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Abstract. This work presents an implementation of a parallel Fuzzy c-means 

cluster analysis tool, which implements both aspects of cluster investigation: 

the calculation of clusters’ centers with the degrees of membership of records 

to clusters, and the determination of the optimal number of clusters for a given 

dataset using the PBM index.  

Topics of Interest: Unsupervised Classification, Fuzzy c-Means, Cluster and 

Grid Computing. 

1. Introduction 

The huge amount of data generated by data intensive industries such as 

Telecommunications, Insurance, Oil & Gas exploration, among others, has pushed 

Data Mining algorithms through parallel implementations [1, 2]. One requirement of 

data mining is efficiency and scalability of mining algorithms. Therefore, parallelism 

can be used to process long running tasks in a timely manner. 

There are several different parallel data mining implementations being used or 

experimented, both in distributed and shared memory hardware [3], as so as in grid 

environments [4]. All the main data mining algorithms have been investigated, such 

as decision tree induction [5], fuzzy rule-based classifiers [6, 7], neural networks [8, 

9], association rules’ mining [10, 11] and clustering [12, 13].  

Data clustering is being used in several data intensive applications, including 

image classification, document retrieval and customer segmentation (among others). 

Clustering algorithms generally follows hierarchical or partitional approaches [14]. 

For the partitional approach the k-means and its variants, such as the fuzzy c-means 

algorithm [13], are the most popular algorithms.  

Partitional clustering algorithms require a large number of computations of 

distance or similarity measures among data records and clusters centers, which can be 

very time consuming for very large data bases. Moreover, partitional clustering 

algorithms generally require the number of clusters as an input parameter. However, 

the number of clusters usually is not known a priori, so that the algorithm must be 



executed many times, each for a different number of clusters and uses a validation 

index to define the optimal number of clusters. The determination of the clusters’ 

numbers and centers present on the data is generally referred to as cluster analysis. 

Many cluster validity criteria have been proposed in the literature in the last years 

[16, 17 and 18]. Validity indexes aim to answer two important questions in cluster 

analysis: (i) how many clusters are actually present in the data and (ii) how good the 

partition is. The main idea, present in most of the validity indexes, is based on the 

geometric structure of the partition, so that samples within the same cluster should be 

compact and different clusters should be separate. When the cluster analysis assigns 

fuzzy membership functions to the clusters, “fuzziness” must be taken in account in a 

way that the less fuzzy the partition is the better. 

Usually, parallel the implementations of clustering algorithms [12, 13] only 

consider strategies to distribute the iterative process to find the clusters’ centers. In 

this work, the entire cluster analysis is investigated, including the determination of 

the clusters’ centers and the optimal number of clusters. 

The paper is organized as follows: next section the fuzzy c-means algorithm is 

sketched. The cluster validation index, known as the PBM index, is presented in 

section three. The parallel implementation of the cluster analysis is presented in 

section four. The results obtained with this approach considering scalability and 

speed-up are presented in section five. Final conclusions and future works are 

discussed in section six. 

2. The Fuzzy c-Means Algorithm 

The Fuzzy c-means (FCM) algorithm proposed by Bezdek [15] is the well known 

fuzzy version of the classical ISODATA clustering algorithm. 

Consider the data set ( ){ }NttT ..1,)( == x , where each sample contains the 

variable vector pRt ∈)(x . The algorithm aims to find a fuzzy partition of the domain 

into a set of K  clusters{ }KCC K1 , where each cluster iC  is represented by its 

center’s coordinates’ vector p
i R∈w .  

In the fuzzy cluster analysis, each sample in the training set can be assigned to 

more than one cluster, according to a value ))(()( ttu
iCi xµ= , that defines the 

membership of the sample )(tx  to the cluster iC . 

The FCM algorithm computes the centers’ coordinates by minimizing the 

objective function J  defined as: 
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where 1>m . The m parameter, generally referred as the “fuzziness parameter”, is a 

parameter to adjust the effect of membership values and )),(( itd wx  is a distance 



measure, generally the Euclidean distance, from the sample )(tx  to the cluster’s 

center iw . 

