given a query Q, let PQ ⊆ P be a set

containing the query originator and all peers that receive Q. We model the peers in PQ

and the links between them by a graph G(PQ, E) where PQ is the set of vertices in G

and E is the set of the edges. There is an edge p-q in E if and only if there is a link

between the peers p and q in the P2P system. Two peers are called neighbor, if and

only if there is an edge between them in G. The number of neighbors of each peer

p∈PQ is called the degree of p and is denoted by d(p). The average degree of peers in

G is called the average degree of G and is denoted by d(G). The average degree of G

can be computed as ∑
∈

=

QPp

QPpdGd /))(()(

During the execution of our algorithm, p∈PQ may receive Q from some of its

neighbors. The first peer, say q, which p receives Q from, is the parent of p in G, and

thereby p is a child of q. A peer may have some neighbors that are neither its parent

nor its children.

Backward Messages

In the Merge-and-Backward phase, each peer in PQ, except the query originator, sends

its merged score-list to its parent. Therefore, the number of backward messages,

denoted by mbw, is mbw= PQ-1.

Let L be the size of each element of a score-list in bytes (i.e. the size of a score and

an address), then the size of the score-list is k×L, where k is the number of top results

specified in Q. Since the number of score-lists transferred by backward messages is

PQ-1, then the total size of data transferred by backward messages, denoted by bbw,

can be computed as bbw = k× L× (PQ-1). If we set L=10, i.e. 4 bytes for the score

and 6 bytes for the address (4 bytes for IP address and 2 bytes for the port number),

then bbw = k× 10× (PQ-1).

Top-k Query Processing in the APPA P2P System 7

Let us show with an example that bbw is not significant. Consider that 10,000 peers

receive Q (including the query originator), thus PQ=10,000. Since users are

interested in a few results and k is usually small, we set k=20. As a result, bbw is less

than 2 megabytes. Compared with the tens of megabytes of music and video files,

which are typically downloaded in P2P systems, this is small.

Retrieve Messages

By retrieve messages, we mean the messages sent by the query originator to request

the k top results and the messages sent by the peers owning the top results to return

these results. In the Data Retrieval phase, the query originator sends at most k

messages to the peers owning the top results (there may be peers owning more than

one top result) for requesting their top results and these peers return their top results

by at most k messages. Therefore, the number of retrieve messages, denoted by mrt, is

mrt ≤ 2× k.

Forward Messages

Forward messages are the messages that we use to forward Q to the peers. According

to the basic design of our algorithm, each peer in PQ sends Q to all its neighbors

except its parent. Let po denote the query originator. Consider the graph G(PQ, E)

described before, each p∈(PQ – {po}), sends Q to d(p)–1 peers, where d(p) is the

degree of p in G. The query originator sends Q to all of its neighbors, in other words

to d(po) peers. Then, the sum of all forward messages mfw can be computed as

)())1)(((
}){p(o

o

Pp

fw pdpdm
Q

+−= ∑
−∈

We can write mfw as follows:

1))(((1))1)(((+−=+−= ∑∑
∈∈

Q

PpPp

fw Ppdpdm
QQ

Based on the definition of d(G), mfw can be written as mfw = (d(G) -1)×PQ+1,
where d(G) is the average degree of G. According to the measurements in [17], the

average degree of Gnutella is 4. If we take this value as the average degree of the P2P

system, i.e. d(G)=4, we have mfw = 3×PQ+1. From the above discussion, we can

derive the following lemma.

Lemma 1: The number of forward messages in the basic form of our algorithm is

(d(G) -1)×PQ+1.

Proof: Implied by the above discussion. 

To determine the minimum number of messages necessary for forwarding Q, we

prove the following lemma.

Lemma 2: The lower bound of the number of forward messages for sending Q to all

peers in PQ is PQ - 1.

Proof: For sending Q to each peer p∈PQ, we need at least one forward message. Only

one peer in PQ has Q, i.e. the query originator, thus Q should be sent to PQ - 1 peers.

