
A Multigrid-DDM Schur Elliptic Equation

Solver in Unstructured Meshes

Guilherme Galante1, Rogerio L. Rizzi2 and Tiaraju A. Diverio1

1 PPGC, Instituto de Informática
Universidade Federal do Rio Grande do Sul

CP 15064, 91501-970, Porto Alegre, RS, Brazil
2 Centro de Ciências Exatas e Tecnológicas
Universidade Estadual do Oeste do Paraná

Rua Universitária, 2069, 85801-110, Cascavel, PR, Brazil
ggalante@inf.ufrgs.br

Abstract. This work shows the parallel Multigrid-MDD Schur method
for the solution of elliptic equations. In the proposed method the solution
is obtained by a multigrid method parallelized by domain decomposition
techniques, more specifically by the Schur complement method. It is
also shown some issues related to the generation and partitioning of the
mesh hierarchy. In the case study, we used the 2D heat diffusion equation
in unstructured meshes. The implementations was developed to explore
parallelism in clusters, using message passing.

1 Introduction

The large linear equations systems, that raises of the discretization of partial
differential equations (PDE) in technological and scientific problems, require
efficient solution. The use of direct methods is inadequate to solve these systems,
once a time that do not use the advantage of the coefficients sparsity, making
this approach difficult, by storage problems and for the dependence of operations
that difficult its parallelization.

The iterative algorithms, however, use only the matrix as operator to it-
eratively construct a convergent sequence of solutions. And, in contrast of the
direct methods, are very used in the resolution of sparses and large equations sys-
tems, due its storage optimization potential and computational efficiency. Cur-
rently parallel solutions by iterative methods, combine preconditioned Krylov
sub-spaces methods as local solver, with domain decomposition methods [1][16].

Other approach used in the equation systems resolution are the multigrid
methods. Multigrid methods originated in the 1960s with the work of Fedorenko
and Bakhvalov. They were further developed in the 1970s by Brandt, and are
now the preferred methods for solving elliptic partial differential equations [19].
The advantage of multigrid is the speed - multigrid algorithms only require order
N operations to solve elliptic equations, where N is the number of mesh points.

1 Candidate to the best student paper award



Since 1980, the number of publications related to the multigrid methods had
increased substantially, and currently there are more than 3600 references that
can be found in the MGNET (www.mgnet.org), who is the official repository of
multigrid methods [9].

In this paper, we describe our solver, MG-Schur, that solves elliptic equations
using multigrid methods parallelized by domain decomposition methods. The
idea of combining multigrid and domain decomposition methods is not new
[3][8], although there are a number of features of our code that distinguish it
from the discussions we have seen. In particular, we use the Full Multigrid V
cycle combinated with the Schur complement domain decomposition method to
explore the parallelism. Moreover, our method uses only Krylov space iterative
methods, more specifically the GMRES, instead classical iterative solvers, like
Gauss-Seidel, normally used in the multigrid approaches. This choice was based
considering that we have nonsymmetric systems, and the GMRES is the more
appropriate method to solve this class of systems.

This paper is structured as follows: in section 2 generation and the parti-
tioning of meshes are discussed, and a tool MGTool is presented; in section 3 a
overview of multigrid is presented; in section 4 the proposed parallel multigrid
method is presented; in section 5 the study case is described; the section 6 sum-
marizes the results obtained and in section 7 some conclusions and future works
are presented.

2 Mesh Generation and Partitioning

In general, problems that use simulation are based on mathematical models
that are expressed through Partial Differential Equations (PDE). This PDE,
generally, does not have known analytical solution, being necessary the use of
discretization and approximation methods, as finite volume or finite element, so
that they can be numerically solved.

With the use of numerical techniques of solution of PDE, the region of the
domain Ω is not treated as continuous, but like a discrete and finite set of points
or subdomains in which the variables are calculated. This discrete set of points
or subdomains constitutes the mesh.

In this work the domain discretization is made using unstructured triangu-
lar meshes. Unstructured meshes conciliate good representation of the compu-
tational domain, since diverse problems are defined in domains with irregular
geometry that not always are appropriately discretized by structured meshes.
More, specifically we used a special type of meshes, called unstructured orthogo-
nal mesh. It is assumed that within each triangle, there exists a point (hereafter
called center) such that the segment joining the centers of two adjacent triangles
and the side shared by the two triangles have a nonempty intersection and are
orthogonal to each other [6]. The use of this type of mesh simplifies some issues
in the PDE discretization, when using finite volumes method.



