
ERAID: a New Storage Architecture for Mid/Large
RAID

Liu Yan1, Xie Chang-Sheng2, Li Huai-yang3, Zhao Zhen4

1,2,3 Key laboratory of Data Storage System, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China

1 to-liuyan@sohu.com, 2 csxie@263.net, 3 lhycly@263.com,
 4 zhaozhen@163.net

Abstract. Referring to the concept of “distributed virtual disks” in cluster file
system, this paper proposes a new storage architecture for mid/large-scale
RAID – ERAID, which consists of several different structure SubRAIDs.
Clients data can migrate into optimal SubRAID dynamically according to their
access characteristics; the number of SubRAID and the structure of each
SubRAID can also be adjusted to the evolution of system load, thus the whole
ERAID system can always provide a virtual disk for each client to satisfy its
I/O need. Simulation results demonstrate significant I/O performance advantage
in ERAID, compared with the traditional mid/large-scale RAID5 or RAID1 of
the same storage space.

1 Introduction

RAID improves storage system I/O performance by taking advantage of parallel work
of multiple disks, and provides storage system availability by using redundancy
scheme [1]. Of various levels of RAID, RAID1 and RAID5 are most popular
practically. RAID1 maintains 2 copies of data in different disks, is easier to configure
and can provide best I/O performance, while under rather high redundancy overhead.
Adopting rotating parity scheme, RAID5 is the least expensive RAID scheme with
good large update performance (when writes request spans a integral number of stripe
units), but it suffers from poor small write performance, and furthermore, its
performance drops sharply when it enters degraded mode with a disk failure.

In recent years, with the explosion of applications that use enormous amounts of
data and have high QoS requirements to their storage systems, the market of
enterprise storage system is growing gradually [2]. To satisfy the I/O bandwidth and
availability requirements of these applications, enterprise storage system typically
contain RAID. However, the architecture of current RAID is complex: prior RAID
contains several or dozens of disks, while the number of disks in current RAID has
been expanded tens (mid-scale RAID) or even hundreds (large-scale RAID). So the
modern enterprise RAID should manage reasonably and take full advantage of its
large amounts of disks, to provide its users a storage subsystem with high storage
capacity, high performance, high availability. We noticed that modern enterprise

This work was supported by Chinese “973” funds under grants of
2004CD318203, and by NSF funds of China under grants of 60273073.

RAID has certain similarity to cluster file system in the aspect of managing a large
number of disks. Apart from adopting data striping technique and redundancy scheme
as in traditional RAID, cluster file system, which managing hundreds and thousands
of disks distributed across network nodes, has its own characteristic: the technique of
distributed virtual disks [3]. Owing to this technique, not only the users of cluster file
system can build their own virtual disks according to the storage capacity and
performance of the physical storage devices, but also the system achieves such great
scalability that resources (servers and disks) could be added to the cluster file system
automatically.

Using the concept of distributed virtual disk in cluster file system for reference, in
this paper we propose a new architecture for mid/large-scale RAID – ERAID
（Evolving RAID）. ERAID is implemented at the block device level of storage
system. ERAID constructs all array disks into several SubRAIDs, which
cooperatively constitute a unique global storage space of ERAID. A SubRAID is
constructed by part of array disks, and its configuration is totally the same with
traditional RAID. Each SubRAID in ERAID can adopt appropriate data placement
scheme and performance optimization policy according to the number, capacity,
performance of its disks, and the characteristics of the workload it serves. Thus,
through SubRAID of different configuration serving different application, the whole
ERAID system exhibits optimized I/O performance to all of its clients.

The paper is structured as follows. Section 2 describes related work on RAID and
distributed virtual disks technique in cluster file system. Section 3 describes the
ERAID system in detail. Section 4 gives experimental results. Section 5 provides our
conclusions and outlines future work.

