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Abstract. Analyzing the scalability behavior and the overheads of Open-
MP applications is an important step in the development process of
scientific software. Unfortunately, few tools are available that allow an
exact quantification of OpenMP related overheads and scalability char-
acteristics. We present a methodology in which we define four overhead
categories that we can quantify exactly and describe a tool that imple-
ments this methodology. We evaluate our tool on the OpenMP version
of the NAS parallel benchmarks.

1 Introduction

OpenMP has emerged as the standard for shared-memory parallel programming.
While OpenMP allows for a relatively simple and straightforward approach to
parallelizing an application, it is usually less simple to ensure efficient execution
on large processor counts.

With the widespread adoption of multi-core CPU designs, however, scala-
bility is likely to become increasingly important in the future. The availability
of 2-core CPUs effectively doubles the number of processor cores found in com-
modity SMP systems based for example on the AMD Opteron or Intel Xeon
processors. This trend is likely to continue, as the road-maps of all major CPU
manufacturers already include mulit-core CPU designs. In essence, performance
improvement is increasingly going to be based on parallelism instead of improve-
ments in single-core performance in the future [13].

Analyzing and understanding the scalability behavior of applications is there-
fore an important step in the development process of scientific software. Ineffi-
ciencies that are not significant at low processor counts may play a larger role
when more processors are used and may limit the application’s scalability. While
it is straightforward to study how execution times scale with increasing proces-
sor numbers, it is more difficult to identify the possible reasons for imperfect
scaling.
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Here we present a methodology and a tool to evaluate the runtime character-
istics of OpenMP applications and to analyze the overheads that limit scalability
at the level of individual parallel regions and for the whole program. We apply
our methodology to determine the scalability characteristics of several bench-
mark applications.

2 Methodology

To analyze the scalability of OpenMP applications we have extended our Open-
MP profiler ompP [6] with overhead classification capability. ompP is a profiler for
OpenMP programs based on the POMP interface [9] that relies on source code
instrumentation by Opari [10]. ompP determines execution counts and times for
all OpenMP constructs (parallel regions, work-sharing regions, critical sections,
locks, . . . ) in the target application. Depending on the type of the region different
timing and count categories are reported.

ompP consists of a monitoring library that is linked to an OpenMP applica-
tion. Upon termination of the target application, ompP writes a profiling report
to a file. An example output of ompP for a critical section region is shown in
Fig. 1. A table that lists the timing categories reported by ompP for the different
region types is shown in Fig. 2, a particular timing is reported if a “•” is present,
the counts reported by ompP are not shown in Fig. 2.

R00002 CRITICAL cpp_qsomp1.cpp (156-177)

TID execT execC enterT bodyT exitT

0 1.61 251780 0.87 0.43 0.31

1 2.79 404056 1.54 0.71 0.54

2 2.57 388107 1.38 0.68 0.51

3 2.56 362630 1.39 0.68 0.49

* 9.53 1406573 5.17 2.52 1.84

Fig. 1: Example ompP output for an OpenMP CRITICAL region. R00002 is the region
identifier, cpp qsomp1.cpp is the source code file and 156-177 denotes the extent of
the construct in the file. Execution times and counts are reported for each thread
individually, and summed over all threads in the last line.

The timing categories reported by ompP shown in Fig. 2 have the following
meaning:

– seqT is the sequential execution time for a construct, i.e., the time between
forking and joining threads for PARALLEL regions and for combined work-
sharing parallel regions as seen by the master thread. For a MASTER region it
similarly represents the execution time of the master thread only (the other
threads do not execute the MASTER construct).



seqT execT bodyT exitBarT enterT exitT

MASTER •
ATOMIC • (S)
BARRIER • (S)
USER REGION •
LOOP • • (I)
CRITICAL • • • (S) • (M)
LOCK • • • (S) • (M)
SECTIONS • • • (I/L)
SINGLE • • • (L)
PARALLEL • • • (I) • (M) • (M)
PARALLEL LOOP • • • (I) • (M) • (M)
PARALLEL SECTIONS • • • • (I) • (M) • (M)

Fig. 2: The timing categories reported by ompP for the different OpenMP constructs
and their categorization as overheads by ompP’s overhead analysis. (S) corresponds to
synchronization overhead, (I) represents overhead due to imbalance, (L) denotes limited
parallelism overhead, and (M) signals thread management overhead.