In the multigrid methods, is necessary create a hierarchy of meshes. In con-
trast of the work of Chan and Smith [7], we consider the multilevel mesh hier-
archy generation starting from a coarse mesh.

The initial coarse mesh is generated by the software Easymesh [13]. The
Easymesh is a program that generates two dimensional, unstructured, Delaunay
and constrained Delaunay triangulations in general domains. The mesh quality
is achieved by the use of smoothing algorithms.

Once the coarser mesh was generated, we can create the mesh hierarchy. For
the generation of the mesh levels we have implemented a tool called MGTool. The
tool takes the data generated by Easymesh and generates the mesh hierarchy,
as shown in Fig. 1.

Fig. 1. Example of 3-level mesh hierarchy.

For the refinement of the meshes we adopted a strategy known in literature
as h-refinement, characterized for the subdivision of the cells of the domain [10],
and is similar to creation of the mesh hierarchy in structured meshes. Refined
meshes are created through successive subdivisions of the triangles of the coarse
mesh in four subtriangles. In the example shown in Fig. 2, the triangle 1A is
refined into four triangles, 2A, 2B, 2C and 2D. Then, the triangle 1A is the
“parent” of the triangles 2A, 2B, 2C and 2D, and the triangles 2A, 2B, 2C and
2D are the “children” of triangle 1A.

1 A

2
A

B C

D

Cell Parent Children

1A - 2B2A 2C 2D

Cell Parent Children

2A

2B

2C

2D

1A

1A

1A

1A

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Fig. 2. Example of a 2-level mesh hierarchy. The numbers on the left denote the res-
olution level, and the letters label triangles of the mesh. On the right side, the table
that describes the relationship between adjacent levels.



Besides generating the mesh hierarchy, the MGTool generate the matrices
to each mesh level and also creates information necessary to the interpolation
and restriction operators, explained later in Section 3. This informations de-
scribes the relationship between adjacent levels, indicating how the data will be
transfered from the “parents” to the “children”, and vice versa.

To solve the problems in parallel, is necessary that the mesh be partitioned
and distributed among the available processors. The partitioning must distribute
the workload to each processor in a proportional way. Moreover, due the necessity
of information exchange, the partitioning must be made in order to reduce the
boundaries among subdomains, and consequently the communications among
the processors, since the information exchange is restricted to the boundaries
[14]. For the mesh partitioning MGTool uses the METIS package [12].

The MGTool performs the partitioning in the coarser mesh and replicates to
the other levels. This approach prevents the load unbalancing, and is advanta-
geous for simulations that run on a large number of processors [8].

3 Multigrid

Multigrid methods is a group of algorithms and techniques that efficiently solve
equations systems through the acceleration of the convergence of iterative meth-
ods. Basically, the methods multigrid consider a sequence of meshes for the
solution of equations system.

To solve a equation system with a multigrid methods in a refined mesh of
size N , we introduce meshes of size N/4, N/16, etc., covering the computational
domain. On each grid an associated equation is solved. The solution on the
coarse meshes quickly captures the long wavelength features of the solution, and
solving on the fine mesh captures the short wavelength features.

The multigrid algorithms are based on three central ideas [18]:

1. communication among meshes;
2. nested iterations;
3. and coarse mesh correction.

A meshes in the multigrid hierarchy communicates with the adjacent ones
through restriction and interpolation operators. Restriction takes data on a mesh
and restricts it to the next coarsest mesh, defined by:

I
N/4

N : N→N/4

Interpolation takes data on a mesh and interpolates it onto the next finest mesh.
The operator is defined by:

IN
N/4

: N/4→N

In the technique of nested iterations, the objective is find a better initial
guess for the solution using iterations in coarse meshes. The coarse meshes have
a lower number of variables, and consequently, the computational cost of the



iteration is reduced, in relation to an iteration in the most refined mesh. Then,
one better initial guess for Ax = b can be given using the coarsest mesh. An
example is show in Fig. 3

solve (Ax=b)

I
N

N/4
(x)

N

N/4

N/16

I
N/4

N/16
(x)

Fig. 3. Nested iterations. In this example, the process starts in the N/16 mesh that
obtains a initial guess to N/4, and N/4 compute a initial guess to N .

