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3 ENS Cahan Brittany/IRISA, FraneAbstrat. This paper addresses the problem of e�iently storing andaessing massive data bloks in a large-sale distributed environment,while providing e�ient �ne-grain aess to data subsets. This issue isruial in the ontext of appliations in the �eld of databases, data min-ing and multimedia. We propose a data sharing servie based on dis-tributed, RAM-based storage of data, while leveraging a DHT-based,natively parallel metadata management sheme. As opposed to the mostommonly used grid storage infrastrutures that provide mehanisms forexpliit data loalization and transfer, we provide a transparent aessmodel, where data are aessed through global identi�ers. Our proposalhas been validated through a prototype implementation whose prelimi-nary evaluation on the Grid'5000 testbed provides promising results.1 IntrodutionManaging data at a large sale is paramount nowadays. Governmental and om-merial statistis, limate modeling, osmology, genetis, bio-informatis, et.are just a few examples of �elds routinely generating huge amounts of data. Itbeomes ruial to e�iently manipulate these data, whih must be shared atthe global sale.In suh a ontext, one important goal is to provide mehanisms allowing tomanage massive data bloks (e.g., of several terabytes), while providing e�ient�ne-grain aess to small parts of the data. Several types of appliations ex-hibit suh a need for e�ient saling to huge data sizes: databases ([1�3℄), datamining [4℄, multimedia [5℄, et.Towards transparent management of data on the grid. The management ofmassive data bloks naturally requires the use of data fragmentation and of dis-tributed storage. Grid infrastrutures, typially built by aggregating distributedresoures that may belong to di�erent administration domains, provide an appro-priate solution. When onsidering the existing approahes to grid data manage-ment, we an notie that most of them heavily rely on expliit data loalization
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and on expliit transfers of large amounts of data aross the distributed arhite-ture: GridFTP [6℄, Reptor [7℄, Optor [7℄, LDR [8℄,Chirp [9℄, IBP [10℄, NeST [11℄,et. Managing huge amounts of data in suh an expliit way at a very largesale makes the design of grid appliation muh more omplex. One key issue tobe addressed is therefore the transpareny with respet to data loalization anddata movements. Suh a transpareny is highly suitable, as it liberates the userfrom the need to handle data loalization and transfers.However, a few grid data management systems aknowledge that providinga transparent data aess model is important by integrating this idea at theearly stages of their design. Grid �le systems, for instane, provide a familiar,�le-oriented API allowing to transparently aess physially distributed datathrough globally unique, logial �le paths. The appliations simply open andaess suh �les as if they were stored on a loal �le system. A very large dis-tributed storage spae is thus made available to those existing appliations thatusually use �le storage, with no need for modi�ations. This approah has beentaken by a few projets like GFarm [12℄, GridNFS [13℄, LegionFS [14℄, et.On the other hand, the transparent data aess model is equally defended bythe onept of grid data-sharing servie [15℄, illustrated by the JuxMem plat-form [16℄. Suh a servie provides the grid appliations with the abstrationof a globally shared memory, in whih data an be easily stored and aessedthrough global identi�ers. To meet this goal, the design of JuxMem leverages thestrengths of several building bloks: onsisteny protools inspired by DSM sys-tems; algorithms for fault-tolerant distributed systems; protools for salabilityand volatility support from peer-to-peer (P2P) systems. Note that suh a systemis fundamentally di�erent from traditional DSM systems (suh as TreadMarks,et.). First, it targets a larger sale through hierarhial onsisteny protoolssuitable for an