The membership of all samples to all clusters defines a partition matrix as:  
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The partition matrix is computed by the algorithm so that: 
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The FCM algorithm computes interactively the clusters centers coordinates from a 

previous estimate of the partition matrix as: 
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The partition matrix is updated as: 
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The FCM algorithm is described as follows: 

0. Set 1>m , 2≥K  and initialize the cluster centers’ coordinates randomly, 

initialize the partition matrix as (5). 

1. For all clusters ( )Ki ≤≤2 , update clusters’ centers coordinates as (4). 

2. For all samples ( )Nt ≤≤1  and all clusters ( )Ki ≤≤2 , update the partition 

matrix as (5). 

3. Stop when the norm of the overall difference in the partition matrix between 

the current and the previous iteration is smaller than a given threshold ε ; 

otherwise go to step 1. 

In fuzzy cluster analysis the FCM algorithm computes clusters centers’ 

coordinates and the partition matrix from the specification of the number of clusters 

K  that must be given in advance. In practice, the FCM algorithm is executed to 

various values of K , and the results are evaluated by a cluster validity function, as 

described next. 



3. Cluster Validity Index 

In this work, the PBM index [18] is used to evaluate the number of clusters in the 

data set. The PBM index is defined as a product of three factors, of which the 

maximization ensures that the partition has a small number of compact clusters with 

large separation between at least two of them. Mathematically the PBM index is 

defined as follows: 
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where K  is the number of clusters. 

The factor 1E  is the sum of the distances of each sample to the geometric center of 

all samples 0w . This factor does not depend on the number of clusters and is 

computed as: 
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The factor KE  is the sum of within cluster distances of K  clusters, weighted by 

the corresponding membership value: 
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and KD  that represents the maximum separation of each pair of clusters: 
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The greatest PBM index means the best clustering fuzzy partition. As other 

indexes, the PBM index is an optimizing index, so that it can be used to search the 

best number of clusters within a range of number of clusters. The PBM procedure 

can be described as follows: 

0. Select the maximum number of clusters M ; 

1. Compute the PBM factor 1E  (7) 

2. For 2=K  to MK = , do: 

2.1. Run the FCM algorithm; 

2.2. Compute the PBM factors KE  (8) and KD  (9); 

2.3. Compute the )(KPBM  index (6) 

3. Select the best number of clusters 
*K  as:  

( ))(maxarg* KPBMK =  (10) 

The PBM index has achieved a good performance in several data when compared 

with the Xie-Beni index [16]. This index is thus used as a validity index of the 

methodology presented in this work. 



4. Parallel Cluster Analysis Implementation 

The aim of the FCM cluster analysis algorithm is to determine the best partition 

for the data being analyzed, by investigating different partitions, represented by the 

partitions’ centers. Hence, the cluster analysis must integrate the FCM algorithm and 

the PBM procedure as described above. 

The cluster analysis is an iterative process where the FCM algorithm is computed 

for a range of number of clusters and the PBM index is computed for every partition 

generated by the FCM algorithm. When all partitions have been computed, the 

partition corresponding to the maximum PBM index is chosen as the best partition 

for the data. 

The most complex computation in the FCM algorithm is the distance computation 

from each sample )(tx  to all clusters’ centers iw , Ki ..1= . This computation is 

performed every interaction, for all records in the dataset. Aggregates of the distances 

are used to compute the new centers’ estimate (4), the fuzzy partition’s matrix (5) and 

the PBM factors 1E  (7) and KE  (8). These are the steps of the FCM cluster analysis 

that should be parallelized. 

The parallel FCM cluster analysis procedure is sketched in Fig 1 and described by 

the following sequence: 

Step 1. (Master processor): Splits the data set equally among the available 

processors so that each one receives pN records, where N is the number of 

records and p is the number of processes 

Step 2. (All processors): Compute the geometrical center of its local data and 

communicate this center to all processors, so that every processor can 

compute the geometrical center of the entire database. Compute the PBM 

factor 1E  (7) on local data and send it to root. 