This strategy does not guarantee that the solution solution in N does not
contains soft error components (low frequency). The usage of the correction of
error in the coarse meshes prevents this limitation. Iterating in the fine mesh
until the errors have been removed, the residual equation is iterated equation
in the coarse mesh to get an approximation of the error. Then, is interpolated
to the fine mesh, where the first guess is corrected. The correction using the
residual equation to iterate the error is shown in Fig. 4.

solve (Ax=b)
calculate residual (r=b-Ax)

solve (Ae=r)

correct solution (x=x+e)

I
N/4

N
(r) I

N

N/4
(e)

N

N/4

Fig. 4. Coarse grid correction.

Using combinations between the strategy of coarse mesh correction and the
use of nested iterations, a family of multigrid methods can be defined [19].

3.1 Full Multigrid V

By the distinct combinations is possible to generate different algorithms that are
known in technique literature. A summary of these different approaches can be
found in [18][19]. In this work the full multigrid V, or simply FMV, is used.

The FMV strategy initiates in the coarsest mesh, for the acquisition of an
initial solution with low computational cost for the superior levels. Then, the



levels number is incremented by one, and a coarse mesh correction is performed.
This process is repeated until all the levels are involved. In the Fig. 5, the
FMV scheme is shown, where the black points represents the operations (linear
system solution, residual and error calculations), and the arrows represents the
transference of information between the mesh levels.

initial solution

final solution
interpolation

restriction

Fig. 5. Full multigrid V.

The theoretical results and numerical experiments show that these methods
are efficient and can be applied to an huge types of problems on the scope of the
scientific computing. The literature shows the generality of the method, being
possible to use it in distinct types of meshes, as well the different discretization
methods [4].

4 Parallel MG-Schur

The proposed method uses the domain decomposition approach to explore the
parallelism em clusters. Domain decomposition methods (DDM) denotes a set
of mathematical, numerical and computational methods and techniques to solve
problems in parallel computers.

A DDM is characterized by the division of the computational domain, that
is partitioned in subdomains using partitioning algorithms. The global solution
of the problem is obtained by the combination of subproblems that are locally
solved. Each processor is responsible for finding the local solution of one or more
subdomains [17]. In parallel solutions by domain decomposition, the subdomains
can be almost treated independently. Therefore, such methods are attractive for
distributed memory environments.

The parallel multigrid method was obtained by the parallelization of the
FMV operations. The solution smoothing is done in parallel by the Schur com-
plement method. The interpolation, restriction and residual calculations, needed
in the coarse mesh correction, also are made in parallel. In the section 4.1 and
4.2 we show the parallelization process of each operation. Thus, all operations
are executed in parallel, where each processor is responsible by one subdomain.
A ilustration of the solution process can be observed in Fig. 6.



Fig. 6. Solution process

4.1 DDM Parallel Smoother

In this work we used the Schur complement method. In the Schur complement
method, the domain is partitioned and the the cells are reordered such that the
interface points are listed last after the interior points.

With this local ordering, each local vector of unknows xi is split into two
parts: the subvector ui of internal vector components followed by the subvector
yi of local interface vector components. The right-hand side bi is conformally
split into the subvectors fi and gi. When partitioned according to this splitting,
the local matrix Ai, residing in the processor i has the form

Ai =

[

Bi Ei

Fi Ci

]

,

so the local equations can be written as:

Biui + Eiyi = fi

Fiui + Ciyi +
∑

j∈Ni

Eijyj = gi

where Ni is the set of indices for subdomains that are the neighbors to the
subdomain i, and the term Eijyi the contribution to the local equation from the
neighboring subdomain j.

Eliminating the variable u in the first equation:

ui = B−1

i (fi − Eiyi) (1)

and substituting u in the second equation:

Siyi +
∑

j∈Ni

Eijyj = gi − FiB
−1

i fi (2)

where Si = Ci − FiB
−1

i Ei, and is the local Schur complement.
With this formulation, each processor needs to know the processors with

which it must communicate and the list of interface points. Thus, the solution
yi in the interface is obtained, and are used to find the internal variables ui. For
more details about the Schur complement method, see [15].