– execT gives the total execution time for constructs that are executed by
all threads. The time for thread n is available as execT [n]. execT always
contains bodyT, exitBarT, enterT and exitT.

– bodyT is the time spent in the “body” of the construct. This time is reported
as singleBodyT for SINGLE regions and as sectionT for SECTIONS regions.

– exitBarT is the time spent in “implicit exit barriers”. I.e., in worksharing
and parallel regions OpenMP assumes an implicit barrier at the end of the
construct, unless a nowait clause is present. Opari adds an explicit barrier
to measure the time in the implicit barrier.

– enterT and exitT are the times for entering and exiting critical sections
and locks. For parallel regions enterT is reported as startupT and corre-
sponds to the time required to spawn threads. Similarly, exitT is reported
as shutdownT and represents thread teardown overhead.

2.1 Overhead Analysis

From the per-region timing data reported by ompP we are able to analyze the
overhead for each parallel region separately, and for the program as a whole. We
have defined four overhead categories that can be exactly quantified with the
profiling data provided by ompP:

Synchronization: Overheads that arise because threads need to coordinate
their activity. An example is the waiting time to enter a critical section or
to acquire a lock.

Imbalance: Overhead due to different amounts of work performed by threads
and subsequent idle waiting time, for example in work-sharing regions.



Limited Parallelism: This category represents overhead that results from un-
parallelized or only partly parallelized regions of code. An example is the
idle waiting time threads experience while one thread executes a single
construct.

Thread Management: Time spent by the runtime system for managing the
application’s threads. That is, time for creation and destruction of threads
in parallel regions and overhead incurred in critical sections and locks for
signaling the lock or critical section as available (see below for a more detailed
discussion).

The table in Fig. 2 details how timings are attributed to synchronization (S),
imbalance (I), limited parallelism (L), thread management overhead (M), and
work (i.e., no overhead). This attribution is motivated as follows:

– exitBarT in work-sharing or parallel regions is considered imbalance over-
head, except for single regions, where the reason for the time spent in the
exit barrier is assumed to be limited parallelism. The time in the exit barrier
of a sections construct is either imbalance or limited parallelism, depend-
ing on the number of section constructs inside the sections construct,
compared to the number of threads. If there are fewer sections than threads
available, the waiting time is considered limited parallelism overhead and
load imbalance otherwise.

– The time spent in barrier and atomic constructs is treated as synchroniza-
tion overhead.

– The time spent waiting to enter a critical section or to acquire a lock is
considered synchronization overhead. Opari also adds instrumentation to
measure the time spent for leaving a critical section and releasing a lock.
These times reflect the overhead of the OpenMP runtime system to signal
the lock or critical section being available to waiting threads. Hence, these
overheads do not relate to the synchronization requirement of the threads
but rather represent an overhead related to the implementation of the run-
time system. Consequently, the resulting waiting times are treated as thread
management overhead.

– The same considerations as above hold true for startupT and shutdownT
reported for parallel regions. This is the overhead for thread creation and
destruction, which is usually insignificant, except in cases where a team of
threads is created and destroyed repeatedly (if, for example, a small para-
llel region is placed inside a loop). Again, this overhead is captured by in
the thread management category.

The overheads for each category are accumulated for each parallel region
in the program separately. That is, if a parallel region P contains a critical
section C, C’s enter time will appear as synchronization overhead in P ’s overhead
statistics. Note that, while ompP reports inclusive timing data in its profiling
reports, the timing categories related to overheads are never nested and never
overlap. Hence, a summation of each sub-region’s individual overhead time gives
the correct total overhead for each parallel region.



An example of ompP’s overhead analysis report is shown in Fig. 3 (the columns
corresponding to the thread management overhead category are omitted due to
space limitations). The first part of the report, denoted by a©, gives general
information about the program run. It lists the total number of parallel regions
(OpenMP parallel constructs and combined parallel work-sharing constructs),
the total wallclock runtime and the parallel coverage (or parallel fraction). The
parallel coverage is defined as the fraction of wallclock execution time spent inside
parallel regions. This parameter is useful for estimating the optimal execution
time according to Amdahl’s law on p processors as

Tp =
T1α1

p
+ T1(1− α1),

where Ti is the execution time on i processors and α1 is the parallel coverage of
an execution with one thread.