Consequently, we need at least PQ - 1 forward messages to send Q to all peers in

PQ.

Thus, the number of forward messages in the basic form of our algorithm is far

from the lower bound.

8 Reza Akbarinia, Vidal Martins, Esther Pacitti, Patrick Valduriez

3.4 Reducing the Number of Messages

We can still reduce the number of forward messages using the following strategies. 1)

sending Q across each edge only once. 2) Sending with Q a list of peers that have

received it.

Sending Q Across each Edge only once

In graph G, there may be many cases that two peers p and q are neighbors and none of

them is the parent of the other, e.g. two neighbors which are children of the same

parent. In these cases, in the basic form of our algorithm, both peers send Q to the

other, i.e. Q is sent across the edge p-q twice. We develop the following strategy to

send Q across an edge only once.

Strategy 1: When a peer p receives Q, say at time t, from its parent (which is the first

time that p receives Q from), it waits for a random, small time, say λ, and then sends

Q only to the neighbors which p has not received Q from them before t + λ.

Lemma 3: With a high probability, the number of forward messages with Strategy 1

is reduced to d(G)×PQ / 2.

Proof: Since λ is a random number and different peers generate independent random

values for λ, the probability that two neighbors send Q to each other simultaneously is

very low. Ignoring the cases where two neighbors send Q to the other simultaneously,

with Strategy 1, Q is sent across an edge only once. Therefore, the number of forward

messages can be computed as mfw = E. Since E= d(G)×PQ/2, then mfw=

d(G)×PQ/2. 
Considering d(G)=4 (similar to [17]), the number of forward messages is mfw=

2×PQ.
With Strategy 1, mfw is closer to the lower bound than the basic form of our

algorithm. However, we are still far from the lower bound. By combining Strategy 1

and another strategy, we can reduce the number of forward messages much more.

Attaching to Forward Messages the List of Peers that have received Q

Even with Strategy 1, between two neighbors, which are children of the same parent

p, one forward message is sent although it is useless (because both of them have

received Q from p). If p attaches a list of its neighbors to Q, then its children can

avoid sending Q to each other. Thus, we propose a second strategy.

Strategy 2: Before sending Q to its neighbors, a peer p attaches to Q a list containing

its Id and the Id of its neighbors and sends this list along with Q. Each peer that

receives the Q’s message, verifies the list and does not send Q to the peers involved in

the list.

Theorem 1: By combining Strategy 1 and Strategy 2, with a high probability, the

number of forward messages is less than d(G)×PQ/2.

Proof: With Strategy 2, two neighbors, which have the same parent, do not send any

forward message to each other. If we use Strategy 1, with a high probability at most

one forward message is sent across each edge. Using Strategy 2, there may be some

edges such that no forward message is sent across them, e.g. edges between two

neighbors with the same parent. Therefore, by combining Strategy 1 and Strategy 2,

the number of forward messages is mfw ≤ E, and thus mfw ≤ d(G)×PQ/2. 

Top-k Query Processing in the APPA P2P System 9

Considering d(G)=4, the number of forward messages is mfw ≤ 2×PQ.

4 Performance Evaluation

We evaluated the performance of our Fully Distributed algorithm (FD for short)

through implementation and simulation. The implementation over a 64-node cluster

was useful to validate our algorithm and calibrate our simulator. The simulation

allows us to study scale up to high numbers of peers (up to 10,000 peers).

The rest of this section is organized as follows. In Section 4.1, we describe our

experimental and simulation setup, and the algorithms used for comparison. In

Section 4.2, we evaluate the response time of our algorithm. We first present

experimental results using the implementation of our algorithm and four other

baseline algorithms on a 64-node cluster, and then we present simulation results on

the response time by increasing the number of peers up to 10,000. We also did other

experiments on the response time by varying other parameters, e.g. data item size,

connection bandwidth, latency and k, but due to space limitation we cannot present

them.

