
Parallel Fuzzy c-Means Cluster Analysis

Marta V. Modenesi; Myrian C. A. Costa, Alexandre G. Evsukoff and Nelson F. F.

Ebecken

COPPE/Federal University of Rio de Janeiro,

P.O.Box 68506, 21945-970 Rio de Janeiro RJ, Brazil

Tel: (+55) 21 25627388, Fax: (+55) 21 25627392
modenesi@lamce.ufrj.br, myrian@nacad.ufrj.br,

evsukoff@coc.ufrj.br, nelson@ntt.ufrj.br

Abstract. This work presents an implementation of a parallel Fuzzy c-means

cluster analysis tool, which implements both aspects of cluster investigation:

the calculation of clusters’ centers with the degrees of membership of records

to clusters, and the determination of the optimal number of clusters for a given

dataset using the PBM index.

Topics of Interest: Unsupervised Classification, Fuzzy c-Means, Cluster and

Grid Computing.

1. Introduction

The huge amount of data generated by data intensive industries such as

Telecommunications, Insurance, Oil & Gas exploration, among others, has pushed

Data Mining algorithms through parallel implementations [1, 2]. One requirement of

data mining is efficiency and scalability of mining algorithms. Therefore, parallelism

can be used to process long running tasks in a timely manner.

There are several different parallel data mining implementations being used or

experimented, both in distributed and shared memory hardware [3], as so as in grid

environments [4]. All the main data mining algorithms have been investigated, such

as decision tree induction [5], fuzzy rule-based classifiers [6, 7], neural networks [8,

9], association rules’ mining [10, 11] and clustering [12, 13].

Data clustering is being used in several data intensive applications, including

image classification, document retrieval and customer segmentation (among others).

Clustering algorithms generally follows hierarchical or partitional approaches [14].

For the partitional approach the k-means and its variants, such as the fuzzy c-means

algorithm [13], are the most popular algorithms.

Partitional clustering algorithms require a large number of computations of

distance or similarity measures among data records and clusters centers, which can be

very time consuming for very large data bases. Moreover, partitional clustering

algorithms generally require the number of clusters as an input parameter. However,

the number of clusters usually is not known a priori, so that the algorithm must be

executed many times, each for a different number of clusters and uses a validation

index to define the optimal number of clusters. The determination of the clusters’

numbers and centers present on the data is generally referred to as cluster analysis.

Many cluster validity criteria have been proposed in the literature in the last years

[16, 17 and 18]. Validity indexes aim to answer two important questions in cluster

analysis: (i) how many clusters are actually present in the data and (ii) how good the

partition is. The main idea, present in most of the validity indexes, is based on the

geometric structure of the partition, so that samples within the same cluster should be

compact and different clusters should be separate. When the cluster analysis assigns

fuzzy membership functions to the clusters, “fuzziness” must be taken in account in a

way that the less fuzzy the partition is the better.

Usually, parallel the implementations of clustering algorithms [12, 13] only

consider strategies to distribute the iterative process to find the clusters’ centers. In

this work, the entire cluster analysis is investigated, including the determination of

the clusters’ centers and the optimal number of clusters.

The paper is organized as follows: next section the fuzzy c-means algorithm is

sketched. The cluster validation index, known as the PBM index, is presented in

section three. The parallel implementation of the cluster analysis is presented in

section four. The results obtained with this approach considering scalability and

speed-up are presented in section five. Final conclusions and future works are

discussed in section six.

2. The Fuzzy c-Means Algorithm

The Fuzzy c-means (FCM) algorithm proposed by Bezdek [15] is the well known

fuzzy version of the classical ISODATA clustering algorithm.

Consider the data set (){ }NttT ..1,)(== x , where each sample contains the

variable vector pRt ∈)(x . The algorithm aims to find a fuzzy partition of the domain

into a set of K clusters{ }KCC K1 , where each cluster iC is represented by its

center’s coordinates’ vector p
i R∈w .

In the fuzzy cluster analysis, each sample in the training set can be assigned to

more than one cluster, according to a value))(()(ttu
iCi xµ= , that defines the

membership of the sample)(tx to the cluster iC .

The FCM algorithm computes the centers’ coordinates by minimizing the

objective function J defined as:

∑ ∑
= =

=

Nt Ki
i

m
i tdtumJ

..1 ..1

2)),(()(),(wxW (1)

where 1>m . The m parameter, generally referred as the “fuzziness parameter”, is a

parameter to adjust the effect of membership values and)),((itd wx is a distance

measure, generally the Euclidean distance, from the sample)(tx to the cluster’s

center iw .

