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Abstract. Referring to the concept of “distributed virtual disks” in cluster file 
system, this paper proposes a new storage architecture for mid/large-scale 
RAID – ERAID, which consists of several different structure SubRAIDs. 
Clients data can migrate into optimal SubRAID dynamically according to their 
access characteristics; the number of SubRAID and the structure of each 
SubRAID can also be adjusted to the evolution of system load, thus the whole 
ERAID system can always provide a virtual disk for each client to satisfy its 
I/O need. Simulation results demonstrate significant I/O performance advantage 
in ERAID, compared with the traditional mid/large-scale RAID5 or RAID1 of 
the same storage space. 

1   Introduction 

RAID improves storage system I/O performance by taking advantage of parallel work 
of multiple disks, and provides storage system availability by using redundancy 
scheme [1]. Of various levels of RAID, RAID1 and RAID5 are most popular 
practically. RAID1 maintains 2 copies of data in different disks, is easier to configure 
and can provide best I/O performance, while under rather high redundancy overhead. 
Adopting rotating parity scheme, RAID5 is the least expensive RAID scheme with 
good large update performance (when writes request spans a integral number of stripe 
units), but it suffers from poor small write performance, and furthermore, its 
performance drops sharply when it enters degraded mode with a disk failure.  

In recent years, with the explosion of applications that use enormous amounts of 
data and have high QoS requirements to their storage systems, the market of 
enterprise storage system is growing gradually [2]. To satisfy the I/O bandwidth and 
availability requirements of these applications, enterprise storage system typically 
contain RAID. However, the architecture of current RAID is complex: prior RAID 
contains several or dozens of disks, while the number of disks in current RAID has 
been expanded tens (mid-scale RAID) or even hundreds (large-scale RAID). So the 
modern enterprise RAID should manage reasonably and take full advantage of its 
large amounts of disks, to provide its users a storage subsystem with high storage 
capacity, high performance, high availability. We noticed that modern enterprise 
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RAID has certain similarity to cluster file system in the aspect of managing a large 
number of disks. Apart from adopting data striping technique and redundancy scheme 
as in traditional RAID, cluster file system, which managing hundreds and thousands 
of disks distributed across network nodes, has its own characteristic: the technique of 
distributed virtual disks [3]. Owing to this technique, not only the users of cluster file 
system can build their own virtual disks according to the storage capacity and 
performance of the physical storage devices, but also the system achieves such great 
scalability that resources (servers and disks) could be added to the cluster file system 
automatically.  

Using the concept of distributed virtual disk in cluster file system for reference, in 
this paper we propose a new architecture for mid/large-scale RAID – ERAID
（Evolving RAID）. ERAID is implemented at the block device level of storage 
system. ERAID constructs all array disks into several SubRAIDs, which 
cooperatively constitute a unique global storage space of ERAID. A SubRAID is 
constructed by part of array disks, and its configuration is totally the same with 
traditional RAID. Each SubRAID in ERAID can adopt appropriate data placement 
scheme and performance optimization policy according to the number, capacity, 
performance of its disks, and the characteristics of the workload it serves. Thus, 
through SubRAID of different configuration serving different application, the whole 
ERAID system exhibits optimized I/O performance to all of its clients.  

The paper is structured as follows. Section 2 describes related work on RAID and 
distributed virtual disks technique in cluster file system. Section 3 describes the 
ERAID system in detail. Section 4 gives experimental results. Section 5 provides our 
conclusions and outlines future work. 

2 Related Works 

Many papers have been published on RAID performance, availability, data placement 
scheme and recovery policy, since RAID technology was proposed in 1989. [4][5][6] 

There’s also a number of works on distributed storage system containing a great 
amount of disks. CSAR [7] expands the architecture of HP-AutoRAID to distributed 
RAID. Cluster file systems, such as PVFS（Parallel Virtual File System）[8] and 
Lustre parallel file system [9] stripe data across multiple servers that can serve file 
access requests in parallel, allowing high-bandwidth I/O performance and scalability. 
To protect data against loss from failure of server or disk, RAID-like redundancy 
scheme are also applied to cluster file system: CEFT-PVFS [10] combines original 
PVFS striping layout with a doubling of the stripes according to RAID level 10; 
NetRAID [11] take the striping and redundancy scheme in RAID3 to ensure system 
I/O performance and fault tolerance; Zebra [12], xFS [13], Swarm [14] all store data 
using RAID5 redundancy, and use log-structured writes to solve the small-write 
problem in distributed storage system incurred by the data placement scheme of 
RAID5. Though consisting of large amount of disks, all these above storage systems 
are distributed storage systems. There hasn’t any paper special on improving 



mid/large-scale RAID system performance yet. So, we propose a new architecture for 
mid/large-scale RAID system – ERAID in this paper.  
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Fig. 1. Diagram of ERAID system architecture  