2 Related Works

Many papers have been published on RAID performance, availability, data placement
scheme and recovery policy, since RAID technology was proposed in 1989. [4][5][6]

There’s also a number of works on distributed storage system containing a great
amount of disks. CSAR [7] expands the architecture of HP-AutoRAID to distributed
RAID. Cluster file systems, such as PVFS（Parallel Virtual File System）[8] and
Lustre parallel file system [9] stripe data across multiple servers that can serve file
access requests in parallel, allowing high-bandwidth I/O performance and scalability.
To protect data against loss from failure of server or disk, RAID-like redundancy
scheme are also applied to cluster file system: CEFT-PVFS [10] combines original
PVFS striping layout with a doubling of the stripes according to RAID level 10;
NetRAID [11] take the striping and redundancy scheme in RAID3 to ensure system
I/O performance and fault tolerance; Zebra [12], xFS [13], Swarm [14] all store data
using RAID5 redundancy, and use log-structured writes to solve the small-write
problem in distributed storage system incurred by the data placement scheme of
RAID5. Though consisting of large amount of disks, all these above storage systems
are distributed storage systems. There hasn’t any paper special on improving

mid/large-scale RAID system performance yet. So, we propose a new architecture for
mid/large-scale RAID system – ERAID in this paper.

ERAID Client ERAID ClientERAID Client

ERAID Controller

ERAID System

...

...

SubRAID Controller

SubRAID

..
.

..
.

SubRAID Controller

SubRAID
.
..

.
..

SubRAID Controller

SubRAID

.
..

.
..

Fig. 1. Diagram of ERAID system architecture

3 The design of ERAID

3.1 the architecture of ERAID

As show in figure 1, ERAID consists of a collection of SubRAIDs that cooperatively
implement a single, block-level storage system with a unique global storage space.
Each SubRAID could have different data and parity placement scheme that be applied
in traditional RAID. Different from the traditional RAID in which all applications
access one uniform configuration array, ERAID assigns one virtual disk to serve each
one of its clients. So clients could view the ERAID system as a collection of virtual
disks. A virtual disk provides a logical storage space, which could be the whole or
partial physical storage space of a single SubRAID, or is composed of several
SubRAIDs’ whole or partial physical storage space. Through changing the SubRAID
physical storage space that each virtual disk’s logical storage space maps over,
ERAID system allows data to migrate dynamically among SubRAIDs according to
the evolution of the workloads without much difficulty, (That’s why we name the
system ERAID.) as a sequence, to each client, ERAID could always provide a virtual
disk to satisfy its I/O requirement. In addition, the configuration of each SubRAID
alters dynamically to balance the workload among all SubRAIDs, and to take
advantage of the performance of each disk in ERAID system fully. So, the concept of
virtual disk, the characteristics of data migration among different-configuration
SubRAIDs ensure that the whole ERAID system provides heterogeneous clients and
client applications with optimal I/O performance.

Apart form the above-mentioned advantages, the separation of the virtual disks to
clients view and the physical storage space endues that (1) new disks could be added

into SubRAID without any negative impact on the service to clients, and (2)
SubRAID can also be added, deleted, or reconfigured by ERAID system arbitrarily;
as a consequence, ERAID system achieves scalability that new disks and other
resources such as controller and buses could be added to the system flexibly. In
addition, benefiting from the various configurations of SubRAIDs, homogeneous
disks could also be organized easily and their performance could be utilized fully. We
haven’t described the scalability and homogeneity of disks of ERAID in detail,
limited to space of the paper.

3.2 Virtual to physical addresses translation

The unique global storage space of ERAID could be viewed as the combination of
virtual disks’ logical storage space, each of which is mapped dynamically to the
whole (or partial) physical storage space of single (or several) SubRAID(s). The
translation from virtual disk addresses used by clients into physical disk addresses is
processed by ERAID driver, consequently, the logical addresses viewed from clients
need no change even though the data are migrating among SubRAIDs.

The rest of this subsection will describe how ERAID translate the virtual addresses
used by clients into physical disk addresses in detail. The basic problem is to translate
virtual addresses of the form <virtual_disk_id, offset_virtual_disk> to physical
addresses of the form <SubRAID_id, disk_id, offset_disk>. This translation must be
done accurately and efficiently, for there’re many events that alter virtual address
translation, such as data migration among SubRAIDs, SubRAID reconfiguration,
ERAID system expand, and disk failure in ERAID.

