
DTR: Distributed Transaction Routing in a Large

Scale Network

Idrissa Sarr, Hubert Naacke, and Stéphane Gançarski

University Paris 6, LIP6 Lab, France
FirstName.LastName@lip6.fr

Abstract. Grid systems provide access to huge storage and computing
resources at large scale. While they have been mainly dedicated to scien-
tific computing for years, grids are now considered as a viable solution for
hosting data-intensive applications. To this end, databases are replicated
over the grid in order to achieve high availability and fast transaction
processing thanks to parallelism. However, achieving both fast and con-
sistent data access on such architectures is challenging at many points.
In particular, centralized control is prohibited because of its vulnerabil-
ity and lack of efficiency at large scale. In this article, we propose a novel
solution for the distributed control of transaction routing in a large scale
network. We leverage a cluster-oriented routing solution with a fully dis-
tributed approach that uses a large scale distributed directory to handle
routing metadata. Moreover, we demonstrate the feasibility of our imple-
mentation through experimentation: results expose linear scale-up, and
transaction routing time is fast enough to make our solution eligible for
update intensive applications such as world wide online booking.

1 Introduction

Grid systems use a distributed approach to deal with heterogeneous resources,
high autonomy and large-scale distribution. Thus, they present a real interest to
important areas of enterprise information systems. For instance, Global Distri-
bution Systems (GDS) like Amadeus [2], Sabre [16], Galileo [6] manage a huge
amount of data for airline companies, hotels and travel agencies. For instance,
Amadeus system information manages data for 62.000 travel agencies, 734 air-
line companies, 61560 hotels and covers more than 207 countries. The challenge
for these systems is to ensure data availability and consistency in order to deal
with fast updates. To solve this problem, these systems use expensive parallel
servers. Furthermore data is located on single site, which limits scalability and
availability. Mapping these GDS systems to a grid allows to overcome these lim-
itations at a rather low cost. In such architecture, the data accessed by the GDS
will be stored by the participants (hotels, airline companies, etc.) and can be
shared. Thus, the data is distributed and parallel executions can be done so that
load balancing is achieved.
In order to improve data availability, data is replicated and transactions are
routed to the replicas. However, the mutual consistency can be compromised,



because of concurrent updates. Let us illustrate the problem with a concurrent
update. Assume that we have two replicas R1 and R2 and we have two trans-
actions T1 and T2 which are sent respectively by two applications (or travel
agency) A1 and A2. Each transaction aims for making a reservation operation in
the same flight (AF709) of Air France airline company. Assuming that only one
seat is available and T1 are routed to R1 and T2 to R2, then the simultaneous
execution of T1 and T2 produce a data inconsistency: one of travel agencies sales
a non-existing seat. Another point is that some queries can be executed at a
node which misses the latest updates. For instance, a request which computes
the number of passengers of a flight can be executed in a (few loaded) stale node.
To this end, two conditions must be satisfied: (i) staleness of the node (expressed
in number of missing updates) does not exceed the quantity of overbooking the
company is allowed and (ii) the request does not perform updates (for sake of
consistency). In other words, controlling the freshness of nodes for executing
read-only queries can help in improving performances through a better load bal-
ancing. Many solutions have been proposed in distributed systems for managing
replicas [13], [11], [9], [8], [5] and [12]. Some of them include freshness control
[15], [7], [10] and [1]. We base our work on the Leg@net approach [7], since it
offers update anywhere and freshness control features and does not require any
modification of the underlying DBMS nor of the application source code.

However, cluster systems deals with homogeneous nodes and are not suitable
for systems which have heterogeneous and independent entities such as GDS. In
order to make Leg@net system suitable to GDS applications, it is necessary to
modify its architecture such that it becomes fully distributed on grid system. To
reach this goal, the router and the metadata will be replicated at many sites of
the grid.
In this paper, we aim to design a new system relying on the Leg@net principles
to deal with transaction routing at a large-scale. Our main contributions are:

– A fully distributed transaction routing model which deals with update-
intensive application. Our middleware, ensures data distribution transparency
and does not require synchronization (through 2PC or group communication)
while updating data.