e�ient exploitation of grids made of a federation of lusters.Seond, it addresses from the very beginning the problem of resoure volatilitydue to failures or to the lak of resoure availability.Compared to the grid �le system approah, this approah improves aesse�ieny by totally relying on main memory storage. Besides the fat that amain memory aess is more e�ient than a disk aess, the system an leverageloality-optimization shemes developed for the DSM onsisteny protools.Limitations. However, the JuxMem grid data-sharing servie su�ers from somelimitations with respet to the e�ient storage and aess of massive data bloks.Atually, data are not fragmented in JuxMem: eah individual data is physiallystored as a single data blok in the main memory of a storage provider, and pos-sibly repliated as suh on multiple bakup providers. Consequently, the largestdata blok that the servie is able to store is limited by the size of the RAMof a single provider, typially, a few gigabytes. This lak of fragmentation hasanother drawbak regarding load balaning as all aesses to di�erent parts ofthe same massive blok are served by the same RAM provider.Reently, the e�ient alloation and aess of massive data bloks in mainmemory has been addressed by the JumboMem [17℄ system. This system isdesigned for lusters, not for grids. It allows users to manipulate large ontiguous



data bloks (of the order of 1 TB) using the aggregated RAM of a set of nodesinteronneted through a high-speed In�niband System Area Network. However,JumboMem is targeted for a single user and does not enable data sharing: itdoes not provide synhronization, nor repliation, nor optimized mehanismsfor distributed aess by multiple users. In ontrast, a lot of appliations inthe �eld of databases and data-mining target multi-user environments. Thisrequires adding an e�ient onurreny ontrol, whih is not natively providedby JumboMem.Our approah. Our ontribution is twofold. First, we propose a data sharingservie allowing to store massive bloks of data in a distributed, multi-userenvironment. Seond, e�ient �ne-grain aess to the data is provided thanksto distributed, RAM-based storage of data fragments, while leveraging a DHT-based metadata management sheme, whih is natively parallel.This paper is organized as follows. Setion 2 gives an overview of our arhi-teture and desribes how data aess operations are handled. Setion 3 providesa few implementation details and reports on a preliminary experimental evalu-ation. Finally, on-going and future work is disussed in Setion 4.2 Enabling e�ient �ne-grain aessOur goal is to provide e�ient �ne-grain aess to massive data bloks stored inlarge-sale distributed environments suh as grids. To goal is addressed in thefollowing way. Data is fragmented into small equally-sized hunks (whih will bealled pages below) and distributed aross the loal memory of a large number ofgrid nodes, whih at as providers of storage spae. This fragmentation allows:1) to store huge data bloks; and 2) to avoid ontention for disjoint aessesto pages. To eah data blok, we assoiate some metadata allowing to identifyand loalize the pages that belong to that blok. In order to avoid ontention formetadata aess, metadata is strutured in a �ne-grained manner to be desribedbelow, and stored in a distributed hash table (DHT). Finally, e�ient large-saleonurreny both for reads and writes is ahieved using versioning : onurrentwrites to the same page an proeed in parallel on multiple versions of that page.Our ontribution lies in the adequate ombination of these tehniques to ahievee�ient �ne-grained aess to massive data.2.1 ArhitetureOur servie relies on a set of distributed proesses ommuniating through re-mote proedure alls (RPCs). In a typial setting, eah proess is running on adi�erent physial node.Data providers are responsible for storing and retrieving individual pages intheir loal RAM.A versioning manager is responsible for serializing write requests and for di-reting read requests to the latest version available for reading.