To implement the translation, virtual disks and SubRAIDs are all partitioned into
many basic storage units with same size, and we refer to the storage unit in virtual
disk and storage unit in SubRAID as virtual disk block (VDB) and VDB_in_SubRAID
respectively. (Without loss of generality, the size of VDB is set to 64KB in this
paper). The first basic data structure is virtual disk mapper (VDM), used to translate
an offset within a virtual disk to its corresponding SubRAID and the
VDB_in_SubRAID of that SubRAID. For each virtual disk, ERAID maintains a
VDM, and every VDB in that virtual disk has a corresponding entry to record the
mapping information: the VDB identifier, SubRAID identifier and
VDB_in_SubRAID identifier that the VDB maps to. Another data structure is
SubRAID information table (SIT), with each entry corresponding to one SubRAID,
tracking the information that is similar to the information needed in traditional RAID
system to translate logical addresses into physical addresses, including SubRAID_id,
SubRAID configuration information (data placement policy, redundancy scheme,
stripe unit size, stripe depth), and the physical parameters of the component disks in
that SubRAID. Translating a client-supplied logical address <virtual_disk_id ，

offset_virtual_disk> into a particular disk offset <SubRAID_id ， disk_id ，
offset_disk>occurs in four steps as follows.
(1) The client-supplied logical address is <virtual_disk_id，offset_virtual_disk>, so
the given offset, offset_virtual_disk, residents in the VDB whose virtual disk

identifier= virtual_disk_id, and the VDB identifier VDB_id

= ⎣ ⎦64Ktual_disk/offset_vir .
(2) Through referring VDM of the specified virtual disk (virtual disk identifier=
virtual_disk_id), the VDB_id is translated to a SubRAID_id and a
VDB_in_SubRAID.
(3) The offset within the SubRAID (SubRAID identifier=SubRAID_id) for that
client-supplied logical address, designated as offset_SubRAID, equals
（VDB_in_SubRAID*64K + offset_virtual_disk%64K）.
(4) Using the information provided by SIT, ERAID translates the offset_SubRAID
into a disk identifier (disk_id) and an offset within that disk (offset_disk). This
procedure is greatly similar to the procedure of translating a logical address to a
physical disk address in traditional RAID.

This multi-layer logical-to-physical address translation method minimizes the
amount of information that the system must maintain – when user data in a virtual
disk migrate from one SubRAID to another (the basic migration unit in ERAID is
VDB/VDB_in_SubRAID), the system just need to update the information in one or
several entries of the VDM corresponding to that virtual disk; Furthermore, through
updating the SIT, ERAID system could also reflects the configuration alteration of its
SubRAIDs without much effort.

3.3 Data migration among SubRAIDs

ERAID system keeps migrating data to the appropriate SubRAID according to the
change of workload characteristics, such as request size, read/write ratio. Thus, from
the view of a client, the virtual disk that ERAID system assigned to it can always
ensure optimal I/O performance although the workload changes dynamically.

System gathers its workload statistics with the help of an access log (AL) to which
all requests issued to ERAID driver are recorded. Each entry of AL contains four
fields with regard to the information of each request: timestamp, virtual disk identifier,
start sector, request size (the number of sectors) and read/write flag. As the AL
becomes full, ERAID flushes the access information table (AIT) of every virtual disk.
AIT is another table system maintains for each virtual disk. With each entry of AIT
corresponding to each VDB in a virtual disk, tracing the access information to that
specified VDB: VDB identifier (VDB_id), the average size of read accesses
(average_read_size), the average size of write accesses (average_write_size), the
number of read accesses (times_of_read), the number of write accesses
(times_of_write), and the read/write ratio of the accesses (r/w_ratio); in this
subsection, we use “accesses” to represent “accesses to a specified VDB” for literal
concision.

The AL is initially empty, and the value of average_read_size, average_write_size,
times_of_read, times_of_write, r/w_ratio in all AITs are uniformly set to 0. With the
arrival of requests referencing ERAID system, the requests’ information are recorded
in AL. Whenever the AL becomes full, the statistic information of access to each
VDB in all AITs are updated according the following formulas.

