
BLAST Parallelization on Partitioned Databases
with Primary Fragments ?

Daniel Xavier de Sousa1, Sergio Lifschitz1 and Patrick Valduriez2

1 PUC-Rio Dep Informatica, Rio de Janeiro - Brazil
{dsousa,sergio}@inf.puc-rio.br

2 INRIA and LINA, Nantes - France
patrick.valduriez@inria.fr

Abstract. As a result of recent advances in sequencing methods, ge-
nomic databases are getting larger and larger, thus raising performance
issues for bio-sequence analysis tools. In this paper, we consider BLAST,
one of the most popular such tools. To increase performance in large
databases, much work has considered the evaluation of BLAST in dis-
tributed and parallel environments like clusters and Grids. We propose
a new parallelization approach to execute BLAST in distributed and
parallel environments. We use a replicated allocation of the (sequences)
database, where each copy is physically fragmented. We investigate two
dynamic load balancing methods that exploit our database allocation.
Our preliminary experimental results based on a cluster indicate that
our approach achieves both very good speedup and good load balancing.

1 Introduction

In this paper, we consider one of the most popular tools in bioinformatics, namely
BLAST - Basic Local Alignment Search Tool - evaluation [2]. BLAST provides
a popular family of algorithms for (bio)sequences comparison and alignment
operations. These operations are widely used in laboratories that make Genome
sequencing and analysis.

Except for single input queries and small sequence databases, BLAST pro-
cessing is very time consuming. But as genomic databases are getting larger
and larger, performance becomes a key issue for BLAST. To increase the per-
formance of BLAST in large databases, many distributed and parallel strategies
using clusters and Grids have been proposed (e.g. [8, 1]).

From a database point of view, there are two basic approaches: replication
and fragmentation. With replication, the sequence database is fully replicated at
all processing nodes (single nodes or clusters) and the query is partitioned into
subqueries, each running at a different node. With fragmentation, the database
is split into disjoint fragments and the complete query is executed at all sites [4].
While the replication approach is straightforward (inter-query parallelism), the

? Work partially funded by CAPES-COFECUB (DAAD project) and CNPq-INRIA
(GriData project)

fragmentation approach is more difficult: BLAST execution on smaller fragments
may not generate the correct (sequential) results if runtime statistical parameters
(e.g. Z for WU-BLAST [12] and Y for NCBI-BLAST [9]) are not well defined [7].
Furthermore, as for other parallel computation problems, an uneven workload
may yield poor load balancing, thus reducing the benefits of parallelism [5].

In this paper, we propose a new parallelization approach to execute BLAST
in distributed and parallel environments, considering load balancing. We use a
replicated allocation of the (sequences) database, where each copy is physically
fragmented. We investigate two dynamic load balancing methods that exploit
our database allocation. Our preliminary experimental results based on a cluster
environment indicate that our approach achieves both very good speedup and
good load balancing.

The rest of this paper is organized as follows. We discuss BLAST paralleliza-
tion, in particular load balancing, in Section 2. In Section 3, we present our
approach for database allocation and BLAST parallelization. Section 4 gives our
preliminary experimental results and Section 5 concludes.

2 Motivations

Fig. 1. Uneven Workload for Equal DB sizes

The work in [4] presents a detailed discussion and implementation results re-
garding database distribution in order to execute BLAST in a cluster of worksta-
tions. We have compared methods that run on both partitioned and replicated
databases. Both input sequences (query) allocation and database distribution
strategies are shown to be important in order to improve the parallel execution
of BLAST processes.

We have also evaluated a few different load balancing methods that may be
used when running BLAST in parallel. These include strategies that consider
the total number of sequences allocated to each node, methods that estimate
the total execution time at each node and also on-demand approaches, that
distribute tasks (queries and data) to nodes whenever these become idle [4].

Due to the sensibility of each method with respect to multiple parameters,
different techniques may be applied in order to deal with data skew. In particular,
dynamic issues like similarity skew, which cannot be detected before the actual
execution [5], must be taken into account.

We show in Figure 1 an example of BLAST parallel execution on a 8-node
homogeneous cluster, with a pure fragmented database configuration - distinct
fragments have approximately the same size at each node. Some of the input
sequences were randomly taken from the same database. One could expect a
”perfect” load balancing when considering only database sizes. However, query
decomposition assigns distinct input sequences to each node. As some of the
sequences are more similar to the database sequences than others, the alignment
process takes longer to finish. This similarity (or alignment) skew generates a
clear uneven distribution of tasks.