The membership of all samples to all clusters defines a partition matrix as:

.

)()(

)1()1(

1

1

=

NuNu

uu

U

K

K

L

MOM

L

(2)

The partition matrix is computed by the algorithm so that:

.1)(,)(
..1

∑
=

=∈∀

Ki
i tuTtx . (3)

The FCM algorithm computes interactively the clusters centers coordinates from a

previous estimate of the partition matrix as:

.
)(

)(.)(

..1

..1

∑

∑

=

==

Nt

m
i

Nt

m
i

i
tu

ttu x

w

(4)

The partition matrix is updated as:

.

)),((

)),((

1
)(

..1

)1(

2

∑
=

−

=

Kj

m

j

i

i

td

td

tu

wx

wx

(5)

The FCM algorithm is described as follows:

0. Set 1>m , 2≥K and initialize the cluster centers’ coordinates randomly,

initialize the partition matrix as (5).

1. For all clusters ()Ki ≤≤2 , update clusters’ centers coordinates as (4).

2. For all samples ()Nt ≤≤1 and all clusters ()Ki ≤≤2 , update the partition

matrix as (5).

3. Stop when the norm of the overall difference in the partition matrix between

the current and the previous iteration is smaller than a given threshold ε ;

otherwise go to step 1.

In fuzzy cluster analysis the FCM algorithm computes clusters centers’

coordinates and the partition matrix from the specification of the number of clusters

K that must be given in advance. In practice, the FCM algorithm is executed to

various values of K , and the results are evaluated by a cluster validity function, as

described next.

3. Cluster Validity Index

In this work, the PBM index [18] is used to evaluate the number of clusters in the

data set. The PBM index is defined as a product of three factors, of which the

maximization ensures that the partition has a small number of compact clusters with

large separation between at least two of them. Mathematically the PBM index is

defined as follows:
2

1 ..
1

)(

= K

K

D
E

E

K
KPBM

(6)

where K is the number of clusters.

The factor 1E is the sum of the distances of each sample to the geometric center of

all samples 0w . This factor does not depend on the number of clusters and is

computed as:

.)),((
..1

01 ∑
=

=
Nt

tdE wx (7)

The factor KE is the sum of within cluster distances of K clusters, weighted by

the corresponding membership value:

∑ ∑
= =

=

Nt Ki
iiK tdtuE

..1 ..1

2)),(()(wx (8)

and KD that represents the maximum separation of each pair of clusters:

() .),(max
..1,

ji
Kji

K dD ww
=

= (9)

The greatest PBM index means the best clustering fuzzy partition. As other

indexes, the PBM index is an optimizing index, so that it can be used to search the

best number of clusters within a range of number of clusters. The PBM procedure

can be described as follows:

0. Select the maximum number of clusters M ;

1. Compute the PBM factor 1E (7)

2. For 2=K to MK = , do:

2.1. Run the FCM algorithm;

2.2. Compute the PBM factors KE (8) and KD (9);

2.3. Compute the)(KPBM index (6)

3. Select the best number of clusters
*K as:

())(maxarg* KPBMK = (10)

The PBM index has achieved a good performance in several data when compared

with the Xie-Beni index [16]. This index is thus used as a validity index of the

methodology presented in this work.

4. Parallel Cluster Analysis Implementation

The aim of the FCM cluster analysis algorithm is to determine the best partition

for the data being analyzed, by investigating different partitions, represented by the

partitions’ centers. Hence, the cluster analysis must integrate the FCM algorithm and

the PBM procedure as described above.

The cluster analysis is an iterative process where the FCM algorithm is computed

for a range of number of clusters and the PBM index is computed for every partition

generated by the FCM algorithm. When all partitions have been computed, the

partition corresponding to the maximum PBM index is chosen as the best partition

for the data.

The most complex computation in the FCM algorithm is the distance computation

from each sample)(tx to all clusters’ centers iw , Ki ..1= . This computation is

performed every interaction, for all records in the dataset. Aggregates of the distances

are used to compute the new centers’ estimate (4), the fuzzy partition’s matrix (5) and

the PBM factors 1E (7) and KE (8). These are the steps of the FCM cluster analysis

that should be parallelized.