– A large-scale distributed directory for metadata, highly available and easy
to access. It enables to keep data consistency with few communications mes-
sages between routers.

– Experimental evaluation of our approach that show its feasability.

The rest of this paper is organized as follows. We first present in Section 2
the global system architecture, the replication and freshness model. Section 3
describes our algorithm for transaction routing with freshness control. Section 4
presents experimental evaluations of our system and Section 5 concludes.

2 System Architecture and Model

In this section we describe how our system architecture and model are defined.
We first present the global architecture which is needed for understanding our



solution. Then we describe the replication and freshness model used in order to
preserve global consistency.

2.1 Architecture

The global architecture of our system is depicted on Figure 1. Transactions
are sent by applications to any Transaction Manager (TM). TM uses metadata
stored in a shared directory implemented into JuxMem [3], to route the trans-
action for execution on a data node (N i) while maintaining global consistency.
JuxMem provides the abstraction of a shared memory over a distributed grid in-
frastructure, by transparently handling consistency in a fault-tolerant way. Data
nodes use a local relational DBMS to store data and performs local execution of
transactions sent by TMs.

App1

App2

Appn

Directory

Ni Nj Nk Nn

J
U
X
M
E
M

JUXMEM

Grid System

TMs

Fig. 1. Global architecture

2.2 Replication and Freshness Model

We assume a single database composed of relations R1, R2...Rn that is fully
replicated at nodes N1, N2...Nm. The local copy of Ri at node Nj is denoted by
Ri

j and is managed by the local DBMS. We use a lazy multi-master (or update
everywhere) replication scheme. Each node can be updated by any incoming
transaction and is called the initial node of the transaction. Other nodes are
later refreshed by propagating the transaction through refresh transactions. We
distinguish between three kinds of transactions:

– Update transactions are composed of one or several SQL statements which
update the database.

– Refresh transactions are used to propagate update transactions to the other
nodes for refreshment. They can be seen as “replaying” an update transaction
on another node than the initial one. Refresh transactions ar distinguished
from update transactions by memorizing in the shared directory, for each
data node, the transactions already routed to that node.



– Queries are read-only transactions, and thus need not be refreshed.

Let us note that, because we assume a single replicated database, we do not
need to deal with distributed transactions, i.e. , each incoming transaction can
be entirely executed at a single node.

2.3 Freshness Model and Metadata

Every transaction (update, refresh or query) reads a set of relations, every update
and refresh transaction writes a set of relation. This information can be obtained
by parsing transactions code, and is stored into the shared directory.

Queries may access to stale data, provided it is controlled by applications. To
this end, application can associate a tolerated staleness with queries. Staleness
can be defined through various measures [10]. In this paper, we only consider one
measure, defined as the number of updated tuples, for each relation Ri accessed
by a transaction T . More precisely, the staleness of Ri

j is equal to the maximum

number of tuples of Ri already updated on any node but not yet updated on
Nj . The tolerated staleness of a query is thus, for each relation read-accessed by
the query, the maximum number of updates that can be missing on a node to be
read by the query. Tolerated staleness reflects the freshness level a query requires
to be executed on a given node. For instance, if the query requires perfectly fresh
data, its tolerated staleness is equal to zero. This information is also stored in the
shared directory. Note that, for consistency reasons, update (and thus refresh)
transactions must read perfectly fresh data, thus their tolerated staleness is
always equal to zero for every relation they access.

To compute the staleness of a relation copy Ri
j , we store in the shared direc-

tory, for each update transaction T writing Ri, the maximum number of tuples
T may update on Ri. We also store the system global state, i.e. for each up-
date transaction, the nodes where it has been already executed. This allows for
computing a lower bound of Ri

j ’s staleness, which is lower or equal to the actual
staleness. This guarantees that, when executing a query with tolerated staleness
ts on a node with an estimated staleness s ≤ ts, then the actual freshness of the
node is sufficient to fullfil the query requirement.

The shared directory also stores, for each transaction T , the estimated time
of processing T , which is a moving average based on previous executions of T .
It is initialized by a default value obtained by running T on an unloaded node.
It serves at computing the cost function used for transaction routing and load
balancing (see Section 3.1).

