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ien
e, University of California, Davis, CA 95616, USAAbstra
t. First-prin
iples methods based on Density Fun
tional The-ory (DFT) where the wavefun
tions are expanded in plane waves (Fourier
omponents) are the most widely used approa
h for ele
troni
 stru
ture
al
ulations in materials s
ien
e. The s
aling of this method depends
riti
ally on having an eÆ
ient parallel 3d FFT that minimizes 
om-muni
ations and 
al
ulations. We present an implementation and per-forman
e data of a parallel 3d FFT spe
i�
ally designed for ele
troni
stru
ture 
al
ulations that s
ales to thousands of pro
essors on leadingparallel and ve
tor 
omputer platforms (IBM SP, Cray XT, NEC SX).1 Parallel Implementation of 3d FFTFirst-prin
iples methods based on Density Fun
tional Theory (DFT) in theKohn-Sham (KS) [1℄ formalism are the most widely used approa
h for ele
troni
stru
ture 
al
ulations in materials s
ien
e. The most 
ommon implementationof this approa
h involves the expansion of the wave fun
tions in plane waves(Fourier 
omponents) and the use of pseudopotentials to repla
e the nu
leus and
ore ele
trons. In this implementation we require parallel 3d FFTs to transformthe ele
troni
 wavefun
tions from Fourier spa
e to real spa
e to 
onstru
t the
harge density. Parallel 3d FFTs are also required in other parts of the 
ode e.g.to transform potential terms from real spa
e to Fourier spa
e. This gives a 
om-putationally very eÆ
ient approa
h with a full quantum me
hani
al treatmentfor the valen
e ele
trons, allowing the study of systems 
ontaining hundreds ofatoms on modest-sized parallel 
omputers. Taken as a method DFT-based 
odesare one of the largest 
onsumers of s
ienti�
 
omputer 
y
les around the worldwith theoreti
al 
hemists, biologists, experimentalists et
. now be
oming users ofthis approa
h. Parallel 3d FFTs are very demanding on the 
ommuni
ation net-work of parallel 
omputers as they require global transpositions of the FFT grida
ross the ma
hine. The ratio of 
al
ulations to 
ommuni
ations for 3d FFTs isof order logN where N is the grid dimension (
ompared to a ration of N for adistributed matrix multiply of matrix size N ) whi
h makes it one of the mostdemanding algorithms to s
ale on a parallel ma
hine. A s
alable parallel 3d FFTis 
riti
al to the overall s
aling of plane wave DFT 
odes.



The Kohn-Sham formalism of DFT within the Lo
al Density Approximation(LDA) requires that the wavefun
tions of the ele
trons f ig satisfy[�12r2 +XR vion(r � R) + Z �(r0)jr � r0jd3r0 + �x
(�(r))℄ i = "i i (1)where vion(r) is the ioni
 pseudopotential, �(r) is the 
harge density and �x
(�(r))is the LDA ex
hange-
orrelation potential. We use periodi
 boundary 
onditions,expanding the wavefun
tions in plane waves (Fourier 
omponents), j;k(r) =Xg aj;k(g)ei(g+k):r : (2)The sele
tion of the number of plane waves is determined by a 
uto� E
ut inthe plane-wave kineti
 energy 12 jg+ kj2 where fgg are re
ipro
al latti
e ve
tors.This means that the representation of the wavefun
tions in Fourier spa
e is asphere or ellipsoid with ea
h g ve
tor 
orresponding to a Fourier 
omponent (see�gure 1(a)). The k's are ve
tors sampling the �rst Brillouin Zone (BZ) of the
hosen unit 
ell (or super
ell). The Kohn-Sham equations are usually solved byminimizing the total energy with an iterative s
heme, su
h as 
onjugate gra-dient (CG), for a �xed 
harge density and then updating the 
harge densityuntil self-
onsisten
y is a
hieved (for a review of this approa
h see referen
e [2℄).Some parts of the 
al
ulation are done in Fourier spa
e and some in real spa
etransforming between the two using 3d FFTs. Our parti
ular implementationin PARATEC (PARAllel Total Energy Code) [3℄ is based on a Grassmann 