∑
=

+=
readt

i
ioldnew VDBhitreadreadoftimesreadoftimes

_

1

 (1)

∑
=

+=
writet

j
joldnew VDBhitwritewriteoftimeswriteoftimes

_

1
______ (2)

new

readt

i
ioldold

new readoftimes

readofVDBintorsreadoftimessizereadaverage
sizereadaverage

__

____sec____
__

_

1
∑
=

+×
=

 (3)

new

writet

j
joldold

new writeoftimes

writeofVDBintorsreadoftimessizewriteaverage
sizewriteaverage

__

____sec____
__

_

1
∑
=

+×
=

 (4)

newnew writeoftimesreadoftimesratiowr __/___/ = (5)

Where average_read_sizenew, average_write_sizenew, times_of_readnew,
times_of_writenew and average_read_sizeold, average_write_sizeold, times_of_readold,
times_of_writeold are the average size of read accesses, the average size of write
accesses, the number of read accesses, the number of write accesses after and before
AIT update respectively. As for read accesses, t_read in formula (1) is the number of
read accesses in AL. To a given VDB, when the ith read access in AL hits all or part

of its sectors (64kB/VDB, 512byte/sector), the iVDBhitread __ of the VDB is set to 1,

or else it is set to 0; so it is apparent that
∑
=

readt

i
iVDBhitread

_

1
__

is the number of read
accesses in AL that hit the given VDB; in formula (3),

∑
=

readt

i
ireadofVDBintors

_

1
____sec

is the accumulative total number of sectors in the given
VDB that be referenced by all read accesses in AL.

To process data migration, another data structure SubRAID block bitmap (SBB) is
used. Two fields are included in each entry of SBB: the first field records the
SubRAID identifier (SubRAID_id); the second field is a bitmap of validate status of
VDB_in_SubRAID, with each bit of the bitmap assigned for a VDB_in_SubRAID –
if data of the VDB_in_SubRAID is validate, then the corresponding bit is set to 1,
and if a bit in bitmap is set to 0, then it means the data in its corresponding
VDB_in_SubRAID is invalidate or that VDB_in_SubRAID is unoccupied.

The basic unit of data migration in ERAID is VDB (it is denoted as VDB and
VDB_in_SubRAID in virtual disk and in SubRAID respectively). The processing
steps of VDB data migration is described as follows:
(1) Check the read/write ratio (r/w_ratio) of each VDB in all AITs in sequence, until
all VDBs have been processed.

(2) If the r/w_ratio of a VDB is less than the threshold value (threshold r/w) that
system set beforehand, which means that the percentage of write accesses to the
certain VDB exceeds an appointed value. So ERAID improves the system I/O
performance through migrating the VDB data to enhance the VDB’s write
performance.
(3) If the RAID level of SubRAID in which the above VDB reside is level1, there’s
no need for VDB to migrate, the system continue to process the next VDB, and turn
to step (1). But if the RAID level is level5, the VDB data should migrate to a
SubRAID whose RAID level is level1, thus the key issue becomes how to choose the
target SubRAID for the migrating VDB.
(4) Sort all level1 SubRAIDs in SIT by their stripe size
(stripe_size=stripe_unit_size*stripe_depth) in descending order. Then scan these
level1 SubRAIDs sequentially, to find a SubRAID whose stripe size is most closet to
that of the SubRAID in which the migrating VDB reside in as the target SubRAID.
(5) Migrate the migrating VDB to an available VDB of the target SubRAID. System
continues to process the next VDB, turn to step (1).
(6) If the r/w_ratio of a VDB is less than threshold r/w, then the objective of migration
becomes improving the VDB’s read performance. If the RAID level of SubRAID in
which the above VDB reside is level5, there’s no need for VDB to migrate, and
system continues to process the next VDB, turn to step (1). If the RAID level is
level5, then
(7) Sort level5 SubRAIDs in SIT by stripe size similar to step (4), and choose the
SubRAID with stripe size closest to that of the migrating VDB-reside SubRAID as
the target SubRAID.
(8) Turn to step (5).

