
Distributed Management of Massive Data:an E�
ient Fine-Grain Data A

ess S
heme⋆Bogdan Ni
olae1, Gabriel Antoniu2, and Lu
 Bougé3
1 University of Rennes 1/IRISA, Fran
e

2 INRIA/IRISA, Fran
e
3 ENS Ca
han Brittany/IRISA, Fran
eAbstra
t. This paper addresses the problem of e�
iently storing anda

essing massive data blo
ks in a large-s
ale distributed environment,while providing e�
ient �ne-grain a

ess to data subsets. This issue is
ru
ial in the
ontext of appli
ations in the �eld of databases, data min-ing and multimedia. We propose a data sharing servi
e based on dis-tributed, RAM-based storage of data, while leveraging a DHT-based,natively parallel metadata management s
heme. As opposed to the most
ommonly used grid storage infrastru
tures that provide me
hanisms forexpli
it data lo
alization and transfer, we provide a transparent a

essmodel, where data are a

essed through global identi�ers. Our proposalhas been validated through a prototype implementation whose prelimi-nary evaluation on the Grid'5000 testbed provides promising results.1 Introdu
tionManaging data at a large s
ale is paramount nowadays. Governmental and
om-mer
ial statisti
s,
limate modeling,
osmology, geneti
s, bio-informati
s, et
.are just a few examples of �elds routinely generating huge amounts of data. Itbe
omes
ru
ial to e�
iently manipulate these data, whi
h must be shared atthe global s
ale.In su
h a
ontext, one important goal is to provide me
hanisms allowing tomanage massive data blo
ks (e.g., of several terabytes), while providing e�
ient�ne-grain a

ess to small parts of the data. Several types of appli
ations ex-hibit su
h a need for e�
ient s
aling to huge data sizes: databases ([1�3℄), datamining [4℄, multimedia [5℄, et
.Towards transparent management of data on the grid. The management ofmassive data blo
ks naturally requires the use of data fragmentation and of dis-tributed storage. Grid infrastru
tures, typi
ally built by aggregating distributedresour
es that may belong to di�erent administration domains, provide an appro-priate solution. When
onsidering the existing approa
hes to grid data manage-ment, we
an noti
e that most of them heavily rely on expli
it data lo
alization

⋆ Conta
t person: Gabriel Antoniu, IRISA, Campus de Beaulieu, F-35042 RennesCedex, Fran
e, Gabriel.Antoniu�inria.fr.

and on expli
it transfers of large amounts of data a
ross the distributed ar
hite
-ture: GridFTP [6℄, Reptor [7℄, Optor [7℄, LDR [8℄,Chirp [9℄, IBP [10℄, NeST [11℄,et
. Managing huge amounts of data in su
h an expli
it way at a very larges
ale makes the design of grid appli
ation mu
h more
omplex. One key issue tobe addressed is therefore the transparen
y with respe
t to data lo
alization anddata movements. Su
h a transparen
y is highly suitable, as it liberates the userfrom the need to handle data lo
alization and transfers.However, a few grid data management systems a
knowledge that providinga transparent data a

ess model is important by integrating this idea at theearly stages of their design. Grid �le systems, for instan
e, provide a familiar,�le-oriented API allowing to transparently a

ess physi
ally distributed datathrough globally unique, logi
al �le paths. The appli
ations simply open anda

ess su
h �les as if they were stored on a lo
al �le system. A very large dis-tributed storage spa
e is thus made available to those existing appli
ations thatusually use �le storage, with no need for modi�
ations. This approa
h has beentaken by a few proje
ts like GFarm [12℄, GridNFS [13℄, LegionFS [14℄, et
.On the other hand, the transparent data a

ess model is equally defended bythe
on
ept of grid data-sharing servi
e [15℄, illustrated by the JuxMem plat-form [16℄. Su
h a servi
e provides the grid appli
ations with the abstra
tionof a globally shared memory, in whi
h data
an be easily stored and a