on-jugate gradient minimization [4℄ where all bands are minimized simultaneously.This allows us to use eÆ
ient BLAS3 routines for many parts of the 
al
ulationand also to blo
k the 
ommuni
ations to ensure MPI messaging is not laten
ydominated in the 3d FFTs.The two most important 
riteria driving the 
hoi
e of any parallelizationstrategy are equal division of the 
omputational workload among the pro
essors(load balan
ing) and minimization of the 
ommuni
ations. We distribute the gve
tors for ea
h band among the pro
essors by giving out 
olumns of g ve
tors toea
h pro
essor (see �gure 1(a)). These 
olumns are of di�erent length dependingon where they are in the sphere with the longest 
olumns 
utting the 
enterof the sphere. The 
omputations in PARATEC that are performed in Fourierspa
e (e.g. non-lo
al pseudopotential and orthogonalization) are load balan
edby assigning ea
h pro
essor approximately the same number of g ve
tors. Theload-balan
ing algorithm �rst orders the 
olumns in des
ending order, and thendistributes them among the pro
essors su
h that the next-available 
olumn isassigned to the pro
essor 
ontaining the fewest g ve
tors. The number of gve
tors a pro
essor has 
orresponds to the total length of 
olumns it holds. Itis ne
essary to distribute 
omplete 
olumns of g ve
tors to ea
h pro
essor asthe �rst step in the 3d FFT performs 1d FFTs on 
olumns of g ve
tors. Thereal-spa
e data layout of the wavefun
tions is on a standard Cartesian grid,where ea
h pro
essor holds a 
ontiguous part of the spa
e arranged in 
olumns,as shown in �gure 1(f). Ea
h pro
essor holds the same number of 
olumns (to



within one 
olumn) whi
h load balan
es the real spa
e part of the 
al
ulation.The 
harge density is 
onstru
ted by performing 3d FFTs on ea
h wavefun
tionto obtain the wavefun
tion on the larger real spa
e grid. The wavefun
tions arethen squared and summed on this grid to produ
ed the 
harge density that isthen used in the 
al
ulation of the potential for the next self-
onsistent step inthe solution of the Kohn-Sham equations.A 3d FFT 
onsists of three sets of 1d FFTs in the x,y and z dire
tions withtranspositions of the data between ea
h set of 1d FFTs. Only two transposes areneeded if the �nal data layout is not required to have the same x,y,z order inboth spa
es. Sin
e the g ve
tors are distributed a
ross the pro
essors these twotransposes 
an require global 
ommuni
ations a
ross the parallel 
omputer andare the most 
ommuni
ation intensive part of the whole 
al
ulation. We havetherefore written a spe
ialized 3d FFT to minimize the amount of 
ommuni
a-tions. This 3d FFT is di�erent from a standard 3d FFT as we have a sphereof points in Fourier spa
e rather than a standard grid. This 3d FFT takes ad-vantage of the fa
t that the real spa
e grid is usually about twi
e the diameterof the sphere and at ea
h of the three sets of 1d FFTs this sphere is in a senseexpanding into the larger grid. We therefore only perform 1d FFTs and 
om-muni
ations on the non-zero data elements whi
h greatly redu
es the amount of
ommuni
ations 
ompared to using a standard library routine for the 3d FFT.Also when performing the se
ond transpose to the �nal real spa
e data layout(see �gure 1) we 
hoose the data layout to have as 
losely as possible 
ompleteplanes of data on ea
h pro
essor so that the transpose is lo
al and there is littledata 
ommuni
ation. In this way it is only the �rst transpose on the smallerdata set where there is signi�
ant 
ommuni
ation. Our 3d FFT 
an run on anynumber of pro
essors for any grid and sphere size. If we used vendor supplied 3dFFTs we would have restri
tions on grid sizes as well as performing more 
al
u-lations and 
ommuni
ations than our spe
ialized 3d FFT sin
e the grid size inFourier and real spa
e would have to be the same. The details of ea