The parallel FCM cluster analysis procedure is sketched in Fig 1 and described by

the following sequence:

Step 1. (Master processor): Splits the data set equally among the available

processors so that each one receives pN records, where N is the number of

records and p is the number of processes

Step 2. (All processors): Compute the geometrical center of its local data and

communicate this center to all processors, so that every processor can

compute the geometrical center of the entire database. Compute the PBM

factor 1E (7) on local data and send it to root.

Step 3. (Master processor): Sets initial centers and broadcasts them, so that all

processors have the same clusters’ centers values at the beginning of the

FCM looping.

Step 4. (All processors): Until convergence is achieved compute the distances

from each record in the local dataset to all clusters’ centers; update the

partition matrix as (5), calculate new clusters’ centers as (4).

Step 5. (All processors): Compute the PBM factor KE (8) on its local data and

send it to root.

Step 6. (Master Processor): Integrates the PBM index as (6) and stores it. If the

range of number of clusters is covered, stops, otherwise returns to Step3.

The procedure described above is computed for each number of clusters in the

cluster analysis, so that the procedure is repeated as many times as the desired range

of numbers of clusters, so that the PBM index, as a function of the number of centers,

is computed. The best partition is the one corresponding to the largest value of the

PBM index.

Step 1

. . .

Step 3

Step2Step 2Step 2

. . .

Step 6

Step 4Step 4Step 4

. . . Step 5Step 5Step 5

Error ?

Fig 1. The parallel FCM cluster analysis

5. Results and Discussion

5.1. Environment

Two machines were used for execution and performance analysis of this work:

the PC Cluster Mercury and the SGI Altix 350, both from the High Performance

Computing Center (NACAD) of COPPE/UFRJ. The PC cluster has 16 dual Pentium

III, 1 GHz, processor nodes interconnected via Fast Ethernet and Gigabit networks

and 8GB of total memory. The SGI Altix 350 has 14 Intel Itanium2 cpus with 28

Gbytes of RAM (shared - NUMA) and 360 Gbytes of disk storage.

In both machines the execution is controlled by PBS (Portable Batch System) job

scheduler avoiding nodes sharing during execution and Linux Red Hat runs on

processing and administrative nodes. The application was developed using C

programming language and Message Passing Interface (MPI).

5.2. The Cluster Mercury Results and Speed-up Analysis

The speed up evaluation of the FCM cluster analysis algorithm was made in two

test steps. In the first one, the objective was to observe the algorithm behavior

increasing the number of records. In the second test the objective was to observe the

behavior of the algorithm when increasing the number of variables and of the range

of partitions.

Test 1. Datasets of different line sizes were used. The datasets had 1.000, 12.500,

50.000, 65.000 and 100.000 records (lines) and size of 38Kb, 500kb, 1.88MB,

2.5MB and 3.76MB. A fixed number of variables and a fixed range of clusters were

used. The datasets had 18 variables (columns). The evaluation was made performed

considering 9 partitions calculated from 2=K to 10=K clusters’ centers, used for

the PBM index calculation. The speed-up results are shown in Table 1.

Table 1 - Speed-up results for Cluster Mercury

1 2 3 4 5 6 7 8

38Kb 1 1.84 1.97 2.24 2.01 1.94 1.95 1.91

500Kb 1 1.96 2.80 3.67 4.33 4.97 5.67 6.12

1.88MB 1 1.96 2.89 3.80 4.62 5.48 6.32 7.11

2.50MB 1 1.96 2.90 3.82 4.68 5.55 6.41 7.21

3.76MB 1 1.96 2.91 3.83 4.72 5.60 6.47 7.30

Number of Processors
Datasets

The algorithm’s speed up when processing the smaller dataset was clearly worse

than the others. Its highest speed up value was 2.24 when using 4 processors. The

algorithm showed higher speed up values for a larger number of processors when

processing datasets with larger number of records. When processing a small number

of records, communications are too costly compared to the advantage of parallelizing

the calculations of distances to clusters, and the benefits of parallelism do not happen.

As showed in Table 1, using 8 processors, speed up values of more than 7.0 were

achieved for databases with more than 1.88MB, which is a very good gain for the

overall parallel process. The speed up of the parallel program against the

correspondent sequential one has an efficiency factor that gets as much closer to 1 as

the database records increase, when considering a growing number of processors.

Test 2. To investigate the effect of the number of variables in the parallel process,

two datasets were used: one of 50.000 lines and 10 variables of 1.07MB and the other

with 50.000 lines and 40 variables (columns) of 4.12MB. The two datasets were

processed using different ranges of clusters. The first computation of the algorithm

was made with one partition of 2 clusters. Ranges of 2 to 4 clusters, of 2 to 8 clusters,

2 to 16 clusters and of 2 to 32 clusters had been used in each other algorithm

computation. All processing were executed for 1, 2, 4, 6, and 8 processors. Results

are presented in Table 2 and Table 3.