2.4 Global Consistency

In a lazy multi-master replicated database, the mutual consistency of the database
can be compromised by conflicting transactions executing at different nodes. To
solve this problem, update transactions are executed at database nodes in com-
patible orders, thus producing mutually consistent states on all database repli-
cas. Queries are sent to any node that is fresh enough with respect to the query



requirement. This implies that a query can read different database states ac-
cording to the node it is sent to. However, since queries are not distributed, they
always read a consistent (though stale) state. To achieve global consistency, we
maintain a graph in the shared directory, called global precedence order graph.
It keeps track of the conflict dependencies among active transactions, i.e. , the
transactions currently running in the system but not yet committed. It is based
on the notion of potential conflict: an incoming transaction potentially conflicts
with a running transaction if they potentially access at least one relation in com-
mon, and at least one of the transactions performs a write on that relation. This
pre-ordering strategy, already used in Leg@net, is comparable to the one of [4].
The main difference is that the global ordering graph is also used for computing
nodes freshness

3 Transaction Routing with Freshness Control

In this section, we describe how transactions are routed in order to improve
performance. First, we present the routing algorithm, directly inspired from [7].
Then, we discuss the specific issues raised by the use of a shared directory.

3.1 Routing Algorithm

Our routing strategy is cost based and uses late synchronization, thus it takes
into account the cost of refreshing a node before sending a transaction to it.
As mentioned in [7], the routing complexity is linear in the number of active
transactions and the number of nodes, which makes our approach scalable. The
cost-based routing algorithm evaluates, for each node Nj :

– Nj ’s load. This cost is computed by evaluating the remaining execution time
of all running or waiting transactions at node Nj.

– the cost of refreshing Nj enough (if necessary) to meet a transaction T

freshness requirements. To this end, it computes a refresh sequence S for
Nj : the minimal sequence of refresh transactions to be executed on Nj to
make it fresh enough wrt. T ’s requirement. In other words, after applying
the refresh sequence on Nj , its staleness wrt. each relation read-accessed T

is lower than the respective staleness tolerated by T (remember that this
tolerated staleness is always 0 if T is an update). The cost is the estimated
time needed to execute the sequence S.

– the cost of executing T itself.

Then it chooses the node which minimizes the cost, i.e. the sum of the preceding
three costs, sends the corresponding sequence to this node and finally sends it
the transaction T . It also updates the shared directory: all the transactions in S
(plus T if T is an update) are dropped from the set of transactions waiting to
be executed on N.

In order to ensure global consistency, refresh transactions are inserted in the
refresh sequence according to the global serialization order: whenever a refresh



transaction is inserted, all its predecessors not yet executed on the node are also
inserted, in the appropriate order, so that the sequence order is compatible with
the global precedence order (see Section 2.4 )

3.2 Concurrent Access to the Shared Directory

As opposed to the centralized version of [7], where the single router is interacting
sequentially with the directory, we must here take into account the concurrency
problem due to the presence of several routers, thus to simultaneous access the
metadata. We decided to solve this problem using traditional two phase locking
(locks on metadata are kept until the end of the routing process), based on two
observations: (1) the routing process is very fast compared to the execution of
the refresh sequence and of the transaction itself, thus locks are released rather
quickly, and (2), locking is provided by JuxMem, which makes the implemen-
tation straightforward. In order to validate this choice, we ran experiments to
measure the overhead due to concurrent access to the shared directory (see next
Section).

4 Experimental Validation

In this section we evaluate the performances of our solution through experimen-
tation. In [7], the Leg@net router was demonstrated to perform better than well
known routing strategies such as round robin or least loaded node routing. Since
our solution relies on the same cost based routing algorithm, we focus here on
comparing the distributed version of the routing algorithm with the Leg@net
centralized one.

The experiments follow two goals. First, we need to check that the distributed
router is not a bottleneck, i.e. , it routes every transaction fast enough. Second,
we want to assess if the distributed router brings some global benefit for the
applications i.e. , if it improves transaction response time.