4.2 FMV operations

The other operations required in the FMV method is now discussed. As well the
solver, the restriction, interpolation and residual operations are also calculated
in parallel.

For the data transfer operators, we choose I
N/4

N to be the full-weighted re-

striction operator [18], and the interpolation IN
N/4

is given by xN = 1

4

4
∑

i=1

xN/4,

where xN/4 is the corresponding values in the coarse mesh. In this operations,
each processor is responsible only for its domain. None communication is neces-
sary because no external data are needed.

The residual calculation is necessary in the coarse mesh correction. The resid-
ual equation is given by:

ri = bi − Aixi

however, as the matrix and the vectors was splitted to the Schur complement
method, the residual vector must be splitted in two parts ti and vi, where ti is
related to internal components and vi is related to interface components. Thus,
the residual equation must be written as follow:

ti = fi − Biui + Eiyi

vi = gi − Fiui + Ciyi +
∑

j∈Ni

Eijyj

As seen before, the term Eijyj is the contribution of the neighboring subdo-
mains, therefore, the domain must communicates with its neighbors to receive
the required data.

5 Study Case: heat diffusion equation

For numerical and computational experiments, it was used the discretized heat
diffusion PDE through the finite volume method under triangular unstructured
meshes. The finite volume method subdivides the computational domain in not
overlapped subdomains the called finite volumes, that here are the triangles of
the mesh.

The finite volume method assures the method quality solution basing the
approaches in the conservation principles. For example, the principle of the mass
conservation affirms that the mass cannot be created nor be destroyed; if the flow
for inside of a region exceeding that one that leaves, the mass will be accumulated
inside of this. This approach used here can be implemented by integration of the
differential equations, assuring local conservation and, consequently, global [2].

Considering the equation:

∂T

∂t
= µ

(

∂2T

∂x2
+

∂2T

∂y2

)

(3)

that model the temperature diffusion, where µ is the diffusion constant.



Integrating the equation (3) in time and space:

∫

Ω

∫

t

∂T

∂t
dΩdt =

∫

Ω

∫

t

µ

(

∂2T

∂x2
+

∂2T

∂y2

)

dΩdt (4)

or equivalently
∫

Ω

∫

t

∂T

∂t
dΩdt = µ

∫

Ω

∫

t

▽ (▽T ) dΩdt (5)

Using the Gauss divergence theorem:

∫

Ω

∫

t

∂T

∂t
dΩdt = µ

∫

∂Ω

∫

t

(▽T ) d∂Ωdt (6)

Considering T does not vary in the space, so a discretization to the left hand
side of equation(6) is:

∫

Ωi

∫

t

∂T

∂t
dΩidt ≃ Pi

(T n+1

i − T n
i )

∆t
(7)

where Pi is the area of i − th triangle.

Approximating the right hand size of (6) using the sides of the i−th triangle:

µ

∫

∂Ω

∫

t

(▽T ) d∂Ωdt ≃ µ

(

(T n
i1 − T n

i )
λj1

δj1

+ (T n
i2 − T n

i )
λj2

δj2

+ (T n
i3 − T n

i )
λj3

δj3

)

(8)

where λj is the size of j − th side, δj is the distance between the centers (as
defined in Section 2) of the triangle that share the j − th side and the triangles
ip (p = 1, 2, 3) share the side jp (p = 1, 2, 3) with the element i, how we can
observe in Fig. 7.

i

i1

i2

i3

j2

j3j1

Fig. 7. Triangle and triangle side notations

Using (7) and (8), a implicit approximation to (6) can be written by:

Pi(T
n+1

i − T n
i ) = µ∆t

(

(T n+1

i1 − T n+1

i )
λj1

δj1

+ (T n+1

i2 − T n+1

i )
λj2

δj2

+ (T n+1

i3 − T n+1

i )
λj3

δj3

)

(9)



Thus,

(T n+1

i − T n
i ) =

µ∆t

Pi

(

(T n+1

i1 − T n+1

i )
λj1

δj1

+ (T n+1

i2 − T n+1

i )
λj2

δj2

+ (T n+1

i3 − T n+1

i )
λj3

δj3

)

(10)

considering µ∆t
Pi

= wi:

T n+1

i − wi(T
n+1

i1 − T n+1

i )
λj1

δj1

− wi(T
n+1

i2 − T n+1

i )
λj2

δj2

− wi(T
n+1

i3 − T n+1

i )
λj3

δj3

= T n
i

(11)

Isolating the Tn+1

i therm, the results above can be written in the matrix
form as:
[

1 + wi

(

λj1

δj1
+

λj2

δj2
+

λj3

δj3

)]

·Tn+1

i −wi
λj1

δj1
Tn+1

i1 −wi
λj2

δj2
Tn+1

i2 −wi
λj3

δj3
Tn+1

i3 = Tn
i

(12)
The matrix assembly is done using the mesh information of the entire domain.