There have been many works that focus on BLAST parallelization. MPI-
BLAST [8] is widely accepted as the standard parallel BLAST tool. It copies
all query sequences to each node, while the database is segmented for a de-
mand driven delivery. For each idle node, a new database fragment is sent. MPI-
BLAST developers argue that the process should use multiple fragments in order
to balance the workload. However, it is not a trivial task to determine the opti-
mal granularity for good performances. Moreover, concurrency is an important
problem when nodes get fragments from the same master node.

Some other works discuss other issues. Just to mention a few, the authors in
[1] propose a strategy called Dynamic BLAST. They show that one of the main
problems for running BLAST in a distributed environment is related to assigning
fragments with distinct sizes to each processing node. However, we have already
shown that the similarity degree among is also a fundamental factor. The same
question appears in [13], where the authors look forward to extend MPIBLAST
for grid environments. The basic idea is that most biology research labs cannot
afford to maintain efficient cluster environments. Nevertheless, the MPIBLAST
tool is not that straightforward to use: it needs frequent database re-formatting
when either the database is updated, or the number of nodes changes. Another
solution is proposed in [11] and is not only dedicated to BLAST. There are fault-
tolerant methods that could be considered as load balancing strategies. However,
the goal is to guarantee completeness, not necessarily with best performances.

There have been many other proposals. Our work here brings a somewhat
distinct point of view, focusing on a database-approach (database distribution
design, I/O parallelism and query execution) to improve BLAST evaluation in
clusters or Grids. In the next section we present our strategy for BLAST par-
allelization, which considers dynamic load balancing to obtain good overall per-
formances.

3 BLAST parallelization

We consider a cluster with a number of similar nodes that store data and a master
node that receives queries (and may also store data). In our approach to execute

BLAST in distributed and parallel environments, the database is fully replicated
at each node of a cluster. Each copy is then physically fragmented at each node,
where distinct sets of fragments, called primary copies, are mainly responsible
for local BLAST processing. Figure 2 illustrates our database allocation.

Fig. 2. Database replicated on 3 nodes, each with their own primary fragments

The main idea underlying such database assignment to processing nodes is
twofold: on one hand, fragmentation enables distributed execution and is very
effective when there is an even workload. When load unbalancing is detected, due
to similarity skew or any other reason (e.g. a broken connection to one node), all
other non-primary fragments already available at each node are then considered
to achieve the complete execution. On the other hand, as the database is also
replicated, it enables a correct BLAST execution regarding statistical issues and
parametrization.

At least two dynamic load balancing techniques may be applied for running
BLAST in a cluster. A demand-driven approach, where processing nodes ask for
new tasks (input sequences subset) when they become idle and a task stealing
strategy - where a node may execute part of a job originally assigned to another
node. In this paper, we argue that with these rather simple yet effective strate-
gies, we make better use of the available resources in distributed environments.
Both strategies are briefly explained in Figures 3 and 4.

Basically, we strive to enjoy the advantages of both fragmented and replicated
strategies. Therefore, our strategies split a database into different fragments and
copy them all to each node, as illustrated in Figure 2. Each node has different
fragments, and only some of them, called primary fragments, are used for BLAST

Fig. 3. Demand-driven load balancing strategy for BLAST

processing. All other non-primary fragments at a given node are only used when
load balancing methods are triggered. The physical fragmentation method may
vary. We have mostly used a fragmentation process that aims at obtaining frag-
ments with approximately the same size. As we have already shown that equal
database sizes are not sufficient for an even distribution of parallel tasks, we
could have considered as well a simple round-robin database distribution [6].

4 Preliminary Experimental Results

We have compared our strategies to several others, like MPI-BLAST [8] and
a serial execution, to assess speedup. Figure 5) that both approaches (demand-
driven and task-stealing) yield much better performance when compared to MPI-
BLAST, the most popular parallel BLAST tool. Note that Figure 5 shows a
comparison with MPI-BLAST (version 1.4) using 96 database fragments. Even
though we have pushed all fragments into each node before actual execution, in
order to reduce communication costs between the nodes and the master node,
our strategies still outperform MPI-BLAST.

Our workload balancing strategies, demand driven and task stealing, initially
split both the database and query sequences in order to process the entire
database. Each strategy has some parameters that the user can initially set.
These parameters are very important as they allow the strategy to apply in dif-
ferent environments such as grids. For these particular tests shown in Figure 5,

Fig. 4. Task stealing load balancing strategy for BLAST

Fig. 5. Comparison among strategies

the demand driven strategy sends runs 32 query sequences each time and the
execution uses a fragmented database with 48 parts. Many other experimental
results, mostly for cluster-based environments, can be found in [6].