3 The design of ERAID 

3.1 the architecture of ERAID 

As show in figure 1, ERAID consists of a collection of SubRAIDs that cooperatively 
implement a single, block-level storage system with a unique global storage space. 
Each SubRAID could have different data and parity placement scheme that be applied 
in traditional RAID. Different from the traditional RAID in which all applications 
access one uniform configuration array, ERAID assigns one virtual disk to serve each 
one of its clients. So clients could view the ERAID system as a collection of virtual 
disks. A virtual disk provides a logical storage space, which could be the whole or 
partial physical storage space of a single SubRAID, or is composed of several 
SubRAIDs’ whole or partial physical storage space. Through changing the SubRAID 
physical storage space that each virtual disk’s logical storage space maps over, 
ERAID system allows data to migrate dynamically among SubRAIDs according to 
the evolution of the workloads without much difficulty, (That’s why we name the 
system ERAID.) as a sequence, to each client, ERAID could always provide a virtual 
disk to satisfy its I/O requirement. In addition, the configuration of each SubRAID 
alters dynamically to balance the workload among all SubRAIDs, and to take 
advantage of the performance of each disk in ERAID system fully. So, the concept of 
virtual disk, the characteristics of data migration among different-configuration 
SubRAIDs ensure that the whole ERAID system provides heterogeneous clients and 
client applications with optimal I/O performance. 

Apart form the above-mentioned advantages, the separation of the virtual disks to 
clients view and the physical storage space endues that (1) new disks could be added 



into SubRAID without any negative impact on the service to clients, and (2) 
SubRAID can also be added, deleted, or reconfigured by ERAID system arbitrarily; 
as a consequence, ERAID system achieves scalability that new disks and other 
resources such as controller and buses could be added to the system flexibly. In 
addition, benefiting from the various configurations of SubRAIDs, homogeneous 
disks could also be organized easily and their performance could be utilized fully. We 
haven’t described the scalability and homogeneity of disks of ERAID in detail, 
limited to space of the paper.  

3.2 Virtual to physical addresses translation 

The unique global storage space of ERAID could be viewed as the combination of 
virtual disks’ logical storage space, each of which is mapped dynamically to the 
whole (or partial) physical storage space of single (or several) SubRAID(s). The 
translation from virtual disk addresses used by clients into physical disk addresses is 
processed by ERAID driver, consequently, the logical addresses viewed from clients 
need no change even though the data are migrating among SubRAIDs. 

The rest of this subsection will describe how ERAID translate the virtual addresses 
used by clients into physical disk addresses in detail. The basic problem is to translate 
virtual addresses of the form <virtual_disk_id, offset_virtual_disk> to physical 
addresses of the form <SubRAID_id, disk_id, offset_disk>. This translation must be 
done accurately and efficiently, for there’re many events that alter virtual address 
translation, such as data migration among SubRAIDs, SubRAID reconfiguration, 
ERAID system expand, and disk failure in ERAID.  

To implement the translation, virtual disks and SubRAIDs are all partitioned into 
many basic storage units with same size, and we refer to the storage unit in virtual 
disk and storage unit in SubRAID as virtual disk block (VDB) and VDB_in_SubRAID 
respectively. (Without loss of generality, the size of VDB is set to 64KB in this 
paper). The first basic data structure is virtual disk mapper (VDM), used to translate 
an offset within a virtual disk to its corresponding SubRAID and the 
VDB_in_SubRAID of that SubRAID. For each virtual disk, ERAID maintains a 
VDM, and every VDB in that virtual disk has a corresponding entry to record the 
mapping information: the VDB identifier, SubRAID identifier and 
VDB_in_SubRAID identifier that the VDB maps to. Another data structure is 
SubRAID information table (SIT), with each entry corresponding to one SubRAID, 
tracking the information that is similar to the information needed in traditional RAID 
system to translate logical addresses into physical addresses, including SubRAID_id, 
SubRAID configuration information (data placement policy, redundancy scheme, 
stripe unit size, stripe depth), and the physical parameters of the component disks in 
that SubRAID. Translating a client-supplied logical address <virtual_disk_id ，