The second test showed that the number of variables have also an impact on the

overall performance of the algorithm. The processing of datasets with small number

of variables gets smaller speed up values. The processing of datasets with larger

number of variables results in better speed up values when using a larger number of

processors.

The same happens when refereeing to the range of clusters to form the partitions.

The bigger is the range of number of clusters’ centers that have to be investigated, the

greater is the number of partitions that will have to be calculated. Also, as larger are

the clusters’ numbers, more computation is involved in distance calculations from

records to clusters. As the calculations increase in the processing, the parallel

algorithm benefits show up clearly. To use a higher number of processors is as much

interesting, in time savings and processing acceleration, as the range of number of

clusters increases.

Table 2 – Speed up for dataset of 50.000 lines x 10 variables

1 2 4 6 8

2 clusters 1 1.79 2.82 3.44 3.79

from 2 to 4 1 1.91 3.47 4.78 5.83

from 2 to 8 1 1.94 3.71 5.26 6.66

from 2 to 16 1 1.95 3.78 5.46 7.02

from 2 to 32 1 1.96 3.81 5.51 7.19

Number of ProcessorsClusters'

Ranges

Table 3 – Speed up for dataset of 50.000 lines x 40 variables

1 2 4 6 8

2 clusters 1 1.78 2.80 3.45 3.93

from 2 to 4 1 1.92 3.55 4.94 6.22

from 2 to 8 1 1.96 3.81 5.54 7.20

from 2 to 16 1 1.98 3.89 5.73 7.53

from 2 to 32 1 1.98 3.92 5.81 7.67

Clusters'

Ranges
Number of Processors

Speedup 50x10

0
1

2
3
4

5
6

7
8

1 2 4 6 8

processors

2 clusters

from 2 to 4

from 2 to 8

from 2 to 16

from 2 to 32

Speedup 50x40

0

1

2

3

4

5

6

7

8

1 2 4 6 8

processors

2 clusters

from 2 to 4

from 2 to 8

from 2 to 16

from 2 to 32

Fig. 2 – Speedup graphs for different files sizes.

The tests of the parallel Fuzzy c-Means cluster analysis tool on the Mercury

Cluster hardware has shown that it is scalable for parallel cluster analysis processing

on these machines for databases of bigger sizes.

5.3. The Altix Machine Tests

The Tests Description

There were used twelve different files to proceed with the programs test in the

Altix machine. The files’ dimensions schemas are presented in Table 4 and the files

sizes are presented in Table 5.

Table 4 – Files dimensions

Registers

50.000 50 100 150 200

100.000 50 100 150 200

200.000 50 100 150 200

Variables

Table 5 – Files sizes

File Id

Records (in

thousands) x

Variables

Size(in MB)

1 50 x 50 5.138

2 50 x 100 10.227

3 50 x 150 15.317

4 50 x 200 20.406

5 100 x 50 10.347

6 100 x 100 20.552

7 100 x 150 30.730

8 100 x 200 40.909

9 200 x 50 20.747

10 200 x 100 41.104

11 200 x 150 61.469

12 200 x 200 81.817

There were made 288 tests using this files base to test the Parallel Fuzzy c-Means

Cluster Analysis program behavior with greater data volumes. Each file was tested

with clusters’ ranges of 2, 4, 8 and 16, and each range of clusters was tested with

processors varying from 1 to 6.

Parallel Processing Time Analysis

One of this work’s goals is to create a useful tool for data analysis in the oil and

gas field, where huge volumes of data need to be investigated in order to find out oil

reservoir information. So, it is necessary to investigate the programs behavior when

number of records and variables increase.

It was observed that when the number of records in the database grows, the

processing time grows as well, proportionally to the increase of records (Fig.3).

100.000 registers x 16 clusters

0

2

4

6

8

10

12

1 2 3 4 5 6
processors

b
il
io

n
s

 o
f

s
e

c
o

n
d

s 50

100

150

200.000 registers x 16 clusters

0

5

10

15

20

25

1 2 3 4 5 6
processors

b
il
li
o

n
s

 o
f

s
e

c
o

n
d

s 50

100

150

Fig. 3 - Increasing of time when increasing number of variables.