Each internal triangle of the domain generates one row of the coefficient matrix,
where the number of terms depends on the number of neighbor cells of the
triangle corresponding to that row of the matrix. The matrix generated is sparse,
with a maximum of 4 non-null elements per row, and stored in CSR format. As
the local matrices are sparse and non-symmetric, we used the MG-Schur with
GMRES(m), with m = 5.

The solution of the heat transfer equation was obtained for a square domain,
with 1m2 and µ = 0.1. This domain was discretized in a 4 level mesh hierarchy
generated by MGTool. The mesh levels contain 1337, 5348, 21392 and 85568
triangles, respectively. In this test we used constant boundaries conditions with
0oC on three edges of the square and one edge with 1oC.

6 Results

The implementations of this paper are being developed to explore parallelism
in clusters. Conceptually, cluster is a collection of computers (workstations, per-
sonal computers or SMPs), called nodes, which are used exclusively for achieve
high performance [5]. These machines are physically interconnected by a lo-
cal network or a high performance network. The use of this architecture has a
significant increase in the last years due, mainly, the low cost and the system
scalability.

The implemented algorithms were run in the cluster of the Laboratory of
Technology in Clusters (LabTeC) of UFRGS Computer Science Institute, de-
veloped in association with the Dell Computers. The cluster labtec is formed
by 21 nodes, where 20 are dedicated exclusively for processing and one server
node. The interconnection of the processing nodes is made through one Gigabit
Ethernet switch. Each processing node is a Dual Pentium III 1.1 GHz, with 1
GB of RAM memory, 512 KB of cache and 18 GB SCSI hard disk; the server
node is a Dual Pentium IV Xeon 1.8 GHz, with 1 GB of memory RAM and 36
GB SCSI hard disk.



In this type of architecture parallel programming is usually explicit, requiring
complete control over implementation strategies and over the implementation it-
self, and, in this context, parallelism is obtained through the division-conquer
paradigm. From the programming point of view, the SPMD (Single Program
Multiple Data) paradigm was used. For the development of parallel applications
in distributed memory machines, like clusters, is necessary the use of an message
passage library. All the algorithms were implemented using C programming lan-
guage and the MPICH 1.2.5 message passing library [11] over Linux operating
system.

The MG-Schur method was tested up to 38 processes. We also compare the
MG-Schur to a Schur complement method without multigrid. The Figs. 8 and 9
show execution time and computational efficiency obtained, respectively. These
results were obtained without considering the opening and reading of input data
and considering 15 cycles, where each cycle is composed by the maximum number
of iterations necessary to reach the desired accuracy. In the tests the error is 10−5.

Fig. 8. Execution time x number of processes

Accordly to the figures, we can observe that both tested methods are scalable
but the MG-Schur is almost twice faster than Schur method. The maximum
efficiency was achieved when executed with 20 processes, where we obtained
16.11 of speedup and 79% of efficiency. The maximum speedup achieved was
27.07 using 36 processes, with 75% of efficiency.

It should be noted, that the efficiency decreases when using some amount of
processes (e.g 2, 4, 16, 28 and 32). This fact occurs due to the solution of the
large Schur complement interface systems, that are generated when the domain
partitioning presents large artificial boundaries among the subdomains.

As the simulation runs, heat is transmitted from warmer parts of the domain
to cooler parts of the domain, and gradually converging to a stable state. The
presented solution is continuous among the subdomains, showing a effective par-



Fig. 9. Efficiency x number of processes

allel solution. In the Fig. 10 we can observe the heat distribution in a section of
the domain (x=0.5).

7 Conclusion and Future Work

In this work we presented a parallel implementation of a multigrid method,
using Schur complement domain decomposition method. The numerical results
obtained when running the solver in several processors are consistent with the
results obtained running it in one processor, and the difference between the
results are due to the accuracy desired.