essedthrough global identi�ers. To meet this goal, the design of JuxMem leverages thestrengths of several building blo
ks:
onsisten
y proto
ols inspired by DSM sys-tems; algorithms for fault-tolerant distributed systems; proto
ols for s
alabilityand volatility support from peer-to-peer (P2P) systems. Note that su
h a systemis fundamentally di�erent from traditional DSM systems (su
h as TreadMarks,et
.). First, it targets a larger s
ale through hierar
hi
al
onsisten
y proto
olssuitable for an e�
ient exploitation of grids made of a federation of
lusters.Se
ond, it addresses from the very beginning the problem of resour
e volatilitydue to failures or to the la
k of resour
e availability.Compared to the grid �le system approa
h, this approa
h improves a

esse�
ien
y by totally relying on main memory storage. Besides the fa
t that amain memory a

ess is more e�
ient than a disk a

ess, the system
an leveragelo
ality-optimization s
hemes developed for the DSM
onsisten
y proto
ols.Limitations. However, the JuxMem grid data-sharing servi
e su�ers from somelimitations with respe
t to the e�
ient storage and a

ess of massive data blo
ks.A
tually, data are not fragmented in JuxMem: ea
h individual data is physi
allystored as a single data blo
k in the main memory of a storage provider, and pos-sibly repli
ated as su
h on multiple ba
kup providers. Consequently, the largestdata blo
k that the servi
e is able to store is limited by the size of the RAMof a single provider, typi
ally, a few gigabytes. This la
k of fragmentation hasanother drawba
k regarding load balan
ing as all a

esses to di�erent parts ofthe same massive blo
k are served by the same RAM provider.Re
ently, the e�
ient allo
ation and a

ess of massive data blo
ks in mainmemory has been addressed by the JumboMem [17℄ system. This system isdesigned for
lusters, not for grids. It allows users to manipulate large
ontiguous

data blo
ks (of the order of 1 TB) using the aggregated RAM of a set of nodesinter
onne
ted through a high-speed In�niband System Area Network. However,JumboMem is targeted for a single user and does not enable data sharing: itdoes not provide syn
hronization, nor repli
ation, nor optimized me
hanismsfor distributed a

ess by multiple users. In
ontrast, a lot of appli
ations inthe �eld of databases and data-mining target multi-user environments. Thisrequires adding an e�
ient
on
urren
y
ontrol, whi
h is not natively providedby JumboMem.Our approa
h. Our
ontribution is twofold. First, we propose a data sharingservi
e allowing to store massive blo
ks of data in a distributed, multi-userenvironment. Se
ond, e�
ient �ne-grain a

ess to the data is provided thanksto distributed, RAM-based storage of data fragments, while leveraging a DHT-based metadata management s
heme, whi
h is natively parallel.This paper is organized as follows. Se
tion 2 gives an overview of our ar
hi-te
ture and des
ribes how data a

ess operations are handled. Se
tion 3 providesa few implementation details and reports on a preliminary experimental evalu-ation. Finally, on-going and future work is dis
ussed in Se
tion 4.2 Enabling e�
ient �ne-grain a

essOur goal is to provide e�
ient �ne-grain a

ess to massive data blo
ks stored inlarge-s
ale distributed environments su
h as grids. To goal is addressed in thefollowing way. Data is fragmented into small equally-sized
hunks (whi
h will be
alled pages below) and distributed a
ross the lo
al memory of a large number ofgrid nodes, whi
h a
t as providers of storage spa
e. This fragmentation allows:1) to store huge data blo
ks; and 2) to avoid
ontention for disjoint a

essesto pages. To ea
h data blo
k, we asso
iate some metadata allowing to identifyand lo
alize the pages that belong to that blo
k. In order to avoid
ontention formetadata a

ess, metadata is stru
tured in a �ne-grained manner to be des
ribedbelow, and stored in a distributed hash table (DHT). Finally, e�
ient large-s
ale
on
urren
y both for reads and writes is a
hieved using versioning :
on
urrentwrites to the same page
an pro
eed in parallel on multiple versions of that page.Our
ontribution lies in the adequate
ombination of these te
hniques to a
hievee�
ient �ne-grained a

ess to massive data.2.1 Ar
hite
tureOur servi
e relies on a set of distributed pro
esses
ommuni
ating through re-mote pro
edure
alls (RPCs). In a typi
al setting, ea
h pro
ess is running on adi�erent physi
al node.Data providers are responsible for storing and retrieving individual pages intheir lo
al RAM.A versioning manager is responsible for serializing write requests and for di-re
ting read requests to the latest version available for reading.