4.1 Experimental Setup

We run all the experiments on a 20 nodes (P4, 3GHz, 2GB RAM) cluster with
1Gb/s inter node connection as well as some desktop computers from the labo-
ratory to host end user applications. The router is implemented in C language
and relies upon JuxMem services, which are built on top of Sun JXTA layer.
JuxMem provides a grid-wide RAM access. Our router acts as a middleware; it
provides a transaction processing interface for the applications. A cluster node
has two roles: it acts as a router node and/or a DBMS node.

4.2 Distributed Directory Access Overhead

The first set of experiments focuses on the routing step itself. It measures the
overhead of using a distributed directory to manage router metadata. The work-
load is made of an increasing number of applications, each of them is sending one



transaction per second to a single router. We measure the resulting throughput
(in transaction/second) that the router achieves. Figure 2 shows that a single
router can process up to 40 transactions per second. This threshold is satisfying
considering that more routers would be able to handle higher workloads.

Fig. 2. Middleware throughput

A part of the routing process is to access the distributed directory. In order
to quantify the directory access overhead and then to know if our approach can
scale out, we increase the directory size by adding database replicas, since more
replicas imply more metadata. We report on Figure 3, the output workload that a
router achieves in 3 cases: small , medium and large directory size (respectively 5
, 50, 100 replicas). We measure a slowdown of less than 20% for a large directory
that has a replication degree of 100. For a smaller replication degree of 50, the
slow down is only 5%. Since most of the applications, in our context, require
a replication degree lesser than 10, we conclude that the distributed directory
access is not a performance brake.

Furthermore, we study the impact of multiple routers concurrently accessing
the distributed directory. The workload is made of the same applications as the
former experiment, but the transactions are sent to 2 routers (such that half
of the workload goes to each router). The results of Figure 4 are obtained in
the worst case (i.e. all transactions access to the same data leading the routers
to do so with metada) and they shows a maximal throughput of 20 transac-
tions/second that is half of the standalone throughput. Indeed, waiting for locks
is decreasing the router throughput. Thus, in the worst case where each directory
access is delayed by a concurrent access to the same metadata, the router is still
able to provide reasonable throughput. We note that, in our context, concurrent
situations are not frequent since metadata is fragmented and the probability of
concurrent access to the same fragment is weak. Nevertheless, ongoing experi-



Fig. 3. Directory size overhead

mentations aim to evaluate precisely the slowdown led by concurrent access to
the distributed directory wrt concurrency degree. In other words, we will vary
the concurrency degree between 0% and 100% and measure the variations of the
performances.

4.3 Overall Routing Performance

This experiment focuses on the overall transactional performance of the dis-
tributed routing (DR). We measure the increase in throughput compared to the
centralized routing (CR) of [7]. The workload is made of N applications of 3
kinds (N/3 apps of each kind). Each kind of application is accessing a distinct
part of the database and is connected to a distinct router. In other words, there
is no concurrency between routers when accessing the directory We measure the
output throughput when N is varying from 15 to 150 applications. On Figure 5,
we compare theses results with a case where a single router receives the whole
identical workload. As n is increasing, the gap between DR and CR is expand-
ing. For a heavy workload of 150 applications, DR outperforms CR by a ratio of
3. The main reason is that centralized routing quickly reaches its performance
limit due to the time required to route each transaction. We note that the benefit
ratio equals the number of routers: that demonstrates a linear scale up. Ongoing
experimentations are conducted to assess up to which number of routers our
solution scales linearly.

4.4 Dealing with Scale Up

In order to deal with large scale network, our experiments must take into ac-
count the databases and directory replication at large scale such as grid systems.



Fig. 4. Concurrent access

Fig. 5. Distributed vs centralized algorithm



However, in this paper, our main goal is to demonstrate the performance benefit
that we achieve by distributing the routing protocol. To this end, replicating our
middleware over few nodes, at least one router per cluster, is sufficient. More
precisely, we note that JuxMem experiments reported the time to write meta-
data stored on a remote cluster that belongs to the Grid5000 [14] infrastructure:
more than 90 milliseconds per write. In such environment, the routing time of
our system would be around 100 milliseconds. Then, the router throughput falls
to 10 transactions per second.

However, if every router access only a part of the distributed directory that
is managed locally on the same cluster, the throughput performance (up to 40
transaction/second) is still observed, even if the databases are replicated over
many remote clusters. In this case, the response time slightly increases depending
on network latency between clusters.