The same behavior occurred when increasing the number of variables: processing

time grows at the same rate of the increasing of the variables as can be seen in Fig.4.

Nevertheless, the parallel Fuzzy c-Means Cluster Analysis program has the same

behavior for all problem sizes being investigated. The parallel approach decreases the

time processing for all files’ sizes, but the time savings is more meaningful for larges

databases because it is proportional to the problem size.

50 variables x 16 clusters

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6

processors

b
il

li
o

n
s
 o

f
s
e
c
o

n
d

s

50.000 registers

100.000 registers

200.000 registers

100 variables x 16 clusters

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6

processors

b
il

li
o

n
s
 o

f
s
e
c
o

n
d

s

50.000 registers

100.000 registers

200.000 registers

Fig. 4 - Increasing of time when increasing number of records.

Speed Up and Efficiency Analysis

In the Altix machine tests the processing for the smaller files size for only 2

clusters did not presented a good speedup curve. This can be understood considering

that the computational effort for processing only one partition of two clusters is

significantly smaller than the communications’ cost involved in the overall process.

Measurements show it clearly as can be visualized in Figure 5 bellow.

50.000 registers x 50 variables - 2 clusters

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6

S
p

e
e

d
U

p

Ideal

Real

200.000 registers x 50 variables - 2 clusters

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6

S
p

e
e

d
U

p

Ideal

Real

Fig. 5 – Speedup of processing one partition of two clusters using files of 50.000

registers and 50 variables and 200.000 registers and 50 variables.

Processing with bigger files improved the speedup curve because the

computational time tends to be greater than communications time involved in the

process for bigger clusters interval. Tests in the Altix machine presented in a few

cases a super linear speed-up value as an example showed in Figure 6.

This behavior could be explained because the distribution of one bigger file

through several processors produces smaller files for each processor. The architecture

of the Altix machine provides a performance improvement of an application with this

feature. If the file is so small that can be stored in the memory cache, the

computational time decreases and the speed-up becomes super linear.

100.000 x 100 vars - 8 clusters

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 2 3 4 5 6

processors

E
fi

c
iê

n
c
ia

Ideal

Real

100.000 x 200 vars - 8 clusters

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 2 3 4 5 6

processors

E
fi

c
iê

n
c

ia

Ideal

Real

Fig. 6 – Super linear efficiency values.

This result shows that the Parallel Fuzzy c-Means Cluster Analysis tool scales well

and can be used successfully processing bigger datasets.

Files Size versus Parallelization Benefits

In order to have an indication of whether it is efficient to use parallel processing or

not, all the 288 tests results in Altix hardware were used as records in a dataset for a

decision tree induction classification algorithm.

The input variables for the decision tree induction algorithm were the number of

records, the number of variables and the number of clusters. The class output was

computed by the efficiency of the parallel processing, defined as the ratio between

the speed-up and the number of processors. For each test record, if the efficiency was

greater than 0.8 the test was set to YES, meaning that the parallel processing is

efficient, otherwise the class was set to NO.

For the analysis, the decision tree induction algorithm J48, was used within the

Weka open source data mining workbench [19]. The J48 algorithm is a Java

implementation of the classical C4.5 algorithm, developed by Quinlan [20].

The resulting decision tree is shown in Figure 7, where it is clearly shown that the

parallel processing is not efficient for 2 clusters and is efficient for more than 8

clusters. In the case of 4 clusters, the parallel processing could be efficient or not

depending on the number of records and/or the number of variables.

Although it is not a definitive answer for the load optimization of the cluster

analysis, the decision tree shows that the number of clusters is the parameter that

affects mostly the efficiency of the parallel processing. As a current cluster analysis

must compute the FCM algorithm for a range of number of clusters, in order to

determine the optimal number of clusters, it is preferable to not parallelize the

processing for small number of clusters and use more processors as the number of

clusters increases.

Fig 7 – Weka’s J48 decision tree.

6. Conclusions

This work has presented a parallel implementation of FCM cluster analysis where

both the determination of clusters’ centers and the number of clusters are optimized

by the algorithm. The main contribution of this work is the integration of the cluster

validation index in the optimization process, allowing the optimization of the overall

parallel process.

The implementation and performance tests were made in two different hardware

architectures: the first on low cost distributed memory hardware, a PC Cluster, and

the second on a machine of bigger computational power, the Altix 350.

The parallel Fuzzy c-Means Cluster Analysis tool behaviors in a scalable manner

presenting good speedup and efficiency values in both hardware, showing that it can

be used as a valuable and efficient tool for improve processing time in knowledge

discovery in very bigger databases.