Section b© lists all parallel regions of the program with their region identifiers
and location in the source code files, sorted by their wallclock execution time.

Part c© shows the parallel regions in the same order as in part b© and details
the identified overheads for each category as well as the total overhead (Ovhds
column). The total runtime is given here accumulated over all threads (i.e., Total
= wallclock runtime × number of threads) and the percentages for the overhead
times shown in parenthesis refer to this runtime.

The final part in the overhead analysis report ( d©) lists the same overhead
times but the percentages are computed according to the total runtime of the
program. The regions are also sorted with respect to their overhead in this
section. Hence, the first lines in section d© show the regions that cause the most
significant overall overhead as well as the type of the overhead. In the example
shown in Fig. 3, the most severe inefficiency is imbalance overhead in region
R00035 (a parallel loop in y solve.f, lines 27-292) with a severity of 3.44%.

2.2 Scalability Analysis

The overhead analysis report of ompP gives valuable insight into the behavior of
the application. From analyzing overhead reports for increasing processor counts,
the scalability behavior of individual parallel regions and the whole program can
be inferred. We have implemented the scalability analysis as a set of scripts that
take several ompP profiling reports as input and generate data to visualize the
program’s scalability as presented in Sect. 3.

The graphs show the change of the distribution of overall time for increasing
processor counts. That is, the total execution time as well as each overhead
category is summed over all threads and the resulting accumulated times are
plotted for increasing processor numbers.

3 Evaluation

To evaluate the usability of the scalability analysis as outlined in this paper, we
test the approach on the OpenMP version of the NAS parallel benchmarks [8]



------------------------------------------------------------------

----- ompP Overhead Analysis Report ----------------------

------------------------------------------------------------------

a© Total runtime (wallclock) : 736.82 sec [4 threads]

Number of parallel regions : 14

Parallel coverage : 736.70 sec (99.98%)

b© Parallel regions sorted by wallclock time:

Type Location Wallclock (%)

R00018 parall rhs.f (16-430) 312.48 (42.41)

R00037 ploop z_solve.f (31-326) 140.00 (19.00)

R00035 ploop y_solve.f (27-292) 88.68 (12.04)

R00033 ploop x_solve.f (27-296) 77.03 (10.45)

...

* * * 736.70 (99.98)

c© Overheads wrt. each individual parallel region:

Total Ovhds (%) = Synch (%) + Imbal (%) + Limpar (%)

R00018 1249.91 0.44 ( 0.04) 0.00 ( 0.00) 0.35 ( 0.03) 0.00 ( 0.00)

R00037 560.00 100.81 (18.00) 0.00 ( 0.00) 100.72 (17.99) 0.00 ( 0.00)

R00035 354.73 101.33 (28.56) 0.00 ( 0.00) 101.24 (28.54) 0.00 ( 0.00)

R00033 308.12 94.62 (30.71) 0.00 ( 0.00) 94.53 (30.68) 0.00 ( 0.00)

...

d© Overheads wrt. whole program:

Total Ovhds (%) = Synch (%) + Imbal (%) + Limpar (%)

R00035 354.73 101.33 ( 3.44) 0.00 ( 0.00) 101.24 ( 3.44) 0.00 ( 0.00)

R00037 560.00 100.81 ( 3.42) 0.00 ( 0.00) 100.72 ( 3.42) 0.00 ( 0.00)

R00033 308.12 94.62 ( 3.21) 0.00 ( 0.00) 94.53 ( 3.21) 0.00 ( 0.00)

...

* 2946.79 308.52 (10.47) 0.00 ( 0.00) 307.78 (10.44) 0.00 ( 0.00)

Fig. 3: Example overhead analysis report generated by ompP, the columns related to
the thread management category (Mgmt) are omitted due to space limitations.



(version 3.2, class “C”). Most programs in the NAS benchmark suite are derived
from CFD applications, it consists of five kernels (EP, MG, CG, FT, IS) and three
simulated CFD applications (LU, BT, SP). Fig. 4 shows the characteristics of
the benchmark applications with respect to the OpenMP constructs used for
parallelization.

BT CG EP FT IS LU MG SP

MASTER 4 13 2 4
ATOMIC 2 1 2 1
BARRIER 1 3
LOOP 25 13 1 1 30 5 25
CRITICAL 1
LOCK

SECTIONS

SINGLE 6
PARALLEL 6 9 1 2 8 2 6
PARALLEL LOOP 4 5 1 8 2 1 8 8
PARALLEL SECTIONS

Fig. 4: The OpenMP constructs found in the NAS parallel benchmarks version 3.2.