Metadata providers are responsible for storing information about the iden-tity and lo
alization of the individual pages that make up a data blo
k. Inour design, metadata providers are organized as a Distributed Hash Table(DHT). Details are given in Se
tion 2.3.A provider manager re
eives and solves the
lients' requests for dataproviders. Available providers must previously register with this entity.To intera
t with the servi
e,
lient pro
esses simply use a
lient library, to whi
hthey pass a list of DHT gateways and the network id (IP address, port) of theversioning manager. The rest of the system is transparent to the
lients.2.2 User interfa
eClients manipulate massive data blo
ks through a simple API:blo
k_id = allo
(page_size, data_size)blo
k_version = write(blo
k_id, lo
al_buffer, offset, size)read(blo
k_id, blo
k_version, lo
al_buffer, offset, size)Massive blo
ks are identi�ed and a

essed through a globally unique id, gen-erated when the blo
k is allo
ated. The user is able to
ontrol the granularity(page_size) and maximal size of the blo
k (data_size). Fine-grain a

ess forreads and writes is enabled through (offset, size) range queries. Ea
h writegenerates a new blo
k version. Read operations may expli
itly referen
e a blo
kversion. By default, they return the latest available version.2.3 Metadata organizationMetadata serves the purpose of identifying and lo
alizing the pages
orrespond-ing to the range (offset, size) spe
i�ed by read and write operations. Ourdesign aims at favoring fast
on
urrent a

esses to metadata.When the user allo
ates data_size bytes for a blo
k, the servi
e a
tuallyallo
ates adjusted_size bytes, where adjusted_size is the smallest power of 2larger than data_size. We organize metadata as a full binary tree. At ea
hlevel, the nodes of the tree
over disjoint (offset, size) ranges. The root
overs
(0, adjusted_size), that is, the whole data blo
k. An intermediate node
overing
(offset, size) points to its left
hild
overing (offset, size/2), and to its right
hild
overing (offset + size/2, size/2). Leaves
over single pages and pointto the page id and to provider holding the page (see Figure 1).A tree node
overing (offset, size) is identi�ed by a key, obtained by apply-ing a hashing fun
tion on the tuple (blo
k_id, offset, size, blo
k_version).Intermediate tree nodes store the following information: offset, size, left_keyand right_key, whi
h are respe
tively the keys of its left and right
hild. Leaves(
overing single pages) store a page_id and a provider_id. Tree nodes arestored on the metadata providers using a DHT stru
ture using the keys de-�ned above. This approa
h is inspired by Merkle trees [18℄, initially developedto handle Lamport's one-time signatures.

Fig. 1. Metadata representation for a 4-page blo
k. Leaves store page ids Id and the
orresponding provider ids P. All nodes are labeled with the (offset, size) range they
over.By relying on the DHT ar
hite
ture and by sele
ting an adequate hashingfun
tion, an even distribution of page requests among metadata providers
anbe guaranteed with a high probability. Ea
h
lient takes pro�t of this even dis-tribution by simultaneously
onta
ting a large number of di�erent gateways tothe DHT servi
e when exe
uting parallel requests.2.4 Managing allo
s, reads and writesAllo
ation is the
heapest and simplest operation. The
lient merely
onta
ts theversioning manager providing a page size and total blo
k size. The versioningmanager assigns this blo
k an initial version number, 0.To perform a read if no blo
k version is spe
i�ed, the
lient (Figure 2(a))
onta
ts the versioning manager and requests the latest blo
k version available. Ifa blo
k version is spe
i�ed by the read operation, then this step is simply skipped.Then, the
lient
onta
ts the metadata providers and re
ursively queries thetree nodes
overing the range given by (offset, size) for that parti
ular blo
kversion, starting from the root and des
ending towards the leaves. When a leaf isrea
hed, the
lient dire
tly
onta
ts the appointed data provider and downloadsthe a
tual page. The read operation
ompletes su