4.1 Experimental and Simulation Setup

For our implementation and simulation, we used the Java programming language, the

SimJava package and the BRITE universal topology generator.
SimJava [11] is a process based discrete event simulation package for Java. Based

on a discrete event simulation kernel, SimJava includes facilities for representing

simulation objects as animated icons on screen. A SimJava simulation is a collection

of entities each running in its own thread. These entities are connected together by

ports and can communicate with each other by sending and receiving event objects.
BRITE [5] has recently emerged as one of the most promising universal topology

generators. The objective of BRITE is to produce a general and powerful topology

generation framework. Using BRITE, we generated topologies similar to those of P2P

systems and we used them for determining the linkage between peers in our tests.

We first implemented our algorithm in Java on the largest set of machines that was

directly available to us. The cluster has 64 nodes connected by a 1-Gbps network.

Each node has an Intel Pentium 2.4 GHz processor, and runs the Linux operating

system. We make each node act as a peer in the P2P system. To have a P2P topology

close to real P2P overlay topologies, we determined the peer neighbors using the
topologies generated by the BRITE universal topology generator [5]. Thus, each node

only is allowed to communicate with the nodes that are its neighbors in the topology

generated by BRITE.

To study the scalability of our algorithm far beyond 64 peers and to play with

various performance parameters, we implemented a simulator using SimJava. To

simulate a peer, we use a SimJava entity that performs all tasks that must be done by a

peer for executing our algorithm. We assign a delay to communication ports to

10 Reza Akbarinia, Vidal Martins, Esther Pacitti, Patrick Valduriez

simulate the delay for sending a message between two peers in a real P2P system. For

determining the links between peers, we used the topologies generated by BRITE.

In all our tests, we use the following simple query as workload:

 SELECT R.data FROM R ORDER BY R.score

 STOP AFTER k

Each peer has a table R(score, data) in which attribute score is a random real

number in the interval [0..1] with uniform distribution, and attribute data is a random

variable with normal distribution with a mean of 1 (kilo bytes) and a variance of 64.

Attribute score represents the score of data items and attribute data represents (the

description of) the data item that will be returned back to the user as the result of

query processing. The number of tuples of R at each peer is a random number

(uniformly distributed over all peers) greater than 1000 and less than 20,000.

The simulation parameters are shown in Table 1. Unless otherwise specified, the

latency between any two peers is a normally distributed random number with a mean

of 200 (ms) and a variance of 100. The bandwidth between peers is also a random

number with normal distribution with a mean of 56 (kbps) and a variance of 32. Since

users are usually interested in a small number of top results, we set k=20.

The simulator allows us to perform tests up to 10,000 peers, after which the

simulation data no longer fit in RAM and makes our tests difficult. This is quite

sufficient for our tests. Therefore, the number of peers of P2P system is set to be

10,000, unless otherwise specified. In all tests, TTL is set as the maximum hop-

distance to other peers from the query originator, thus all peers of the P2P system can

receive Q. We observed that in the topologies with 10,000 nodes, with TTL=12 all

peers could receive Q. Our observations correspond to those based on experiments
with the Gnutella network [17]; for instance, with 50,000 nodes, the maximum hop-

distance between any two nodes is 14.

Table 1. Simulation parameters

Parameter Values

Bandwidth Normally distributed random, Mean = 56 Kbps, Variance = 32

Latency Normally distributed random, Mean = 200 ms, Variance = 100

Number of peers 10,000 peers

TTL Large enough such that all of peers can receive the query

K 20

Result items size Normally distributed random, Mean = 1 KB, Variance = 64

In our simulation, we compare our FD algorithm with four other algorithms. The

first algorithm is a Naïve algorithm that works as follows. Each peer receiving Q

sends its k top relevant items directly to the query originator. The query originator

merges the received results and extracts the k overall top scored data items from them.
The second algorithm is an adaptation of Edutella’s algorithm [21] which is

designed for super-peer. We adapt this algorithm for an unstructured system and call

it Sequential Merging (SM) as it sequentially merges top data items. The original