Fig. 6 presents the result of the scalability analysis performed on a 32 CPU
SGI Altix machine, based on Itanium-2 processors with 1.6 GHz and 6 MB L3
cache, used in batch mode. The number of threads was increased from 2 to 32.
The graphs in Fig. 6 show the accumulated runtime over all threads. Hence, a
horizontal line corresponds to a perfectly scaling code with ideal speedup. For
convenience, a more familiar speedup graph (with respect to the 2-processor run)
computed from the same data is shown in Fig. 5.

In Fig. 6, the total runtime is divided into work and the four overhead cate-
gories, and the following conclusions can be derived:

– Overall, the most significant overhead visible in the NAS benchmarks is
imbalance, only two applications show significant synchronization overhead,
namely IS and LU.

– Some applications show a surprisingly large amount of overhead, as much
as 20 percent of the total accumulated runtime is wasted due to imbalance
overhead in SP.

– Limited parallelism does not play a significant role in the NAS benchmarks.
While not visibly discernable in the graphs in Fig. 6 at all, the overhead is
actually present for some parallel regions albeit with very low severity.

– Thread management overhead is present in the applications, mainly in CG,
IS and MG, although it is generally of little importance.

– EP scales perfectly, it has almost no noticeable overhead.
– The “work” category increases for most applications and does not stay con-

stant, even though the actual amount of work performed is independent of
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Fig. 5: Speedup achieved by the NAS benchmark programs relative to the 2-processor
execution.

the number of threads used. This can be explained with overhead categories
that are currently not accounted for by ompP, for example increasing mem-
ory access times at larger processor configurations. Additional factors that
influence the work category are the increasing overall cache size (which can
lead to super-linear speedups) and an increased rate of cache conflicts at
larger systems. This issue is discussed further in Sect. 5.

– For some applications, the summed runtime increases linearly, for others it
increases faster than linearly (e.g., IS scales very poorly).

– For LU, the performance increases super-linearly at first, then at six proces-
sors the performance starts to deteriorate. The reason for the super-linear
speedup is most likely the increased overall cache size.

ompP also allows for a scalability analysis of individual parallel regions. An
example for a detailed analysis of the BT benchmark is shown in Fig. 7. The
left part shows the scalability of the work category (without overheads), while
the right part shows the total overhead (all categories summed) for the four
most time consuming parallel regions. It is apparent that for powers of two, the
overhead (which is mainly imbalance) is significantly less than it is for other
configurations. A more detailed analysis of ompP’s profiling report and the appli-
cation’s source code reveals the cause: most overhead is incurred in loops with
an iteration count of 160, which is evenly divisible by 2, 4, 8, 16, and 32.



(a) BT. (b) CG.

(c) EP. (d) FT.

(e) IS. (f) LU.

Fig. 6: Scaling of total runtime and the separation into work and overhead categories
for the NAS OpenMP parallel benchmarks (BT, CG, EP, FT, IS, and LU).



(g) MG. (h) SP.

Fig. 6: Scaling of total runtime and the separation into work and overhead categories
for the NAS OpenMP parallel benchmarks (MG and SP).

(a) Work performed in the four most im-
portant parallel regions of BT.

(b) Total overhead incurred in the four
most important parallel regions of BT.

Fig. 7: Detailed scalability analysis at the level of individual parallel regions of the BT
application. The four most important parallel regions are analyzed with respect to the
work performed and the overheads incurred for each region individually.



4 Related Work

Mark Bull describes a hierarchical classification scheme for temporal and spatial
overheads in parallel programs in [3]. The scheme is general (not dependant on
a particular programming model) and strives to classify overheads in categories
that are complete, meaningful, and orthogonal. Overhead is defined as the differ-
ence between the observed performance on p processors and the “best possible”
performance on p processors. Since the best possible performance is unknown
(it can at best be estimated by simulation), T ideal

p = T1
p is often used as an

approximation for the ideal performance on p processors. Thus

Tp = T ideal
p +

∑

i

Oi
p (1)

where Oi
p represent the overhead in category i. This is similar to our scheme with

the difference that ompP does not report overheads with respect to the wallclock
execution time but aggregated over all threads.