Acknowledgements

This work has been supported by the Brazilian Research Council (CNPq), by the

Brazilian Innovation Agency (FINEP) and by the National Petroleum Agency (ANP).

The authors are grateful to High Performance Computing Center (NACAD-

COPPE/UFRJ) where the experiments were performed.

References

1. M. S. R. Sousa, M. Mattoso and N. F.F. Ebecken (1999). Mining a large database

with a parallel database server. Intelligent Data Analysis 3, pp. 437-451.

2. M. Coppola, and M. Vanneschi. (2002). High-performance data mining with

skeleton-based structured parallel programming. Parallel Computing 28, pp. 783-

813.

3. R. Jin, G. Yang, and G. Agrawal (2005). Shared Memory Parallelization of Data

Mining Algorithms: Techniques, Programming Interface, and Performance. IEEE

Transaction on Knowledge and Data Engineering, vol. 17, no. 1, pp. 71-89.

4. M. Cannataro, A. Congiusta, A. Pugliese, D. Talia, P. Trunfio (2004). Distributed

data mining on grids: services, tools, and applications. IEEE Transactions on

Systems, Man and Cybernetics, Part B, vol. 34, no. 6, pp. 2451 – 2465.

5. K. Kubota, A. Nakase, H. Sakai and S. Oyanagi (2000). Parallelization of

decision tree algorithm and its performance evaluation. Proceedings of the Fourth

International Conference on High Performance Computing in the Asia-Pacific

Region, vol. 2, pp. 574 – 579.

6 M. W. Kim, J. G. Lee and C. Min (1999). Efficient fuzzy rule generation based on

fuzzy decision tree for data mining. Proceedings of the IEEE International Fuzzy

Systems Conference FUZZ-IEEE '99. pp1223 – 1228.

7 A. Evsukoff, M. C. A. Costa and N. F. F. Ebecken (2004). Parallel

Implementation of Fuzzy Rule Based Classifier. Proceedings of the

VECPAR'2004, vol. 2, pp. 443-452.

8 P. K. H. Phua and D. Ming. (2003). Parallel nonlinear optimization techniques for

training neural networks. IEEE Transactions on Neural Networks, vol. 14, no. 6,

pp. 1460 - 1468.

9 M. C. A. Costa and N. F. F. Ebecken (2001). A Neural Network Implementation

for Data Mining High Performance Computing. Proceedings of the V Brazilian

Conference on Neural Networks, pp. 139-142.

10 R. Agrawal and J. C. Shafer (1996).Parallel mining of association rules. IEEE

Transactions on Knowledge and Data Engineering, vol. 8, no. 6, pp. 962 - 969.

11 L. Shen, H. Shen and L. Cheng (1999). New algorithms for effcient mining of

association rules. Information Sciences 118, pp. 251 – 268.

12 B. Boutsinas and T. Gnardellis (2002). On distributing the clustering process.

Pattern Recognition Letters 23, pp. 999–1008.

13 S. Rahimi, M. Zargham, A. Thakre and D. Chhillar (2004) A parallel Fuzzy C-

Mean algorithm for image segmentation. Proceedings of the IEEE Annual

Meeting of the Fuzzy Information NAFIPS '04, vol. 1, pp. 234 – 237.

14 A. K. Jain, M. N. Murty and P. J. Flynn (1999). Data clustering: a review. ACM

Computing Surveys, vol. 31, no. 3. pp. 264-323.

15 J. C. Bezdek (1981). Pattern Recognition with Fuzzy Objective Function

Algorithms. New York, Plenum.

16 X. L. Xie and G. A. Beni (1991). Validity measure for fuzzy clustering. IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 3 no. 8, pp. 841–

846.

17 J. Bezdek and N.R. Pal (1998). Some new indexes of cluster validity. IEEE Trans.

Systems Man and Cybernetics B, vol. 28, pp. 301–315.

18 M. K. Pakhira, S. Bandyopadhyay and U. Maulik (2004). Validity index for crisp

and fuzzy clusters. Pattern Recognition, vol. 37, pp. 487-501.

19 I. H. Witten and E. Frank (2005). Data Mining: Practical Machine Learning

Tools and Techniques, 2nd Edition, Morgan Kaufmann, San Francisco.

20 R. Quinlan (1993). C4.5 – Programs for Machine Learning. Morgan Kaufmann,

San Francisco.