offset_virtual_disk> into a particular disk offset <SubRAID_id ， disk_id ，
offset_disk>occurs in four steps as follows. 
(1) The client-supplied logical address is <virtual_disk_id，offset_virtual_disk>, so 
the  given offset, offset_virtual_disk, residents in the VDB whose virtual disk 



identifier= virtual_disk_id, and the VDB identifier VDB_id 

= ⎣ ⎦64Ktual_disk/offset_vir .  
(2) Through referring VDM of the specified virtual disk (virtual disk identifier= 
virtual_disk_id), the VDB_id is translated to a SubRAID_id and a 
VDB_in_SubRAID. 
(3) The offset within the SubRAID (SubRAID identifier=SubRAID_id) for that 
client-supplied logical address, designated as offset_SubRAID, equals 
（VDB_in_SubRAID*64K + offset_virtual_disk%64K）.   
(4) Using the information provided by SIT, ERAID translates the offset_SubRAID 
into a disk identifier (disk_id) and an offset within that disk (offset_disk). This 
procedure is greatly similar to the procedure of translating a logical address to a 
physical disk address in traditional RAID. 

This multi-layer logical-to-physical address translation method minimizes the 
amount of information that the system must maintain – when user data in a virtual 
disk migrate from one SubRAID to another (the basic migration unit in ERAID is 
VDB/VDB_in_SubRAID), the system just need to update the information in one or 
several entries of the VDM corresponding to that virtual disk; Furthermore, through 
updating the SIT, ERAID system could also reflects the configuration alteration of its 
SubRAIDs without much effort.  

3.3 Data migration among SubRAIDs 

ERAID system keeps migrating data to the appropriate SubRAID according to the 
change of workload characteristics, such as request size, read/write ratio. Thus, from 
the view of a client, the virtual disk that ERAID system assigned to it can always 
ensure optimal I/O performance although the workload changes dynamically.  

System gathers its workload statistics with the help of an access log (AL) to which 
all requests issued to ERAID driver are recorded. Each entry of AL contains four 
fields with regard to the information of each request: timestamp, virtual disk identifier, 
start sector, request size (the number of sectors) and read/write flag. As the AL 
becomes full, ERAID flushes the access information table (AIT) of every virtual disk. 
AIT is another table system maintains for each virtual disk. With each entry of AIT 
corresponding to each VDB in a virtual disk, tracing the access information to that 
specified VDB: VDB identifier (VDB_id), the average size of read accesses 
(average_read_size), the average size of write accesses (average_write_size), the 
number of read accesses (times_of_read), the number of write accesses 
(times_of_write), and the read/write ratio of the accesses (r/w_ratio); in this 
subsection, we use “accesses” to represent “accesses to a specified VDB” for literal 
concision.  

The AL is initially empty, and the value of average_read_size, average_write_size, 
times_of_read, times_of_write, r/w_ratio in all AITs are uniformly set to 0. With the 
arrival of requests referencing ERAID system, the requests’ information are recorded 
in AL. Whenever the AL becomes full, the statistic information of access to each 
VDB in all AITs are updated according the following formulas. 
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Where average_read_sizenew, average_write_sizenew, times_of_readnew, 
times_of_writenew and average_read_sizeold, average_write_sizeold, times_of_readold, 
times_of_writeold are the average size of read accesses, the average size of write 
accesses, the number of read accesses, the number of write accesses after and before 
AIT update respectively. As for read accesses, t_read in formula (1) is the number of 
read accesses in AL. To a given VDB, when the ith read access in AL hits all or part 

of its sectors (64kB/VDB, 512byte/sector), the iVDBhitread __ of the VDB is set to 1, 

or else it is set to 0; so it is apparent that 
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is the accumulative total number of sectors in the given 
VDB that be referenced by all read accesses in AL.  

To process data migration, another data structure SubRAID block bitmap (SBB) is 
used. Two fields are included in each entry of SBB: the first field records the 
SubRAID identifier (SubRAID_id); the second field is a bitmap of validate status of 
VDB_in_SubRAID, with each bit of the bitmap assigned for a VDB_in_SubRAID – 
if data of the VDB_in_SubRAID is validate, then the corresponding bit is set to 1, 
and if a bit in bitmap is set to 0, then it means the data in its corresponding 
VDB_in_SubRAID is invalidate or that VDB_in_SubRAID is unoccupied.  

The basic unit of data migration in ERAID is VDB (it is denoted as VDB and 
VDB_in_SubRAID in virtual disk and in SubRAID respectively). The processing 
steps of VDB data migration is described as follows: 
(1) Check the read/write ratio (r/w_ratio) of each VDB in all AITs in sequence, until 
all VDBs have been processed. 