Bull’s hierarchical classification scheme has four categories at the top level:

– Information Movement
– Critical Path
– Control of Parallelism
– Additional Computation

While this scheme allows for a well defined conceptual breakdown of where an
application spends its time, ompP’s classification scheme is based on what can be
actually automatically be measured. For example, it is not possible to account
for additional computation automatically.

Bane and Riley developed a tool called Ovaltine [1, 2] that performs over-
head analysis for OpenMP code. The overhead scheme of Ovaltine is based on
the classification scheme by Bull. Ovaltine performs code instrumentation based
on the Polaris compiler. Not all overheads in Ovaltine’s scheme can be computed
automatically. For example the cost of acquiring a lock has to be determined em-
pirically. Practically, only the “load imbalance” and “unparallelized” overheads
are computed automatically in Ovaltine as described in [1].

Scal-Tool [11] is a tool for quantifying the scalability bottlenecks of shared
memory codes. The covered bottlenecks include insufficient cache, load imbal-
ance and synchronization. Scal-Tool is based on an empirical model using cycles-
per-instruction (CPI) breakdown equations. From a number of measurement
(fixed data-set, varying number of processors and varying the size of the dataset
on a single processor, the parameters in the CPI equations can be estimated.
The result of the analysis is a set of graphs that augment the observed scala-
bility graph of the application with estimated scalability, if one or more of the
scalability bottlenecks (cache, load imbalance, synchronization) are removed.

Scalea [14] is a tool for performance analysis of Fortran OpenMP, MPI and
HPF codes. Scalea computes metrics based on a classification scheme derived
from Bull’s work. Scalea is able to perform overhead-to-region analysis and



region-to-overhead analysis. I.e., show a particular overhead category for all re-
gions or show all overhead categories for a specific region.

Fredrickson et al. [5] have evaluated the performance characteristics of the
class B of the NAS OpenMP benchmarks version 3.0 on a 72 processor Sun Fire
15K. The speedup of the NAS benchmarks is determined for up to 70 threads. In
their evaluation, CG shows super-linear speedup, LU shows perfect scalability,
FT scales very poorly and BT SP and MG show good performance (EP and IS
are not evaluated). In contrast, in our study CG shows relatively poor speedup
while LU shows super-linear speedup. Our results for FT, BT, SP, and MG are
more or less in-line with theirs.

Fredrickson et al. also evaluate “OpenMP overhead” by counting the number
of parallel regions and multiplying this number with an empirically determined
overhead for creating a parallel region derived from an execution of the EPCC
micro-benchmarks [4]. The OpenMP overhead is low for most programs, ranging
from less than one percent to five percent of the total execution time, for CG
the estimated overhead is 12%. Compared to our approach this methodology of
estimating the OpenMP overhead is less flexible and accurate, as for example it
does not account for load-imbalance situations and requires an empirical study
to determine the “cost of a parallel region”. Note that in ompP all OpenMP-
related overheads are accounted for, i.e., the work category does not contain any
OpenMP related overhead.

Finally, vendor-specific tools such as Intel Thread Profiler [7] and Sun Stu-
dio [12] often implement overhead classification schemes similar to ompP. How-
ever, these tools are limited to a particular platform, while ompP is compiler and
platform-independent and can thus be used for cross-platform overhead compar-
isons, for example.

5 Summary and Future Work

We presented a methodology for overheads- and scalability analysis of OpenMP
applications that we integrated in our OpenMP profiler ompP. We have defined
four overhead categories (synchronization, load imbalance, limited parallelism
and thread management) that are well defined and can explicitly be measured.
The overheads are reported per parallel region and for the whole program. ompP
allows for an exact quantification of all OpenMP related overheads.

From the overhead reports for increasing processor counts we can see how
programs scale and how the overheads increase in importance. We have tested
the approach on the NAS parallel benchmarks and were ably to identify some
key scalability characteristics.

Future work remains to be done to cover further overhead categories. What
is labeled Work in Fig. 5 actually contains overheads that are currently un-
accounted for. Most notably it would be important to account for overheads
related to memory access. Issues like accessing a remote processors memory on
a ccNUMA architecture like the SGI Altix and coherence cache misses impact
performance negatively while increased overall caches size helps performance and



can actually lead to negative overhead. For the quantification of these factors we
plan to include support for hardware performance counters in ompP.
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