The experiments performed have shown that the proposed implementation
has shown to be computationally efficient, good scalability, and good numerical
quality.

As future work, three important issues will subject of more research: im-
plementation of a flexible multigrid algorithm to allow the solution by diverse
types of multigrid cycles, parallelization of the multigrid by overlapping domain
decomposition, and adapt MG-Tool to the solution of the hydrodynamics of Un-
Hidra model. The UnHidra is a multi-physics parallel computational model for
the simulation of substance transport and for the 2D and 3D hydrodynamic flow
in water bodies, using unstructured meshes.

8 Acknowledgments

Thanks to CAPES for financed the master thesis related to this work. Some
issues of this research are included to the UnHIDRA project (CT-HIDRO, Pro-
cesso 502858/2003-6, Edital MCT/CNPq/CT-HIDRO 01/2003).



Fig. 10. Three steps in the heat transfer problem. From top to bottom, t = 1, t = 5
and t = 10. We can observe that the system gradually converge to a stable state

References

1. S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. McInnes, B. F. Smith, and H. Zhang. PETSc users manual. Technical Report
ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2004.

2. T. Barth. Numerical methods and error estimation for conservation laws on struc-
tured and unstructured meshes. Von Karman Institute, LS04-2003, 2003, pp 1-65,
2003.

3. P. Bastian, W. Hackbusch, and G. Wittum. Additive and multiplicative multi-grid:
a comparison. Computing, 60:345364, 1998.

4. W. Briggs. A Multigrid Tutorial. SIAM, Philadelphia, 1987.
5. R. Buyya. High Performance Cluster Computing: Architecture and Systems, vol-

ume 1. Prentice Hall, 1999.



6. V. Casulli and R. Walters A. An Unstructured Grid, Three-Dimensional Model
based on the Shallow Water Equations. International journal for numerical meth-
ods in fluids, v. 3, p. 331-348. 2000.

7. T. F. Chan and B. F. Smith. Domain decomposition and multigrid algorithms for
elliptic problems on unstructured meshes. Electronic Transactions on Numerical
Analysis. Volume 2, pp. 171-182, December 1994.

8. E. Chow, R. Falgout, J. Hu, R. Tuminaro and U. Meier Yang. A Survey of Paral-
lelization Techniques for Multigrid Solvers to appear in Frontiers of Parallel Pro-
cessing For Scientific Computing, SIAM book series , 2005.

9. C. C. Douglas. MGNet: a multigrid and domain decomposition network.
http://www.mgnet.org.

10. M. Filipiak. Mesh Generation. [S.l.]: EPCC, Edinburgh, 1996. Watch Report.
11. W. Groop, et al. A High Performance, Portable Implementation of the MPI Mes-

sage Passing Interface Standard. Parallel Computer, v.22, n.6, p.789-828, Sep. 1996.
12. G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Parti-

tioning Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359–392,
1998.

13. B. Niceno. EasyMesh(Version 1.4), freely available mesh generator on the web site:
http://www-dinma. univ.trieste.it/∼nirftc/research/easymesh/.

14. P.-O. Fjällström. Algorithms for Graph Partitioning: a survey. In Linköping Elec-
tronic Articles in Computer and Information Science, volume 3, Linköping, 1998.
Department of Computer and Information Science, Linköping University.

15. Y. Saad and M. Sosonkina Distributed Schur Complement Techniques for General
Sparse Linear Systems. SIAM Journal on Scientific Computing. October, 1997.

16. Y. Saad and M. Sosonkina. pARMS: a package for solving general sparse linear
systems of equations. In R. Wyrzykowski, J. Dongarra, M. Paprzycki, and J. Was-
niewski, editors, Parallel Processing and Applied Mathematics, volume 2328 of Lec-
ture Notes in Computer Science, pages 446–457, Berlin, 2002. Springer-Verlag.

17. B. Smith, P. Bjorstad, and W. Gropp. Domain Decomposition: Parallel Multilevel
Methods for Elliptic Partial Differential Equations. Cambridge University Pres,
Cambridge, 1996.

18. U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. 2001. With contri-
butions by A. Brandt, P. Oswald and K. Stüben.

19. P. Wesseling. Introduction to Multigrid Methods. John Wiley & Sons, Chichester,
1992.