h step inour Fourier spa
e to real spa
e 3d FFT are (with z,y,x ordering in Fourier spa
eand x,y,z in real spa
e):1. Ea
h pro
essor pads out the ends of ea
h of the z-
olumns of g ve
tor 
oeÆ-
ients that it holds with zeros to form full length z-
olumns on ea
h pro
essor.The 
omplete data set is now a 
ylinder of length 2d and diameter d whered is the diameter of the original g ve
tor sphere and 2d is the 
ube size (see�gure 1(b)).2. Ea
h pro
essor performs one-dimensional FFTs on its set of z-
olumns.3. The 
ylinder of data is now reorganized from z-
olumns to y-
olumns (or-dered by their x,z indi
es) with ea
h pro
essor now holding a 
ontiguous setof y-
olumns. Global data redistribution is required at this step (ie. goingfrom �gure 1(b) to �gure 1(
)),as 
an be seen by the 
hanges in 
olor ofthe data elements. Ea
h pro
essor is given as 
losely as possible the samenumber of y-
olumns.4. The y-
olumns (whi
h are se
tions through the 
ylinder) are now paddedwith zeros at the ends to form full length 
olumns. The 
omplete data set is



now a slab of dimension d in the x dire
tion and 2d in the other dire
tions(see �gure 1(d)).5. Ea
h pro
essor performs one-dimensional FFTs on its set of y-
olumns.6. The slab of data is now transformed from y-
olumns (x,z ordered) to x-
olumns (y,z ordered) with ea
h pro
essor now having a set of 
ontiguousx-
olumns (ie. going from �gure 1(d) to �gure 1(e)). Ea
h pro
essor is givenas 
losely as possible the same number of x-
olumns. Communi
ations areminimized at this step sin
e most of the transformations are lo
al to thepro
essor with only data at the interfa
es of the 
olored blo
ks being 
om-muni
ated. In the ideal 
ase where there are 
omplete (y; x) planes on ea
hpro
essor the transpose 
an be done lo
ally on ea
h pro
essor and thereare no 
ommuni
ations. Due to our 
hoi
e of data layouts in the FFT themain 
ommuni
ations are in step 3 where the data set (the 
ylinder) is mu
hsmaller than the slab.7. The x-
olumns are now padded at the ends with zeros so the global data setis now the 
omplete 
ube of side 2d (see �gure 1(f)).8. Ea
h pro
essor performs one-dimensional FFTs on its set of x-
olumns pro-du
ing the �nal distributed real spa
e representation of the wavefun
tion inx,y,z order.An inverse 3d FFT is the reverse of these steps. While it is important tominimize the amount of data transfer in 3d FFTs, 
ommuni
ation laten
y 
analso be
ome a major issue. In the �rst transpose in the 3d FFT all the pro
essorsare sending data to all the other pro
essors so the data pa
ket size (for a �xedsize physi
al system ) s
ales as the inverse of the number of pro
essors squared.Therefore as we s
ale up to thousands of pro
essors the data pa
kets 
an be
omevery small and 
ommuni
ation laten
ies 
an dominate the 
ode. To avoid thisproblem in our 
ode we use an all-band method that allows us to perform many3d FFTs at the same time and blo
k the 
ommuni
ations. There is an inputparameter in our 
ode whi
h 
hooses the number of 3d FFTs to be performed atthe same time. In this way, at the 
ost of using more memory, we 
an in
rease thepa
ket size of the 
ommuni
ations in the 3d FFTs to avoid the laten
y problem.For ma
hines with higher laten
y like the IBM SP we have found that this 
anin
rease the speed of the 
ode by 50-100% on runs in the hundreds of pro
essorregime. For large pro
essor 
ounts we typi
ally do up to �fty 3d FFTs at thesame time whi
h greatly redu
es the laten
y problem.2 Code Details and Performan
ePARATEC is written in F90 and MPI and is designed primarily for massivelyparallel 
omputing platforms, but 
an also run on serial ma
hines. The 
odehas run on many 
omputer ar
hite
tures and uses prepro
essing to in
lude ma-
hine spe
i�
 routines su
h as the one dimensional FFT 
alls whi