Step 3. (Master processor): Sets initial centers and broadcasts them, so that all 

processors have the same clusters’ centers values at the beginning of the 

FCM looping. 

Step 4. (All processors): Until convergence is achieved compute the distances 

from each record in the local dataset to all clusters’ centers; update the 

partition matrix as (5), calculate new clusters’ centers as (4). 

Step 5. (All processors): Compute the PBM factor KE  (8) on its local data and 

send it to root.  

Step 6. (Master Processor): Integrates the PBM index as (6) and stores it. If the 

range of number of clusters is covered, stops, otherwise returns to Step3. 

The procedure described above is computed for each number of clusters in the 

cluster analysis, so that the procedure is repeated as many times as the desired range 

of numbers of clusters, so that the PBM index, as a function of the number of centers, 

is computed. The best partition is the one corresponding to the largest value of the 

PBM index. 
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Fig 1. The parallel FCM cluster analysis 

5. Results and Discussion 

5.1. Environment 

Two machines were used for execution and performance analysis of this work:  

the PC Cluster Mercury and the SGI Altix 350, both from the High Performance 

Computing Center (NACAD) of COPPE/UFRJ. The PC cluster has 16 dual Pentium 

III, 1 GHz, processor nodes interconnected via Fast Ethernet and Gigabit networks 

and 8GB of total memory.  The SGI Altix 350 has 14 Intel Itanium2 cpus with 28 

Gbytes of RAM (shared - NUMA) and 360 Gbytes of disk storage.  

In both machines the execution is controlled by PBS (Portable Batch System) job 

scheduler avoiding nodes sharing during execution and Linux Red Hat runs on 

processing and administrative nodes. The application was developed using C 

programming language and Message Passing Interface (MPI). 



5.2. The Cluster Mercury Results and Speed-up Analysis 

The speed up evaluation of the FCM cluster analysis algorithm was made in two 

test steps. In the first one, the objective was to observe the algorithm behavior 

increasing the number of records. In the second test the objective was to observe the 

behavior of the algorithm when increasing the number of variables and of the range 

of partitions. 

Test 1. Datasets of different line sizes were used. The datasets had 1.000, 12.500, 

50.000, 65.000 and 100.000 records (lines) and size of 38Kb, 500kb, 1.88MB, 

2.5MB and 3.76MB. A fixed number of variables and a fixed range of clusters were 

used. The datasets had 18 variables (columns).  The evaluation was made performed 

considering 9 partitions calculated from 2=K  to 10=K  clusters’ centers, used for 

the PBM index calculation. The speed-up results are shown in Table 1.  

 

Table 1 - Speed-up results for Cluster Mercury 

1 2 3 4 5 6 7 8

38Kb 1 1.84 1.97 2.24 2.01 1.94 1.95 1.91

500Kb 1 1.96 2.80 3.67 4.33 4.97 5.67 6.12

1.88MB 1 1.96 2.89 3.80 4.62 5.48 6.32 7.11

2.50MB 1 1.96 2.90 3.82 4.68 5.55 6.41 7.21

3.76MB 1 1.96 2.91 3.83 4.72 5.60 6.47 7.30

Number of Processors
Datasets

 
 

The algorithm’s speed up when processing the smaller dataset was clearly worse 

than the others. Its highest speed up value was 2.24 when using 4 processors. The 

algorithm showed higher speed up values for a larger number of processors when 

processing datasets with larger number of records. When processing a small number 

of records, communications are too costly compared to the advantage of parallelizing 

the calculations of distances to clusters, and the benefits of parallelism do not happen. 

As showed in Table 1, using 8 processors, speed up values of more than 7.0 were 

achieved for databases with more than 1.88MB, which is a very good gain for the 

overall parallel process. The speed up of the parallel program against the 

correspondent sequential one has an efficiency factor that gets as much closer to 1 as 

the database records increase, when considering  a growing number of processors. 