(2) If the r/w_ratio of a VDB is less than the threshold value (threshold r/w) that 
system set beforehand, which means that the percentage of write accesses to the 
certain VDB exceeds an appointed value. So ERAID improves the system I/O 
performance through migrating the VDB data to enhance the VDB’s write 
performance.  
(3) If the RAID level of SubRAID in which the above VDB reside is level1, there’s 
no need for VDB to migrate, the system continue to process the next VDB, and turn 
to step (1). But if the RAID level is level5, the VDB data should migrate to a 
SubRAID whose RAID level is level1, thus the key issue becomes how to choose the 
target SubRAID for the migrating VDB.  
(4) Sort all level1 SubRAIDs in SIT by their stripe size 
(stripe_size=stripe_unit_size*stripe_depth) in descending order. Then scan these 
level1 SubRAIDs sequentially, to find a SubRAID whose stripe size is most closet to 
that of the SubRAID in which the migrating VDB reside in as the target SubRAID.  
(5) Migrate the migrating VDB to an available VDB of the target SubRAID. System 
continues to process the next VDB, turn to step (1). 
(6) If the r/w_ratio of a VDB is less than threshold r/w, then the objective of migration 
becomes improving the VDB’s read performance. If the RAID level of SubRAID in 
which the above VDB reside is level5, there’s no need for VDB to migrate, and 
system continues to process the next VDB, turn to step (1). If the RAID level is 
level5, then 
(7) Sort level5 SubRAIDs in SIT by stripe size similar to step (4), and choose the 
SubRAID with stripe size closest to that of the migrating VDB-reside SubRAID as 
the target SubRAID. 
(8) Turn to step (5).  

4 Simulation and results analysis 

4.1 simulations 

We use a trace driven simulation to investigate the effectiveness of the performance 
of the ERAID system. The simulator is disksim3.0 [15], a widely used, powerful 
storage subsystem simulator. 

Table 1. Structural parameters of SubRAIDs in ERAID 
SubRAID ID. RAID 

level 
No. Of disks Stripe unit size（KB） 

SubRAID0 Level1 4 16 
SubRAID1 Level1 6 32 
SubRAID2 Level5 4 8 
SubRAID3 Level5 5 16 
SubRAID4 Level5 6 16 
SubRAID5 Level5 6 32 
SubRAID6 Level5 8 8 
SubRAID7 Level5 9 16 



Table 2. Characteristic parameters of each workload in trace 

Workload ID. No. Of 
requests 

read /write 
ratio 

Average request 
size（KB） 

Request size 
distribution 

Workload 0 12800 0.43/0.57 8.90 (0.0，32.0) 
Workload 1 12800 0.30/0.70 14.31 (0.0，96.0) 
Workload 2 12400 0.66/0.34 8.31 (0.0，24.0) 
Workload 3 12300 0.75/0.25 12.33 (0.0，64.0) 
Workload 4 12000 0.70/0.30 21.29 (0.0，80.0) 
Workload 5 12800 0.75/0.25 9.57 (0.0，80.0) 
Workload 6 12400 0.66/0.34 12.49 (0.0，56.0) 
Workload 7 12400 0.75/0.25 13.87 (0.0，128.0) 

 
We simulated a mid-scale RAID storage system with 48 disks. The system 

controller has a 256MB of NVRAM whose data transfer rate is 62 MB/s. The system 
backplane bus connects 8 SCSI controllers each manage 6 HP Cheetah73 [16] disks 
of which rotation speed is 10000 RPM, formatted capacity is 73.4GB, and average 
data transfer rate is 31MB/s. Our objective is to compare the performance of mid-
scale RAID applying ERAID architecture and those applying traditional RAID 
architectures. So we simulated 3 RAID systems, designated as ERAID, RAID5 and 
RAID1 respectively. System 1(ERAID) is ERAID system consisting of 8 SubRAIDs 
with their configuration parameters listed in table 1. System 2(RAID5) and system 
3(RAID1) are traditional RAID systems, in which all disks are partitioned into n 
independent, disjoint units called LUNs (logical units), specifically, every n disks 
connected to the same controller constitute a LUN that could be viewed as a “large 
disk”; System 2 is a traditional RAID5 system with data striping among 48/n LUNs, 
and system 3 is a traditional RAID1 system taking 48/n LUNs as 48/n disks. 