Metadata providers are responsible for storing information about the iden-tity and loalization of the individual pages that make up a data blok. Inour design, metadata providers are organized as a Distributed Hash Table(DHT). Details are given in Setion 2.3.A provider manager reeives and solves the lients' requests for dataproviders. Available providers must previously register with this entity.To interat with the servie, lient proesses simply use a lient library, to whihthey pass a list of DHT gateways and the network id (IP address, port) of theversioning manager. The rest of the system is transparent to the lients.2.2 User interfaeClients manipulate massive data bloks through a simple API:blok_id = allo(page_size, data_size)blok_version = write(blok_id, loal_buffer, offset, size)read(blok_id, blok_version, loal_buffer, offset, size)Massive bloks are identi�ed and aessed through a globally unique id, gen-erated when the blok is alloated. The user is able to ontrol the granularity(page_size) and maximal size of the blok (data_size). Fine-grain aess forreads and writes is enabled through (offset, size) range queries. Eah writegenerates a new blok version. Read operations may expliitly referene a blokversion. By default, they return the latest available version.2.3 Metadata organizationMetadata serves the purpose of identifying and loalizing the pages orrespond-ing to the range (offset, size) spei�ed by read and write operations. Ourdesign aims at favoring fast onurrent aesses to metadata.When the user alloates data_size bytes for a blok, the servie atuallyalloates adjusted_size bytes, where adjusted_size is the smallest power of 2larger than data_size. We organize metadata as a full binary tree. At eahlevel, the nodes of the tree over disjoint (offset, size) ranges. The root overs
(0, adjusted_size), that is, the whole data blok. An intermediate node overing
(offset, size) points to its left hild overing (offset, size/2), and to its righthild overing (offset + size/2, size/2). Leaves over single pages and pointto the page id and to provider holding the page (see Figure 1).A tree node overing (offset, size) is identi�ed by a key, obtained by apply-ing a hashing funtion on the tuple (blok_id, offset, size, blok_version).Intermediate tree nodes store the following information: offset, size, left_keyand right_key, whih are respetively the keys of its left and right hild. Leaves(overing single pages) store a page_id and a provider_id. Tree nodes arestored on the metadata providers using a DHT struture using the keys de-�ned above. This approah is inspired by Merkle trees [18℄, initially developedto handle Lamport's one-time signatures.



Fig. 1. Metadata representation for a 4-page blok. Leaves store page ids Id and theorresponding provider ids P. All nodes are labeled with the (offset, size) range theyover.By relying on the DHT arhiteture and by seleting an adequate hashingfuntion, an even distribution of page requests among metadata providers anbe guaranteed with a high probability. Eah lient takes pro�t of this even dis-tribution by simultaneously ontating a large number of di�erent gateways tothe DHT servie when exeuting parallel requests.2.4 Managing allos, reads and writesAlloation is the heapest and simplest operation. The lient merely ontats theversioning manager providing a page size and total blok size. The versioningmanager assigns this blok an initial version number, 0.To perform a read if no blok version is spei�ed, the lient (Figure 2(a))ontats the versioning manager and requests the latest blok version available. Ifa blok version is spei�ed by the read operation, then this step is simply skipped.Then, the lient ontats the metadata providers and reursively queries thetree nodes overing the range given by (offset, size) for that partiular blokversion, starting from the root and desending towards the leaves. When a leaf isreahed, the lient diretly ontats the appointed data provider and downloadsthe atual page. The read operation ompletes suessfully when all the pageshave been downloaded. It fails if a node or a page ould not be retrieved. In orderto enhane parallelism, requests and responses for tree nodes and for pages arehandled asynhronously by multiple threads on the lient side, and are servedin parallel by the various metadata and data providers, respetively.A write operation (Figure 2(b)) initiated by the lient ompletes in severalstages.1. The lient ontats the provider manager to retrieve a list of ative dataproviders available to store the pages in (offset, size) to be written. Afterreeiving the reply, it assoiates a random data provider and a random page



(a) Reading a blok: sequene of RPCalls (b) Writes: sequene of RPC allsFig. 2.Managing reads and writes: di�erent line styles denote RPCs running in parallelid to eah page, so as to uniquely identify the page in the system with highprobability. Then, it ontats the data providers, requesting them to store thepages. As in the ase of the read operation, write requests sent to providersare asynhronously handled by the lient, and served in parallel by the dataproviders.2. After all providers aknowledge that the pages have been stored, the lientontats the versioning manager to reeive a new version number whih shallidentify the new blok version. The versioning manager enqueues this writerequest, marks it as pending and returns the version number to the lient. Af-ter reeiving it, the lient generates the orresponding tree nodes with respetto the new blok version, starting from the leaves up to this new root. All treenodes whose range is totally inluded in the interval [offset, offset+size]are written to the metadata providers. The rest of the nodes are stored forlater proessing. The goal of this proessing is to properly handle onurrentmetadata updates for a single blok.3. Then, the lient ontats the versioning manager requesting permission toomplete the write operation. If this write request is the oldest one in thequeue, then the versioning manager grants permission to omplete the write.Otherwise it waits for previous pending writes to be dequeued before grant-ing permission. After reeiving permission, the lient builds the remainingtree nodes. These nodes over ranges not inluded in [offset, offset+size].They must orretly referene their hildren orresponding to nodes not mod-i�ed by the urrent write, by using the latest blok version previously om-pleted. At the end of this stage, all generated tree nodes are sent to themetadata providers.