Test 2. To investigate the effect of the number of variables in the parallel process, 

two datasets were used: one of 50.000 lines and 10 variables of 1.07MB and the other 

with 50.000 lines and 40 variables (columns) of 4.12MB. The two datasets were 

processed using different ranges of clusters. The first computation of the algorithm 

was made with one partition of 2 clusters. Ranges of 2 to 4 clusters, of 2 to 8 clusters, 

2 to 16 clusters and of 2 to 32 clusters had been used in each other algorithm 

computation. All processing were executed for 1, 2, 4, 6, and 8 processors. Results 

are presented in Table 2 and Table 3. 

The second test showed that the number of variables have also an impact on the 

overall performance of the algorithm. The processing of datasets with small number 

of variables gets smaller speed up values. The processing of datasets with larger 

number of variables results in better speed up values when using a larger number of 

processors. 



The same happens when refereeing to the range of clusters to form the partitions. 

The bigger is the range of number of clusters’ centers that have to be investigated, the 

greater is the number of partitions that will have to be calculated. Also, as larger are 

the clusters’ numbers, more computation is involved in distance calculations from 

records to clusters. As the calculations increase in the processing, the parallel 

algorithm benefits show up clearly. To use a higher number of processors is as much 

interesting, in time savings and processing acceleration, as the range of number of 

clusters increases. 

Table 2 – Speed up for dataset of 50.000 lines x 10 variables 

1 2 4 6 8

2 clusters 1 1.79 2.82 3.44 3.79

from 2 to 4 1 1.91 3.47 4.78 5.83

from 2 to 8 1 1.94 3.71 5.26 6.66

from 2 to 16 1 1.95 3.78 5.46 7.02

from 2 to 32 1 1.96 3.81 5.51 7.19

Number of ProcessorsClusters' 

Ranges

 
 

Table 3 – Speed up for dataset of 50.000 lines x 40 variables 

1 2 4 6 8

2 clusters 1 1.78 2.80 3.45 3.93

from 2 to 4 1 1.92 3.55 4.94 6.22

from 2 to 8 1 1.96 3.81 5.54 7.20

from 2 to 16 1 1.98 3.89 5.73 7.53

from 2 to 32 1 1.98 3.92 5.81 7.67

Clusters' 

Ranges
Number of Processors
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Fig. 2 – Speedup graphs for different files sizes. 

 

The tests of the parallel Fuzzy c-Means cluster analysis tool on the Mercury 

Cluster hardware has shown that it is scalable for parallel cluster analysis processing 

on these machines for databases of bigger sizes. 

5.3. The Altix Machine Tests 

The Tests Description 

There were used twelve different files to proceed with the programs test in the 

Altix machine. The files’ dimensions schemas are presented in Table 4 and the files 

sizes are presented in Table 5. 



Table 4 – Files dimensions  

Registers

50.000 50 100 150 200

100.000 50 100 150 200

200.000 50 100 150 200

Variables

 
 

Table 5 – Files sizes 

File Id

Records (in 

thousands) x 

Variables

Size(in MB)

1 50 x 50 5.138

2 50 x 100 10.227

3 50 x 150 15.317

4 50 x 200 20.406

5 100 x 50 10.347

6 100 x 100 20.552

7 100 x 150 30.730

8 100 x 200 40.909

9 200 x 50 20.747

10 200 x 100 41.104

11 200 x 150 61.469

12 200 x 200 81.817  
 

There were made 288 tests using this files base to test the Parallel Fuzzy c-Means 

Cluster Analysis program behavior with greater data volumes. Each file was tested 

with clusters’ ranges of 2, 4, 8 and 16, and each range of clusters was tested with 

processors varying from 1 to 6.  

Parallel Processing Time Analysis 

One of this work’s goals is to create a useful tool for data analysis in the oil and 

gas field, where huge volumes of data need to be investigated in order to find out oil 

reservoir information. So, it is necessary to investigate the programs behavior when 

number of records and variables increase. 