essfully when all the pageshave been downloaded. It fails if a node or a page
ould not be retrieved. In orderto enhan
e parallelism, requests and responses for tree nodes and for pages arehandled asyn
hronously by multiple threads on the
lient side, and are servedin parallel by the various metadata and data providers, respe
tively.A write operation (Figure 2(b)) initiated by the
lient
ompletes in severalstages.1. The
lient
onta
ts the provider manager to retrieve a list of a
tive dataproviders available to store the pages in (offset, size) to be written. Afterre
eiving the reply, it asso
iates a random data provider and a random page

(a) Reading a blo
k: sequen
e of RPC
alls (b) Writes: sequen
e of RPC
allsFig. 2.Managing reads and writes: di�erent line styles denote RPCs running in parallelid to ea
h page, so as to uniquely identify the page in the system with highprobability. Then, it
onta
ts the data providers, requesting them to store thepages. As in the
ase of the read operation, write requests sent to providersare asyn
hronously handled by the
lient, and served in parallel by the dataproviders.2. After all providers a
knowledge that the pages have been stored, the
lient
onta
ts the versioning manager to re
eive a new version number whi
h shallidentify the new blo
k version. The versioning manager enqueues this writerequest, marks it as pending and returns the version number to the
lient. Af-ter re
eiving it, the
lient generates the
orresponding tree nodes with respe
tto the new blo
k version, starting from the leaves up to this new root. All treenodes whose range is totally in
luded in the interval [offset, offset+size]are written to the metadata providers. The rest of the nodes are stored forlater pro
essing. The goal of this pro
essing is to properly handle
on
urrentmetadata updates for a single blo
k.3. Then, the
lient
onta
ts the versioning manager requesting permission to
omplete the write operation. If this write request is the oldest one in thequeue, then the versioning manager grants permission to
omplete the write.Otherwise it waits for previous pending writes to be dequeued before grant-ing permission. After re
eiving permission, the
lient builds the remainingtree nodes. These nodes
over ranges not in
luded in [offset, offset+size].They must
orre
tly referen
e their
hildren
orresponding to nodes not mod-i�ed by the
urrent write, by using the latest blo
k version previously
om-pleted. At the end of this stage, all generated tree nodes are sent to themetadata providers.

4. Finally, the
lient
on�rms write
ompletion to the versioning manager,whi
h dequeues the write and marks its
orresponding version as the lat-est blo
k version.Note that various versions of the same page may be stored on di�erentproviders: for ea
h new page version to be written, the least loaded knownprovider is
hosen for its storage, in order to preserve a global load balan
ein terms of amount of data stored by the providers. (The pre
ise des
ription ofthis s
heme is out of the s
ope of this paper.)An important
onsequen
e of this property is that su

essive in
rementalversions of a data blo
k
an be stored as long as storage spa
e is still globallyavailable in the system: thanks to our
hoi
e of preserving a global load balan
e,a provider will run out of storage spa
e only when all the providers
olle
tivelyrea
h their storage limits. In this
ase, ad-ho
 garbage
olle
tion
an be usedto remove the oldest version of the data blo
k. Su
h a feature has not beenimplemented in our system, yet.3 Implementation and experimental evaluationEvaluations are performed using the Grid'5000 [19℄ testbed, a re
on�gurable,
ontrollable and monitorable experimental Grid platform spread over 9 sites ge-ographi
ally distributed in Fran
e. We use 160 nodes of a Grid'5000
luster. Ea
hnode has a Intel Pentium 4 CPU running at 2.6 GHz under Linux 2.6 (Ubuntu),out�tted with 4 GB of RAM ea
h, and inter
onne
ted by a Gigabit Ethernetnetwork. The theoreti
al maximum network bandwidth is thus 125 MB/s. How-ever, if we
onsider the IP and TCP header overhead, this maximum be
omesslightly lower: 117.5 MB/s for a MTU of 1500 B. In pra
ti
e, we
ould measure111 MB/s for a standard TCP so
ket end-to-end transfer.3.1 Implementation detailsWe use BambooDHT [20℄, whi
h provides a stable, s
alable DHT implementationon top of whi
h we build the abstra
tion of our metadata providers and of theprovider manager.The providers and the versioning manager are implemented in C++ usingthe Boost C++
olle
tion of libraries. We
hose Boost for its standardizationthroughout the C++
ommunity, and for the wide range of fun
tionalities itprovides, among whi
h serialization, threading and asyn
hronous I/O are ofparti
ular interest to us.3.2 Performan
e and evaluationIn this se
tion, we assess the e�e
tiveness of our implementation by running aset of experiments. To support our
laim of e�
iently dealing with both massiveblo
ks and �ne-grain a