4 Simulation and results analysis

4.1 simulations

We use a trace driven simulation to investigate the effectiveness of the performance
of the ERAID system. The simulator is disksim3.0 [15], a widely used, powerful
storage subsystem simulator.

Table 1. Structural parameters of SubRAIDs in ERAID
SubRAID ID. RAID

level
No. Of disks Stripe unit size（KB）

SubRAID0 Level1 4 16
SubRAID1 Level1 6 32
SubRAID2 Level5 4 8
SubRAID3 Level5 5 16
SubRAID4 Level5 6 16
SubRAID5 Level5 6 32
SubRAID6 Level5 8 8
SubRAID7 Level5 9 16

Table 2. Characteristic parameters of each workload in trace

Workload ID. No. Of
requests

read /write
ratio

Average request
size（KB）

Request size
distribution

Workload 0 12800 0.43/0.57 8.90 (0.0，32.0)
Workload 1 12800 0.30/0.70 14.31 (0.0，96.0)
Workload 2 12400 0.66/0.34 8.31 (0.0，24.0)
Workload 3 12300 0.75/0.25 12.33 (0.0，64.0)
Workload 4 12000 0.70/0.30 21.29 (0.0，80.0)
Workload 5 12800 0.75/0.25 9.57 (0.0，80.0)
Workload 6 12400 0.66/0.34 12.49 (0.0，56.0)
Workload 7 12400 0.75/0.25 13.87 (0.0，128.0)

We simulated a mid-scale RAID storage system with 48 disks. The system

controller has a 256MB of NVRAM whose data transfer rate is 62 MB/s. The system
backplane bus connects 8 SCSI controllers each manage 6 HP Cheetah73 [16] disks
of which rotation speed is 10000 RPM, formatted capacity is 73.4GB, and average
data transfer rate is 31MB/s. Our objective is to compare the performance of mid-
scale RAID applying ERAID architecture and those applying traditional RAID
architectures. So we simulated 3 RAID systems, designated as ERAID, RAID5 and
RAID1 respectively. System 1(ERAID) is ERAID system consisting of 8 SubRAIDs
with their configuration parameters listed in table 1. System 2(RAID5) and system
3(RAID1) are traditional RAID systems, in which all disks are partitioned into n
independent, disjoint units called LUNs (logical units), specifically, every n disks
connected to the same controller constitute a LUN that could be viewed as a “large
disk”; System 2 is a traditional RAID5 system with data striping among 48/n LUNs,
and system 3 is a traditional RAID1 system taking 48/n LUNs as 48/n disks.

The trace used in our simulation was composed of 7 workloads generated by the
synthetic workload generator of the disksim3.0 simulator. Each synthetic workload
represents one kind of client application, and its statistic characteristics are described
in detail in table 2. For each workload, the number of requests distributes with its
request size with an exponential distribution (x, y), where x and y specify the base and
mean value of exponential distribution respectively [15]. The request arrival interval
is determined by exponential distribution (0.0, 10.0).

Under the above trace, we implemented 3 sets of simulations: the first simulation
set is used to compare the I/O performance of ERAID with that of RAID5 and
RAID1 system with n = 4, and with stripe unit size ranging from 8KB to 32KB. To
eliminate the inaccuracy of the comparison results induced by unequal storage
capacity of these storage systems, when compare the performance of ERAID and that
of RAID5, we utilize 80% of storage capacity of each SubRAID in ERAID, while
limit the utilization percentage of RAID5 system storage capacity to 70.5%; When
compare the performance of ERAID and RAID1, the storage capacity utilization
percentage of each SubRAID in ERAID and that of RAID1 system are limited to
51.9% and 80% respectively. Parameters of another two simulation sets are same with
the first one, except that n is set to be 8 and 12 respectively.