5 Conclusion

This paper presents an ongoing work towards the design and implementation of a
grid-based large scale data management system. This system extends Leg@net, a
previous work designed for clusters, to the grid context. It uses JuxMem, a shared
main memory system designed for grids to implement a shared, distributed direc-
tory which stores metadata useful for transaction routing and freshness control.
The experimental evaluations led on a first version of the system show that the
overhead due to accessing to the distributed directory is rather low. They also
shows that, using the distributed directory, we can implement several instances
of the router in the network. For heavy workloads, this increases significantly
the global throughput of the system with respect to the centralized version of
the router used in Leg@net.

Ongoing experimentations are conducted to find out the optimal number
of router instances with respect to the heaviness of the workload. After, we
plan to evaluate precisely the slowdown led by multiple routers concurrently
accessing the distributed directory wrt to concurrency degree. We will also take
into account the grid heterogeneity (intra-cluster links faster than inter-cluster
links) in our cost estimations, in order to improve node choice and thus to yield
better performances. Next, we will run the same experimentation as the one
led with Leg@net to observe the benefits in terms of response time queries can
obtain with respect to the staleness they tolerate. Furthermore, we plan to deal
with fault tolerance.

References

1. F. Akal, C. Türker, H. Schek, Y. Breitbart, T. Grabs, and L. Veen. Fine-Grained
Replication and Scheduling with Freshness and Correctness Guarantees. In Int.
Conf. on Very Large DataBase (VLDB), pages 565–576, 2005.

2. Amadeus. http://www.amadeus.com/index.jsp.



3. G. Antoniu, L. Bougé, and M. Jan. JuxMem: An Adaptive Supportive Platform for
Data Sharing on the Grid. Scalable Computing: Practice and Experience, 6(3):45–
55, 2005.

4. Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Con-
trol and Recovery in Database Systems. Addison-Wesley, 1987.

5. S. Choi, M. Baik, J. Gil, C. Park, S. Jung, and C. Hwang. Group-Based Dy-
namic Computational Replication Mechanism in Peer-to-Peer Grid Computing. In
CCGRID ’06: Proceedings of the Sixth IEEE International Symposium on Cluster
Computing and the Grid, page 7. IEEE Computer Society, 2006.

6. Galileo. http://www.galileo.com.
7. S. Gançarski, H. Naacke, E. Pacitti, and P. Valduriez. The Leganet System:

Freshness-aware Transaction Routing in a Database Cluster. Journal of Infor-
mation Systems, 32(2):320–343, 2006.

8. R. Guerraoui and A. Schiper. Software-Based Replication for Fault Tolerance.
IEEE Computer, 30(40):68–74, 1997.

9. R. Koo and S. Toueg. Checkpointing and rollback-recovery for distributed systems.
IEEE Transactions on Software Engineering, 13(1):23–31, 1987.

10. C. Le Pape, S. Gançarski, and P. Valduriez. Refresco: Improving Query Per-
formance Through Freshness Control in a Database Cluster. In Int. Conf. On
Cooperative Information Systems (CoopIS), pages 174–193, 2004.

11. E. Pacitti, C. Coulon, P. Valduriez, and T. Özsu. Preventive Replication in a
Database Cluster. Distributed and Parallel Databases, 18(2):223–251, 2005.

12. E. Pacitti, P. Minet, and E. Simon. Fast Algorithms for Maintaining Replica Con-
sistency in Lazy Master Replicated Databases. Int. Conf. on Very Large DataBase
(VLDB), 1999.

13. M. Patino-Martinez, R. Jimenez-Peres, B. Kemme, and G. Alonso. MIDDLE-R,
Consistent Database Replication at the Middleware Level. ACM Transactions on
Computer Systems, 28(4), 2005.

14. Grid’5000 Project. http://www.grid5000.org.
15. U. Rohm, K. Bohm, H. Sheck, and H. Schuldt. FAS - a Freshness-Sensitive Coor-

dination Middleware for OLAP Components. Int. Conf. on Very Large DataBase
(VLDB), 2002.

16. Sabre. http://www.sabre.com/.