ess, we �x the allo
ated blo
k size at 1 TB, and the

page size at 64 kB for all our experiments. Thus, the metadata tree generates asigni�
ant overhead as the a
tual data a

esses will
on
ern various
ontinuousranges from 16 MB up to 1 GB within the overall range of 1 TB.Using a single
lient. Our �rst series of experiments (Figure 3) assesses theoverhead of metadata management. We deploy one versioning manager, 100 dataproviders, and a variable number of metadata providers. Ea
h physi
al node runsat most one data provider and one metadata provider. A single
lient writes aseries of data, and then reads them ba
k.It �rst writes a range size of 16 MB starting from offset 0. Then, it
ontin-ues writing a se
ond range of 32 MB, starting from the end of the previous range,and so on, doubling the size parameter ea
h time until writing a range of 1 GB.Then, the
lient su

essively reads ba
k ea
h of the
onse
utive segments.The individual writing and reading times for ea
h segment are logged, sortingout the time used in managing the metadata with respe
t to the total writingor reading time. Su
h a
y
le is repeated 100 times. This experiment is done forseveral numbers of metadata providers, that is, several sizes of the DHT, rangingfrom 5 to 100.The average timings are reported on Figure 3. Of
ourse, the larger theDHT, the larger the degree of parallelism in a

essing its nodes from the
lient'sthreads, when
e the shorter the overall time.These timings show an overhead of 18% for metadata read operations (Fig-ure 3(a)) and 23% for metadata write operations (Figure 3(b)) for 100 meta-data providers. This e�e
tively results in a bandwidth of 92 MB/s for reads and86 MB/s for writes in a

essing the �nal 1 GB range, to be
ompared to themaximal limit of 111 MB/s measured in standard TCP so
ket end-to-end trans-fer. On the other hand, using only 5 metadata providers results in a metadatamanagement overhead ex
eeding 68%, whi
h demonstrates the bene�ts of usinga large number of metadata providers, that is, a large DHT.Using multiple
on
urrent
lients. Our next series of experiments (Figure 4)ben
hmarks our system in a highly
on
urrent environment, evaluating its s
al-ability when in
reasing the number of simultaneous reads and writes. For
om-parison, we also report on what we
all an �ideal� bandwidth
orresponding tothe aggregation of totally independent read (resp., write) operations. That is,we multiply the bandwidth of a single reader (resp., writer) by the number ofreaders (resp., writers).We deploy 80 data providers and 80 metadata providers. Ea
h physi
al noderuns one data provider and one metadata provider. The versioning manager isrun on a separate node. Then, we deploy a variable number of
lients, ea
hof whi
h being run on a separate node, di�erent from the ones used for data,metadata and versioning manager. Clients are syn
hronized to start simulta-neously. They either read or write a disjoint range of the blo
k:
lient i usesoffset = i× 64 MB, size = 64 MB. For reads, data is prewritten. We measurethe average aggregated bandwidth, both for reads and writes, and
ompare it tothe ideal aggregation of bandwidth obtained from a single reader/writer.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

16 32 64 128 256 512 1024

T
im

e
ta

ke
n

(s
)

Size of range to be read (MB)

Total (5)
Metadata (5)

Total (50)
Metadata (50)

Total (100)
Metadata (100)

(a) Cost of read a

esses when using 5, 50, 100 metadata providers

 0

 5

 10

 15

 20

 25

 30

16 32 64 128 256 512 1024

T
im

e
ta

ke
n

(s
)

Size of range to be written (MB)