4. Finally, the lient on�rms write ompletion to the versioning manager,whih dequeues the write and marks its orresponding version as the lat-est blok version.Note that various versions of the same page may be stored on di�erentproviders: for eah new page version to be written, the least loaded knownprovider is hosen for its storage, in order to preserve a global load balanein terms of amount of data stored by the providers. (The preise desription ofthis sheme is out of the sope of this paper.)An important onsequene of this property is that suessive inrementalversions of a data blok an be stored as long as storage spae is still globallyavailable in the system: thanks to our hoie of preserving a global load balane,a provider will run out of storage spae only when all the providers olletivelyreah their storage limits. In this ase, ad-ho garbage olletion an be usedto remove the oldest version of the data blok. Suh a feature has not beenimplemented in our system, yet.3 Implementation and experimental evaluationEvaluations are performed using the Grid'5000 [19℄ testbed, a reon�gurable,ontrollable and monitorable experimental Grid platform spread over 9 sites ge-ographially distributed in Frane. We use 160 nodes of a Grid'5000 luster. Eahnode has a Intel Pentium 4 CPU running at 2.6 GHz under Linux 2.6 (Ubuntu),out�tted with 4 GB of RAM eah, and interonneted by a Gigabit Ethernetnetwork. The theoretial maximum network bandwidth is thus 125 MB/s. How-ever, if we onsider the IP and TCP header overhead, this maximum beomesslightly lower: 117.5 MB/s for a MTU of 1500 B. In pratie, we ould measure111 MB/s for a standard TCP soket end-to-end transfer.3.1 Implementation detailsWe use BambooDHT [20℄, whih provides a stable, salable DHT implementationon top of whih we build the abstration of our metadata providers and of theprovider manager.The providers and the versioning manager are implemented in C++ usingthe Boost C++ olletion of libraries. We hose Boost for its standardizationthroughout the C++ ommunity, and for the wide range of funtionalities itprovides, among whih serialization, threading and asynhronous I/O are ofpartiular interest to us.3.2 Performane and evaluationIn this setion, we assess the e�etiveness of our implementation by running aset of experiments. To support our laim of e�iently dealing with both massivebloks and �ne-grain aess, we �x the alloated blok size at 1 TB, and the



page size at 64 kB for all our experiments. Thus, the metadata tree generates asigni�ant overhead as the atual data aesses will onern various ontinuousranges from 16 MB up to 1 GB within the overall range of 1 TB.Using a single lient. Our �rst series of experiments (Figure 3) assesses theoverhead of metadata management. We deploy one versioning manager, 100 dataproviders, and a variable number of metadata providers. Eah physial node runsat most one data provider and one metadata provider. A single lient writes aseries of data, and then reads them bak.It �rst writes a range size of 16 MB starting from offset 0. Then, it ontin-ues writing a seond range of 32 MB, starting from the end of the previous range,and so on, doubling the size parameter eah time until writing a range of 1 GB.Then, the lient suessively reads bak eah of the onseutive segments.The individual writing and reading times for eah segment are logged, sortingout the time used in managing the metadata with respet to the total writingor reading time. Suh a yle is repeated 100 times. This experiment is done forseveral numbers of metadata providers, that is, several sizes of the DHT, rangingfrom 5 to 100.The average timings are reported on Figure 3. Of ourse, the larger theDHT, the larger the degree of parallelism in aessing its nodes from the lient'sthreads, whene the shorter the overall time.These timings show an overhead of 18% for metadata read operations (Fig-ure 3(a)) and 23% for metadata write operations (Figure 3(b)) for 100 meta-data providers. This e�etively results in a bandwidth of 92 MB/s for reads and86 MB/s for writes in aessing the �nal 1 GB range, to be ompared to themaximal limit of 111 MB/s measured in standard TCP soket end-to-end trans-fer. On the other hand, using only 5 metadata providers results in a metadatamanagement overhead exeeding 68%, whih demonstrates the bene�ts of usinga large number of metadata providers, that is, a large DHT.Using multiple onurrent lients. Our next series of experiments (Figure 4)benhmarks our system in a highly onurrent environment, evaluating its sal-ability when inreasing the number of simultaneous reads and writes. For om-parison, we also report on what we all an �ideal� bandwidth orresponding tothe aggregation of totally independent read (resp., write) operations. That is,we multiply the bandwidth of a single reader (resp., writer) by the number ofreaders (resp., writers).We deploy 80 data providers and 80 metadata providers. Eah physial noderuns one data provider and one metadata provider. The versioning manager isrun on a separate node. Then, we deploy a variable number of lients, eahof whih being run on a separate node, di�erent from the ones used for data,metadata and versioning manager. Clients are synhronized to start simulta-neously. They either read or write a disjoint range of the blok: lient i usesoffset = i× 64 MB, size = 64 MB. For reads, data is prewritten. We measurethe average aggregated bandwidth, both for reads and writes, and ompare it tothe ideal aggregation of bandwidth obtained from a single reader/writer.
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(b) Bandwidth for writesFig. 4. Average aggregated bandwidth when varying the number of onurrent lientsAs it an be observed, the �ne-grained dispersion of data and metadataallows for high bandwidth under heavy onurreny, espeially for reads (Fig-ure 4(a)). Writes su�er from a slight performane penalty beause of metadatasynhronization (Setion 2.4). Contating di�erent providers and di�erent meta-data providers onurrently enables a high degree of load balaning among thenetwork nodes. As suh, it makes up for the metadata overhead observed in the�rst series of experiments.4 ConlusionWe have addressed the problem of e�iently storing massive data of the or-der of terabytes in a grid distributed environment. Our ontribution onsists inproposing a data-sharing servie allowing to e�iently alloate, aess and mod-ify suh massive bloks of data in a distributed, multi-user environment. E�ient�ne-grain aess to arbitrarily small parts of the data is provided thanks to dis-tributed, RAM-based storage of data fragments, while leveraging a DHT-based,natively parallel metadata management sheme. Preliminary experiments per-formed with our prototype using the Grid'5000 testbed show that our approahsales well, both in terms of storage providers and in terms of onurreny degree.Our prototype is however a work in progress and de�nitely demands fur-ther re�nement. Fault tolerane, whih beomes ritial in grid environments, isonly partially addressed. We urrently leverage some fault-tolerane mehanismsprovided by the DHT on whih we rely for the implementation of some of theentities of our arhiteture, the metadata providers and the provider manager.This enhanes the availability of metadata thanks to the underlying repliationused by the DHT. However, the versioning manager, though not under heavyload, is still a single point of failure in this preliminary sheme. Besides, data isnot repliated: for eah page, a single opy is kept on a single provider. In orderto improve fault-tolerane, repliation-based mehanisms ould be envisioned inboth ases. To this purpose, we intend to explore the possibility to use self-
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