Edutella algorithm works as follows. The query originator sends Q to its super-peer,

and it sends Q to all other super-peers. The super-peers send Q to the peers connected

to them. Each peer that has data items relevant to Q scores them and sends its

Top-k Query Processing in the APPA P2P System 11

maximum scored data item to its super-peer. Each super-peer chooses the overall

maximum scored item from all received data items. For determining the second best

item, it only asks one peer, the one which returned the first top item, to return its

second top scored item. Then, the super-peer selects the overall second top item from

the previously received items and the newly received item. Then, it asks the peer

which returned the second top item and so on until all k top items will be retrieved.

Finally the super-peers send their top items to the super-peer of the query originator,

to extract overall k top items, and to send them to the query originator. In Edutella, a

very small percentage of nodes are super-peers, e.g. in [19] it is 0.64, i.e. 64 super-

peers for 10,000 peers. In our tests, we consider the same percentage, and we select

the super-peers randomly from the peers of P2P system. We consider the same

computing capacity for the super-peers as for the other peers.

We also propose the optimized versions of Naïve and SM algorithms that bubble

up only the score-lists, as in our algorithm, and we denote them Naïve* and SM*

respectively. In our tests, in addition to Naïve and SM algorithms, we compare our

algorithm with Naïve* and SM*.

4.2 Scale up

In this section, we investigate the scalability of our algorithm. We use both our

implementation and simulator to study response time while varying the number of

peers. The response time includes local processing time and data transfers, i.e.

sending query messages, score-lists and data items.

Using our implementation over the cluster, we ran experiments to study how

response time increases with the addition of peers. Figure 2 shows excellent scale up

of our algorithm since response time logarithmically increases with the addition of

peers until 64. Using simulation, Figure 3 shows the response times of the five

algorithms with a number of peers increasing up to 10000 and the other simulation

parameters set as in Table 1.

FD always outperforms the four other algorithms and the performance difference

increases significantly in favor of FD as the number of peers increases. The main

reason for FD’s excellent scalability is its fully distributed execution. With the SM,

SM*, Naive and Naïve*, a central node is responsible for query execution, and this

creates two problems. First, the central node becomes a communication bottleneck

since it must receive a large amount of data from other peers that all compete for

bandwidth. Second, the central node becomes a processing bottleneck, as it must

merge many answers to extract the k top results.

Another advantage of FD is that it does not transfer useless data items over the

network. For determining top items, FD only bubbles up the score-lists (which are

small) while SM and Naive algorithms transfer many data items of which only a small

fraction makes the final top results. SM transfers the first top-scored item of every

peer and Naïve transfers k top-scored data items of all peers. With a large number of

peers, data transfer is a dominant factor in response time and FD reduces it to

minimum.

12 Reza Akbarinia, Vidal Martins, Esther Pacitti, Patrick Valduriez

Experimental Results

1

10

100

2 4 8 16 32 64
Number of peers

R
e
sp

o
n

se
 T

im
e

(s
)

FD
SM
Naive
SM *
Naive *

Simulation Results

1

10

100

1000

10000

32 64 10
0

20
0

50
0

10
00

20
00

50
00

10
00

0

Number of peers

R
es

p
o

n
se

 T
im

e
(s

)

FD

SM

Naive

SM *

Naive *

Fig. 2. Response time vs. number of peers Fig. 3. Response time vs. number of peers

Overall, the experimental results correspond with the simulation results. However,

the response time gained from our experiments over the cluster is a little better than

that of simulation because the cluster has a high-speed network.

We also did experiments on the response time by varying data item size,

connection bandwidth, latency and k. The item size has little impact on the response

time of FD, SM* and Naïve*, but has strong impact on SM and Naïve. The response

time decreases with increasing the connection bandwidth in all five algorithms.