Total (5)
Metadata (5)

Total (50)
Metadata (50)

Total (100)
Metadata (100)

(b) Cost of write a

esses when using 5, 50, 100 metadata providersFig. 3. Average data a

ess
ost for various
ontiguous segment sizes and a variablenumber of metadata providers. For ea
h number of metadata providers, we sort outthe time needed to manage the metadata.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10 20 30 40 50 60 70 80

B
an

dw
id

th
 (

M
B

/s
)

Number of concurrent readers

Measured
Ideal

(a) Bandwidth for reads 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 10 20 30 40 50 60 70 80

B
an

dw
id

th
 (

M
B

/s
)

Number of concurrent writers

Measured
Ideal

(b) Bandwidth for writesFig. 4. Average aggregated bandwidth when varying the number of
on
urrent
lientsAs it
an be observed, the �ne-grained dispersion of data and metadataallows for high bandwidth under heavy
on
urren
y, espe
ially for reads (Fig-ure 4(a)). Writes su�er from a slight performan
e penalty be
ause of metadatasyn
hronization (Se
tion 2.4). Conta
ting di�erent providers and di�erent meta-data providers
on
urrently enables a high degree of load balan
ing among thenetwork nodes. As su
h, it makes up for the metadata overhead observed in the�rst series of experiments.4 Con
lusionWe have addressed the problem of e�
iently storing massive data of the or-der of terabytes in a grid distributed environment. Our
ontribution
onsists inproposing a data-sharing servi
e allowing to e�
iently allo
ate, a

ess and mod-ify su
h massive blo
ks of data in a distributed, multi-user environment. E�
ient�ne-grain a

ess to arbitrarily small parts of the data is provided thanks to dis-tributed, RAM-based storage of data fragments, while leveraging a DHT-based,natively parallel metadata management s
heme. Preliminary experiments per-formed with our prototype using the Grid'5000 testbed show that our approa
hs
ales well, both in terms of storage providers and in terms of
on
urren
y degree.Our prototype is however a work in progress and de�nitely demands fur-ther re�nement. Fault toleran
e, whi
h be
omes
riti
al in grid environments, isonly partially addressed. We
urrently leverage some fault-toleran
e me
hanismsprovided by the DHT on whi
h we rely for the implementation of some of theentities of our ar
hite
ture, the metadata providers and the provider manager.This enhan
es the availability of metadata thanks to the underlying repli
ationused by the DHT. However, the versioning manager, though not under heavyload, is still a single point of failure in this preliminary s
heme. Besides, data isnot repli
ated: for ea
h page, a single
opy is kept on a single provider. In orderto improve fault-toleran
e, repli
ation-based me
hanisms
ould be envisioned inboth
ases. To this purpose, we intend to explore the possibility to use self-