Fig. 2, 3, 4. Performance comparison of ERAID and traditional RAID5, RAID1 systems.
Figure 2/3/4 (a) Mean request response time of ERAID (storage capacity utilization ratio of
each SubRAID is 80%) and RAID5 (storage capacity utilization percentage is 70.5%, stripe
unit size is 8KB, 16KB, 24KB and 32KB; n=4/8/12). Figure 2/3/4 (b) Mean request response
time of ERAID system (storage capacity utilization percentage of each SubRAID is 51.9%)
and RAID5 (storage capacity utilization percentage is 80%; stripe unit size ranges form 8KB to
32KB; n=4/ 8/12)

30.64%
22.71%

24.85%

37.96%

6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50

ERAID RAID5 RAID5 RAID5 RAID5

8KB 16KB 24KB 32KB

a
v
e
r
a
g
e

r
e
s
p
o
n
s
e

t
i
m
e
(
m
s
) 4.31%

-0.59%

1.96%
3.53%

4.90

5.00

5.10

5.20

5.30

5.40

ERAID RAID1 RAID1 RAID1 RAID1

8KB 16KB 24KB 32KB

a
v
e
r
a
g
e

r
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

9.45% 8.99%
12.65%

15.55%

6.40

6.60

6.80

7.00

7.20

7.40

7.60

7.80

ERAID RAID5 RAID5 RAID5 RAID5

8KB 16KB 24KB 32KB

av
er
ag
e
re
sp
on
se
 t
im
e(
ms
)

-0.98%

0.98%
1.37%

2.94%

4.95

5.00
5.05

5.10
5.15

5.20
5.25

5.30

ERAID RAID1 RAID1 RAID1 RAID1

8KB 16KB 24KB 32KB

a
v
e
r
a
g
e

r
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

2 (a) 2 (b)

3 (a) 3 (b)

4 (a) 4 (b)

6.08%
2.55%

3.33%

12.5%

4.60

4.80

5.00

5.20

5.40

5.60

5.80

ERAID RAID1 RAID1 RAID1 RAID1

8KB 16KB 24KB 32KBa
v
e
r
a
g
e

r
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

19.36%

35.21%37.65%39.94%

6.40

6.90

7.40

7.90

8.40

8.90

9.40

ERAID RAID5 RAID5 RAID5 RAID5

8KB 16KB 24KB 32KB

a
v
e
r
a
g
e

r
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

4.2 Simulation results and analysis

The comparison results of I/O performance of ERAID system with that of RAID5
system and of RAID1 system are shown in figure 2, 3, and 4. For the first simulation
set, the absolute performance (in term of average response time) of ERAID system
and that of RAID5 system recorded in figure 2(a), while figure2 (b) record the
average response time of ERAID system and that of RAID1 system In addition, the
relative performance improvements of ERAID over traditional RAID5 and over
RAID1 system are also shown in figure2 (a) and figure2 (b). Figure3 and 4 records
the results of the second, the third and the fourth simulation set, respectively.

A very similar behavior in figure2, 3, and 4 can be observed, so we only discuss
figure 3 in detail. The explanation of figure 2 and 4 are also the same. We noticed
from figure3 (a) that compared with RAID5 system, although ERAID system reduced
the storage capacity by 11.9%, it improved average response time by 9.0% (compared
with RAID5 with 16KB stripe unit) -15.5% (compared with RAID5 with 16KB stripe
unit). Figure3 (b) showed no obvious performance difference between ERAID and
RAID1 system — the average response time of ERAID system is only 1.0% higher
than that of RAID1 with 8KB stripe unit, and only 1.0%-2.9% lower than that of
RAID1 with stripe unit size ranging from 16KB to 32KB. But ERAID system is still
worthwhile, for it gains the advantage over RAID1 by 35.1% in point of storage
capacity. So we could drawn from the simulation results that: (1) compared with
traditional RAID5 system, ERAID system we proposed in this paper has drastically
enhanced I/O performance, through its level1-SubRAIDs servicing the small write
requests to solve the “small write” problem of traditional RAID5. Meanwhile, the
existence of level5-SubRAIDs minimizes the redundancy overhead of the whole
storage system. (2) ERAID system has quite similar performance with traditional
RAID1 system, while the former system has an obvious advantage on available
storage capacity over the latter (RAID1 system’s available storage capacity is always
50% of all its physical disks’ space).