However, FD outperforms the other algorithms for all the tested bandwidths. FD also

outperforms the other algorithms for the tested values of latency (up to 10,000 ms).

However, high latency, e.g. more than 2000 ms, has strong impact and increases

response time much, but below 2000 ms, latency has not much effect on FD’s
response time. According to studies reported in [18], more than 80% of links between

peers have good latency, less than 280 ms, for which FD has very good performance.

k has little impact on the response time of SM, but has some impact on FD, SM*,

Naïve and Naïve*. Despite the effect of k on FD, it is by far the superior algorithm for

the tested values of k (k<200). Since users are usually interested in a small number of

top results, e.g. less than 20 results, the performance advantage for FD remains high.

5 Related Work

In the context of P2P systems, little research has concentrated on Top-k query

processing. In [21] the authors present a Top-k query processing algorithm for

Edutella which is a super-peer network. The technique which Edutella uses for

processing Top-k queries is explained in Section 4.1. Although very good for super-

peer networks, this technique cannot apply efficiently to other networks, in particular,

unstructured, since there may be no peer with higher reliability and computing power.

In contrast, our algorithm makes no assumptions about the P2P network topology and

the existence of certain peers.
A good formal framework for ranking is introduced in [1] based on a ranking

algebra. The authors show that not only one global ranking should be taken into

account, but also several in different contexts. The ranking algebra allows aggregating

the local rankings into global rankings.

Top-k Query Processing in the APPA P2P System 13

PlanetP [8] is a P2P system that constructs a content addressable publish/subscribe

service using gossiping to replicate global documents across P2P communities up to

ten thousand peers. In PlanetP, a Top-k query processing method is proposed that

works as follows. Given a query Q , the query originator computes a relevance

ranking of peers with respect to Q, contacts them one by one from top to bottom of

ranking and asks them to return a set of their top-scored document names together

with their scores. To compute the relevance of peers, a global fully replicated index is

used that contains term-to-peer mappings. In a large P2P system, keeping up-to-date

the replicated index is a major problem that hurts scalability. In contrast, our

algorithm does not use any replicated data.

For the cases where a data item can have multiple scores at different sites, e.g. the

amount of a customer’s purchase in several stores, the TA family of algorithms for

monotonic score aggregation [9] stands out as an efficient and highly versatile

method. There have been many algorithms in order to optimize the TA algorithm in

terms of bandwidth cost and response time, e.g. [22] and [14].

6 Conclusion

In this paper, we proposed a fully distributed algorithm for Top-k query processing in

the context of the APPA data management system. APPA has a network-independent

design that can be implemented over different P2P networks (unstructured, DHT,

super-peer, etc.), thus allowing us to exploit continuing progress in such systems. We

presented our algorithm for the case of unstructured systems, thus with minimal

assumptions. Our algorithm requires no global information, does not depend on the

existence of certain peers and its bandwidth cost is low.

For determining the k top results, we use the concept of score-list which reduces

the bandwidth consumption and also reduces the response time. We analyzed the

bandwidth cost of our algorithm and we proposed efficient techniques in order to

reduce it.

We validated the performance of our algorithm through implementation over a 64-

node cluster and simulation using the BRITE topology generator and SimJava. The

experimental and simulation results showed that our algorithm can have logarithmic

scale up. The simulation also showed the excellent performance of our algorithm

compared with a naïve algorithm and an adaptation of an existing algorithm.

As future work, we plan to deal with replicated data in P2P Top-k query

processing. In this paper, we assumed that data items are not replicated. In the case of

data replication, with our algorithm, there may be replicated data items in the final

score-list. This may be fine for the user as it is an indication of the items’ usefulness

(in a P2P system, the most useful data get most replicated). But we could also identify

replicated items.

14 Reza Akbarinia, Vidal Martins, Esther Pacitti, Patrick Valduriez

References

[1] Aberer, K., AND Wu., J. Framework for Decentralized Ranking in Web Information

Retrieval. Proc. of the 5th Asia Pacific Web Conference (APWeb), 2003.