Figure 6 and 7 show the effectiveness of our approaches for load balanc-
ing. Our performance results show that our dynamic strategies to balance the
workload do not become an overhead for executing BLAST in parallel.

Fig. 6. Demand-driven Strategy and Load Balancing

Fig. 7. Task-stealing Strategy and Load Balancing

5 Conclusion

In this paper, we propose a new parallelization approach to execute BLAST in
distributed and parallel environments in order to increase performance. We use
a replicated allocation of the (sequences) database, where each copy is physi-
cally fragmented. The main idea underlying replicated databases with primary
fragments is that the workload may be initially distributed and, in case of load
unbalancing, e.g. due to unavailable nodes, two load balancing methods should
be considered. Our preliminary experimental results based on a cluster indicate
that our approach achieves both very good speedup and good load balancing.

Our approach can be extended to deal in different distributed environments.
In environments like the grid, cooperation for parallel execution needs consis-
tency (of program versions and data), otherwise the results would not be reliable.
A replicated database is, then, more than natural, since genomic databases are
usually kept at unique repositories on the web and users may download them at
every new release. However, a parallel execution could be further exploited if at

each node the BLAST program runs on only a fraction of the database - as we
have done here.

An additional observation is related to the fact that we adopt a non-intrusive
approach, that is, we make no changes to the specific (and usual) BLAST pro-
gram used at each node. Indeed, we adopt a database point of view, investigating
query processing and database allocation issues. For Grid environments, meth-
ods that modify particular source codes should be avoided. These and other data
intensive challenges within a Grid are well discussed in [10].

References

1. E. Afgan, P. Sathyanarayana and P. Bangalore, ”Dynamic Task Distribution in the
Grid for BLAST”, Procs IEEE Intl Conference on Granular Computing, pp 554-557,
2006.

2. S.F. Altschul, W. Gish, W. Miller, E.W. Myers and D.J. Lipman: ”A Basic Local
Alignment Search Tool”, Journal of Molecular Biology 215, pp 403-410, 1990.

3. S-N. Chen, J.J.P. Tsai, C-W. Huang, R-M. Chen and R.C.K Lin, ”Using Distributed
Computing Platform to Solve High Computing and Huge Data Processing Problems
in Bioinformatics”, Procs IEEE Intl Symposium on Bioinformatics and Bioengineer-
ing (BIBE), pp 142-148, 2004.

4. R.L.dC. Costa and S. Lifschitz, ”Database Allocation Strategies for Parallel BLAST
Evaluation on Clusters”, Distributed and Parallel Databases 13(1), pp 99-127, 2003.

5. R.L.dC. Costa and S. Lifschitz, ”Skew Handling for Parallel BLAST Processing”,
II Brazilian Workshop on Bioinformatics, pp 173-176, 2003.

6. D.X. de Sousa, ”Workload Balancing Strategies for BLAST Parallel Eval-
uation on Replicated Databases and Primary Fragments”, MSc Disser-
tation, PUC-Rio Departamento de Informatica, 85p., ftp://ftp.inf.puc-
rio.br/pub/docs/theses/07 MSc sousa.zip, 2007.

7. D.X. de Sousa and S. Lifschitz, ”E-value Evaluation for BLAST Parallel Execution
on Fragmented Databases”, Tecnical Report MCC 17/07, PUC-Rio Departamento
de Informatica, 16p., ftp://ftp.inf.pucrio.br/pub/docs/techreports/07 17 sousa.pdf,
2007.

8. mpiBLAST, http://www.mpiblast.org/
9. NCBI-BLAST, http://www.ncbi.nlm.nih.gov/BLAST
10. E. Pacitti, P. Valduriez and M. Mattoso, ”Grid Data Management: Open Problems

and New Issues”, Journal of Grid Computing 5, pp 273-281, 2007.
11. Y. Sun, S. Zhao, H. Yu, G. Gao and J. Luo, ”ABCGrid: Application for Bioinfor-

matics Computing Grid”, Bioinformatics (Applications Note) 23(9), pp 1175-1177,
2007.

12. WU-BLAST, http://blast.wustledu/
13. C-T. Yang, T-F. Han and H-C. Kan, ”G-BLAST: a Grid-Based Solution for mpi-

BLAST on Computational Grids”, Procs IEEE TENCON 2007, pp 1-5, 2007.