It was observed that when the number of records in the database grows, the 

processing time grows as well, proportionally to the increase of records (Fig.3). 
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Fig. 3 - Increasing of time when increasing number of variables. 



The same behavior occurred when increasing the number of variables: processing 

time grows at the same rate of the increasing of the variables as can be seen in Fig.4. 

Nevertheless, the parallel Fuzzy c-Means Cluster Analysis program has the same 

behavior for all problem sizes being investigated. The parallel approach decreases the 

time processing for all files’ sizes, but the time savings is more meaningful for larges 

databases because it is proportional to the problem size.  
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Fig. 4 - Increasing of time when increasing number of records. 

Speed Up and Efficiency Analysis 

In the Altix machine tests the processing for the smaller files size for only 2 

clusters did not presented a good speedup curve. This can be understood considering 

that the computational effort for processing only one partition of two clusters is 

significantly smaller than the communications’ cost involved in the overall process. 

Measurements show it clearly as can be visualized in Figure 5 bellow. 
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Fig. 5 – Speedup of processing one partition of two clusters using files of 50.000 

registers and 50 variables and 200.000 registers and 50 variables. 

Processing with bigger files improved the speedup curve because the 

computational time tends to be greater than communications time involved in the 

process for bigger clusters interval. Tests in the Altix machine presented in a few 

cases a super linear speed-up value as an example showed in Figure 6. 

This behavior could be explained because the distribution of one bigger file 

through several processors produces smaller files for each processor. The architecture 

of the Altix machine provides a performance improvement of an application with this 

feature. If the file is so small that can be stored in the memory cache, the 

computational time decreases and the speed-up becomes super linear. 
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Fig. 6 – Super linear efficiency values. 

This result shows that the Parallel Fuzzy c-Means Cluster Analysis tool scales well 

and can be used successfully processing bigger datasets. 

Files Size versus Parallelization Benefits 

In order to have an indication of whether it is efficient to use parallel processing or 

not, all the 288 tests results in Altix hardware were used as records in a dataset for a 

decision tree induction classification algorithm.  

The input variables for the decision tree induction algorithm were the number of 

records, the number of variables and the number of clusters. The class output was 

computed by the efficiency of the parallel processing, defined as the ratio between 

the speed-up and the number of processors. For each test record, if the efficiency was 

greater than 0.8 the test was set to YES, meaning that the parallel processing is 

efficient, otherwise the class was set to NO. 

For the analysis, the decision tree induction algorithm J48, was used within the 

Weka open source data mining workbench [19]. The J48 algorithm is a Java 

implementation of the classical C4.5 algorithm, developed by Quinlan [20]. 

The resulting decision tree is shown in Figure 7, where it is clearly shown that the 

parallel processing is not efficient for 2 clusters and is efficient for more than 8 

clusters. In the case of 4 clusters, the parallel processing could be efficient or not 

depending on the number of records and/or the number of variables. 

Although it is not a definitive answer for the load optimization of the cluster 

analysis, the decision tree shows that the number of clusters is the parameter that 

affects mostly the efficiency of the parallel processing. As a current cluster analysis 

must compute the FCM algorithm for a range of number of clusters, in order to 

determine the optimal number of clusters, it is preferable to not parallelize the 

processing for small number of clusters and use more processors as the number of 

clusters increases. 

 



 
Fig 7 – Weka’s J48 decision tree. 

6. Conclusions 

This work has presented a parallel implementation of FCM cluster analysis where 

both the determination of clusters’ centers and the number of clusters are optimized 

by the algorithm. The main contribution of this work is the integration of the cluster 

validation index in the optimization process, allowing the optimization of the overall 

parallel process. 

The implementation and performance tests were made in two different hardware 

architectures: the first on low cost distributed memory hardware, a PC Cluster, and 

the second on a machine of bigger computational power, the Altix 350.  

The parallel Fuzzy c-Means Cluster Analysis tool behaviors in a scalable manner 

presenting good speedup and efficiency values in both hardware, showing that it can 

be used as a valuable and efficient tool for improve processing time in knowledge 

discovery in very bigger databases. 
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