[2] Abiteboul, S., et al. Dynamic XML documents with distribution and replication.

SIGMOD Conf., 2003.

[3] Akbarinia, R., Martins, V., Pacitti, E., and Valduriez, P. Design and Implementation of

Atlas P2P Architecture. Global Data Management (Eds. R. Baldoni, G. Cortese, F.

Davide), IOS Press, 2006.

[4] Akbarinia, R., Martins, V., Pacitti, E., AND Valduriez, P. Replication and Query

Processing in the APPA Data Management System. 6th Workshop on Distributed Data &

Structures (WDAS), 2004.

[5] BRITE, http://www.cs.bu.edu/brite/.

[6] Carey, M.J., AND Kossmann, D. On saying ‘Enough Already!’. SIGMOD Conf., 1997.

[7] Chaudhuri, S., et al. Evaluating Top-k Selection queries. VLDB Conf., 1999.

[8] Cuenca-Acuna, F.M., Peery, C., Martin, R.P., AND Nguyen, T.D. PlanetP: Using

Gossiping to Build Content Addressable Peer-to-Peer Information Sharing Communities.

IEEE Int. Symp. on High Performance Distributed Computing (HPDC), 2003.

[9] Fagin, R., Lotem, J., AND Naor, M. Optimal aggregation algorithms for middleware. J.

Comput. Syst. Sci. 66(4), 2003.

[10] Gnutella. http://www.gnutelliums.com/.

[11] Howell, F., AND McNab, R. SimJava: a discrete event simulation package for Java

with applications in computer systems modeling. Int. Conf. on Web-based Modelling and

Simulation, San Diego CA, Society for Computer Simulation, 1998.

[12] Huebsch, R., et al. Querying the Internet with PIER. VLDB Conf., 2003.

[13] Kazaa. http://www.kazaa.com/.

[14] Michel, S., Triantafillou, P., AND Weikum, G. KLEE: A Framework for Distributed

Top-k Query Algorithms. VLDB Conf., 2005.

[15] Ooi, B., Shu, Y., AND Tan, K-L. Relational data sharing in peer-based data

management systems. SIGMOD Record, 32(3), 2003.

[16] Ratnasamy, S., Francis, P., Handley, M., Karp, R.M., AND Shenker, S. A scalable

content-addressable network. Proc. of SIGCOMM, 2001.

[17] Ripeanu, M., AND Foster, I. Mapping the gnutella network: Macroscopic properties of

large-scale peer-to-peer systems. IPTPS, 2002.

[18] Saroiu, S., Gummadi, P., AND Gribble, S. A Measurement Study of Peer-to-Peer File

Sharing Systems. Proc. of Multimedia Computing and Networking (MMCN), 2002.

[19] Siberski, W., AND Thaden, U. A Simulation Framework for Schema-Based Query

Routing in P2P-Networks. EDBT Workshops, 2004.

[20] Tatarinov, I., et al. The Piazza peer data management project. SIGMOD Record 32(3),

2003.

[21] Thaden, U., Siberski, W., Balke, W.T., AND Nejdl, W. Top-k query Evaluation for

Schema-Based Peer-To-Peer Networks, Int. Semantic Web Conf. (ISWC), 2004.

[22] Theobald, M., Weikum, G., AND Schenkel, R. Top-k Query Evaluation with

Probabilistic Guarantees. VLDB Conf., 2004.

[23] Yang, B., AND Garcia-Molina, H. Designing a super-peer network. Int. Conf. on Data

Engineering, 2003.

[24] Yu, C., et al. Databases Selection for Processing k Nearest Neighbors Queries in

Distributed Environments. ACM/IEEE-CS joint Conf. on DL, 2001.

[25] Yu, C., Philip, G., AND Meng, W. Distributed Top-n Query Processing with Possibly

Uncooperative Local Systems, VLDB Conf., 2003.