The trace used in our simulation was composed of 7 workloads generated by the 
synthetic workload generator of the disksim3.0 simulator. Each synthetic workload 
represents one kind of client application, and its statistic characteristics are described 
in detail in table 2. For each workload, the number of requests distributes with its 
request size with an exponential distribution (x, y), where x and y specify the base and 
mean value of exponential distribution respectively [15]. The request arrival interval 
is determined by exponential distribution (0.0, 10.0). 

Under the above trace, we implemented 3 sets of simulations: the first simulation 
set is used to compare the I/O performance of ERAID with that of RAID5 and 
RAID1 system with n = 4, and with stripe unit size ranging from 8KB to 32KB. To 
eliminate the inaccuracy of the comparison results induced by unequal storage 
capacity of these storage systems, when compare the performance of ERAID and that 
of RAID5, we utilize 80% of storage capacity of each SubRAID in ERAID, while 
limit the utilization percentage of RAID5 system storage capacity to 70.5%; When 
compare the performance of ERAID and RAID1, the storage capacity utilization 
percentage of each SubRAID in ERAID and that of RAID1 system are limited to 
51.9% and 80% respectively. Parameters of another two simulation sets are same with 
the first one, except that n is set to be 8 and 12 respectively.  

 



 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 2, 3, 4. Performance comparison of ERAID and traditional RAID5, RAID1 systems. 
Figure 2/3/4 (a) Mean request response time of ERAID (storage capacity utilization ratio of 
each SubRAID is 80%) and RAID5 (storage capacity utilization percentage is 70.5%, stripe 
unit size is 8KB, 16KB, 24KB and 32KB; n=4/8/12). Figure 2/3/4 (b) Mean request response 
time of ERAID system (storage capacity utilization percentage of each SubRAID is 51.9%) 
and RAID5 (storage capacity utilization percentage is 80%; stripe unit size ranges form 8KB to 
32KB; n=4/ 8/12) 
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4.2 Simulation results and analysis 

The comparison results of I/O performance of ERAID system with that of RAID5 
system and of RAID1 system are shown in figure 2, 3, and 4. For the first simulation 
set, the absolute performance (in term of average response time) of ERAID system 
and that of RAID5 system recorded in figure 2(a), while figure2 (b) record the 
average response time of ERAID system and that of RAID1 system In addition, the 
relative performance improvements of ERAID over traditional RAID5 and over 
RAID1 system are also shown in figure2 (a) and figure2 (b).  Figure3 and 4 records 
the results of the second, the third and the fourth simulation set, respectively.  

A very similar behavior in figure2, 3, and 4 can be observed, so we only discuss 
figure 3 in detail. The explanation of figure 2 and 4 are also the same. We noticed 
from figure3 (a) that compared with RAID5 system, although ERAID system reduced 
the storage capacity by 11.9%, it improved average response time by 9.0% (compared 
with RAID5 with 16KB stripe unit) -15.5% (compared with RAID5 with 16KB stripe 
unit). Figure3 (b) showed no obvious performance difference between ERAID and 
RAID1 system — the average response time of ERAID system is only 1.0% higher 
than that of RAID1 with 8KB stripe unit, and only 1.0%-2.9% lower than that of 
RAID1 with stripe unit size ranging from 16KB to 32KB. But ERAID system is still 
worthwhile, for it gains the advantage over RAID1 by 35.1% in point of storage 
capacity. So we could drawn from the simulation results that: (1) compared with 
traditional RAID5 system, ERAID system we proposed in this paper has drastically 
enhanced I/O performance, through its level1-SubRAIDs servicing the small write 
requests to solve the “small write” problem of traditional RAID5. Meanwhile, the 
existence of level5-SubRAIDs minimizes the redundancy overhead of the whole 
storage system. (2) ERAID system has quite similar performance with traditional 
RAID1 system, while the former system has an obvious advantage on available 
storage capacity over the latter (RAID1 system’s available storage capacity is always 
50% of all its physical disks’ space). 

5 Conclusions 

We propose a new-architecture storage system for mid/large scale RAID – ERAID. 
ERAID consists of a collection of different-configuration SubRAIDs that 
cooperatively implement a single, block-level storage system with a unique global 
storage space. ERAID assigns one virtual disk to serve each client. Clients Data could 
migrate dynamically to appropriate SubRAIDs according to the evolution of the 
workloads. Consequently, to each client, ERAID could always provide a virtual disk 
qualified to satisfy its I/O requirement. Our simulation results demonstrate that (1) at 
little acceptable overhead of storage space, ERAID system can improve I/O 
performance significantly compared with traditional RAID5 system. (2) With nearly 
the same I/O performance, ERAID system has much more storage capacity than that 
of the traditional RAID1 system.   
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