organizing groups to represent these entities, built on fault-tolerant distributedalgorithms for atomi
 multi
ast, as in [21℄.While targeting database, data-mining and multimedia appli
ations, we havenot experimented, yet, with a standard implementation that
ould use our ser-vi
e. We are
onsidering interfa
ing our servi
e with the PostgreSQL DBMS, inorder to provide an e�
ient support for snapshot isolation.Referen
es1. Douglas, K., Douglas, S.: PostgreSQL. New Riders Publishing, Thousand Oaks,CA, USA (2003)2. Thomasian, A.: Con
urren
y
ontrol: methods, performan
e, and analysis. ACMComput. Surv. 30(1) (1998) 70�1193. Ni
ola, M., Jarke, M.: Performan
e modeling of distributed and repli
ateddatabases. IEEE Trans. on Knowl. and Data Eng. 12(4) (2000) 645�6724. Jin, R., Yang, G.: Shared memory parallelization of data mining algorithms: Te
h-niques, programming interfa
e, and performan
e. IEEE Trans. on Knowl. and DataEng. 17(1) (2005) 71�895. Casey, M.A., Kurth, F.: Large data methods for multimedia. In: Pro
. 15th Intl.Conf. on Multimedia (Multimedia '07), New York, NY, USA, ACM (2007) 6�76. All
o
k, B., Bester, J., Bresnahan, J., Chervenak, A.L., Foster, I., Kesselman, C.,Meder, S., Nefedova, V., Quesnel, D., Tue
ke, S.: Data management and transferin high-performan
e
omputational grid environments. Parallel Comput. 28(5)(2002) 749�7717. Kunszt, P.Z., Laure, E., Sto
kinger, H., Sto
kinger, K.: File-based repli
a man-agement. Future Generation Computing Systems 21(1) (2005) 115�1238. : Lightweight Data Repli
ator. http://www.ls
-group.phys.uwm.edu/LDR/9. : Chirp proto
ol spe
i�
ation. http://www.
s.wis
.edu/
ondor/
hirp/PROTOCOL10. Bassi, A., Be
k, M., Fagg, G., Moore, T., Plank, J.S., Swany, M., Wolski, R.: TheInternet Ba
kplane Proto
ol: A study in resour
e sharing. In: CCGRID '02: Pro
.2nd IEEE/ACM Intl. Symp. on Cluster Computing and the Grid, Washington,DC, USA, IEEE Computer So
iety (2002) 19411. Bent, J., Venkataramani, V., LeRoy, N., Roy, A., Stanley, J., Arpa
i-Dusseau, A.,Arpa
i-Dusseau, R., Livny, M.: Flexibility, manageability, and performan
e in agrid storage applian
e. In: Pro
. 11th IEEE Symposium on High Performan
eDistributed Computing (HPDC 11)12. Tatebe, O., Morita, Y., Matsuoka, S., Soda, N., Sekigu
hi, S.: Grid datafarmar
hite
ture for petas
ale data intensive
omputing. In: CCGRID'02, Washington,DC, USA, IEEE Computer So
iety (2002) 10213. Honeyman, P., Adamson, W.A., M
Kee, S.: GridNFS: global storage for global
ollaborations. In: Pro
. IEEE Intl. Symp. on Global Data Interoperability - Chal-lenges and Te
hnologies, Sardinia, Italy, IEEE Computer So
iety (June 2005) 111�11514. White, B.S., Walker, M., Humphrey, M., Grimshaw, A.S.: LegionFS: a se
ure ands
alable �le system supporting
ross-domain high-performan
e appli
ations. In:Pro
. 2001 ACM/IEEE Conf. on Super
omputing (SC '01), New York, NY, USA,ACM Press (2001) 59�5915. Antoniu, G., Bertier, M., Caron, E., Desprez, F., Bougé, L., Jan, M., Monnet,S., Sens, P.: GDS: An Ar
hite
ture Proposal for a grid Data-Sharing Servi
e.CoreGRID series. In: Future Generation Grids. Springer Verlag (2006) 133�152

16. Antoniu, G., Bougé, L., Jan, M.: JuxMem: An adaptive supportive platform fordata sharing on the grid. S
alable Computing: Pra
ti
e and Experien
e 6(3)(November 2005) 45�5517. Pakin, S., Johnson, G.: Performan
e analysis of a user-level memory server. In:2007 IEEE Intl. Conf. on Cluster Computing. (September 2007)18. Merkle, R.C.: A digital signature based on a
onventional en
ryption fun
tion.In: CRYPTO '87: A Conferen
e on the Theory and Appli
ations of Cryptographi
Te
hniques on Advan
es in Cryptology, London, UK, Springer-Verlag (1988) 369�37819. : The Grid'5000 proje
t http://www.grid5000.org/.20. Rhea, S., Godfrey, B., Karp, B., Kubiatowi
z, J., Ratnasamy, S., Shenker, S., Sto-i
a, I., Yu, H.: OpenDHT: a publi
 DHT servi
e and its uses. In: SIGCOMM'05: Pro
. 2005 Conf. Appli
ations, Te
hnologies, Ar
hite
tures, and Proto
ols forComputer Communi
ations, New York, NY, USA, ACM (2005) 73�8421. Antoniu, G., Deverge, J.F., Monnet, S.: How to bring together fault toleran
eand data
onsisten
y to enable grid data sharing. Con
urren
y and Computation:Pra
ti
e and Experien
e 18(13) (November 2006) 1705�1723