5 Conclusions

We propose a new-architecture storage system for mid/large scale RAID – ERAID.
ERAID consists of a collection of different-configuration SubRAIDs that
cooperatively implement a single, block-level storage system with a unique global
storage space. ERAID assigns one virtual disk to serve each client. Clients Data could
migrate dynamically to appropriate SubRAIDs according to the evolution of the
workloads. Consequently, to each client, ERAID could always provide a virtual disk
qualified to satisfy its I/O requirement. Our simulation results demonstrate that (1) at
little acceptable overhead of storage space, ERAID system can improve I/O
performance significantly compared with traditional RAID5 system. (2) With nearly
the same I/O performance, ERAID system has much more storage capacity than that
of the traditional RAID1 system.

References

1. Patterson, D. A., Chen, P., Gibson, G., Katz, R. H.: Introduction to Redundant Array of
Independent Disk. 34th IEEE Computer Society International Conference, Intellectual
Leverage, Digest of Papers (1989) 112 – 117
2. Elizabeth, V., Arif, M., Xu, J. Z., Qiu, X.Z.: An Integrated performance model of disk arrays.
Proceedings of the 11th IEEE/ACM International symposium on Modeling, Analysis and
Simulation of Computer Telecommunications System (MASCOTS’03) (2003)
3. Lee, E. K., Thekkath, C. A.: Petal: Distributed Virtual Disks. Proceedings of the 7th
International Conference on Architectural Support for Programming Languages and Operating
Systems, Cambridge, MA (1996) 84-92
4. Gabber, E., Korth, H. F.: Data Logging: A Method for Efficient Data Updates in Constantly
Active RAIDs. Proceedings 4th ICDE (1998)
5. Mogi, K., Kitsuregawa, M.: Virtual Striping: A Storage Management Scheme with Dynamic
Striping. IEICE Trans. Inf. & SYST., vol. E79-D (1996) 1086-1092
6. Wilkes, J., Golding, R., Staelin, C., Sullivan, T.: The HP AutoRAID hierarchical Storage
System. Proceedings of the 15th ACM Symposium on Operating Systems Principles, Copper
Mountain (1995) 96-108
7. Manoj, P., Mario, L.: CSAR: Cluster Storage with Adaptive Redundancy. Proceedings of the
2003 International Conference on Parallel Processing (2003)
8. Ligon, W. B., Ross, R. B.: An Overview of the Parallel Virtual File System. Proceedings of
the 1999 Extreme Linux Workshop (1999)
9. Braam, P., et. al.: The Lustre Storage Arvhitecture. Cluster File Systems Inc.
http://www.lustre.org/docs/lustre.pdf (2004)
10. Zhu, Y.: Design, Implementation, and Performance Evaluation of a Cost-Effective Fault-
Tolerant Parallel Virtual File System. Proceedings of Int. Workshop on Storage Network
Architecture and Parallel I/Os, IEEE Computer Society (2003) 53-64
11. Sobe, P.: Stable Checkpoing in Distributed Systems without Shared Disks. IPDPS 2003
Proceedings. Workshop on Fault-Tolerant Distributed Parallel and Distributed Systems. IEEE
Computer Society (2003)
12. Hartman, J., Ousterhout, J.: The Zebra Striped Network File System. ACM Transactions on
Computer System (1995)
13. Anderson, T., Dahlin, M., Neefe, J., Patterson, D., Roselli, D., Young, R.: Serverless
Network File System. ACM Transactions on Computer Systems (1996)
14. Hartman, J. H., Murdock, I., Spalink, T.: The Swarm Scalable Storage System. Proceedings
of the 19th International Conference on Distributed Computing Systems (1999)
15. Ganger, G. R., Patt, Y. N.: Using system-level models to evaluate I/O subsystems
designs. IEEE Transactions on Computers (1998) 667-678.
16. Seagate Corporation. Cheetah 73 Family: ST173404LW/LWV/LC/LCV Product
Manual, Vol. 1. http://www.seagate.com/support/disk/mannuals/scsi/83329478f.pdf