h are used inour spe
ialized 3d FFTs. For the parallel ve
tor platforms (Cray X1 and NECSX) an eÆ
ient ve
tor implementation of the one dimensional FFT libraries wasrequired. The standard vendor supplied 1D FFT routines (on whi
h our own



Bassi Thunder Phoenix ES FranklinP IBM SP P5 Itanium2 Cray X1E NEC SX6 Cray XT4G
op/P %Pk G
op/P %Pk G
op/P %Pk G
op/P %Pk G
op/P %Pk64 | | | | 4.88 27 | | | |128 5.49 72 2.84 51 3.80 21 5.12 64 | |256 5.52 73 2.63 47 3.24 18 4.97 62 3.36 65512 5.13 67 2.44 44 2.22 12 4.36 55 3.15 611024 | | 1.77 32 | | 3.64 46 2.93 562048 | | | | | | 2.67 33 2.65 46Table 1. PARATEC results for a 488 atom CdSe quantum dot on the di�erent plat-forms. The real spa
e grid size for the 3d FFTs is 252*3. Bassi is an IBM SP witheight Power 5 pro
essors per node, lo
ated at the NERSC 
omputer 
enter, Lawren
eBerkeley National Laboratory. Th under is an Intel Itanium2 
luster with four pro
es-sors per node and a Quadri
s inter
onne
t, lo
ated at Lawren
e Livermore NationalLaboratory. Phoenix is a Cray X1E ve
tor ar
hite
ture lo
ated at Oak Ridge NationalLaboratory. The ES is the Earth Simulator whi
h is a 
ustom designed NEC SX6 lo-
ated at the Earth Simulator Center, Yokohama. Franklin is a Cray XT4 with dual
ore Opteron pro
essors and a 3d Torus inter
onne
t, lo
ated at the NERSC 
omputer
enter, Lawren
e Berkeley National Laboratory.spe
ialized 3D FFTs are written) run at a relatively low per
entage of peak.Code transformation was therefore required to rewrite our 3D FFT routines touse simultaneous (often 
alled multiple) 1D FFT 
alls, whi
h allow e�e
tive ve
-torization a
ross many 1D FFTs. Additionally, 
ompiler dire
tives were insertedto for
e the ve
torization and multistreaming (on the X1) for loops that 
on-tained indire
t addressing. The main 
ommuni
ations in the 
ode are performedin the parallel 3d FFTs with most of the other parts of the 
ode performingdense linear algebra on their lo
al data. For the data presented in this paper the3d FFTs typi
ally take about 30% of the total runtime. Table 1 presents perfor-man
e data for 3 CG steps of a 488 atom CdSe (Cadmium Selenide) quantumdot and a standard Lo
al Density Approximation (LDA) run of PARATEC witha 35 Ry 
ut-o� using norm-
onserving pseudopotentials. The real spa
e grid sizefor the 3d FFTs is 252 
ubed and the 
al
ulation is for 709 bands. A typi
al
al
ulation would require at least 60 CG iterations to 
onverge the 
harge den-sity for a CdSe dot. CdSe quantum dots are lumines
ent in the opti
al range atdi�erent frequen
ies depending on their size and 
an be used as ele
troni
 dyetags by atta
hing them to organi
 mole
ules. They represent a nanosystem withimportant te
hnologi
al appli
ations.As 
an be seen from Table 1 PARATEC obtains a high per
entage of peakon both supers
alar and ve
tor based ar
hite
tures. The ma
hines with the best
ommuni
ation networks and lowest laten
y, su
h as the Cray XT4, have thebest s
aling to large pro
essor 
ounts for the 3d FFT and hen
e the whole 
ode.



The Power 5 
hip has the highest per pro
essor performan
e for this 
ode. This
ode makes heavy use of Ca
he in the FFTs as well as the other dense linearalgebra operations so that RISC type ar
hite
tures obtain a per
entage of peakthat is similar to ve
tor ma
hines. The ES a
hieved the highest peak performan
eof 5.5 T
ops on 2048 pro
essors with the Cray XT4 being only a few per
entslower. The Cray X1E obtained a lower per
entage of peak due in part to somenon-ve
torizable se
tions of the 
ode that run on the slow s
alar pro
essor. TheNEC ES has a relatively faster s
alar pro
essor.3 Dis
ussion and Con
lusionsIn this paper we have present an eÆ
ient implementation of a parallel 3d FFTspe
i�
ally designed for plane wave ele
troni
 stru
ture 
odes. We have shownthat with this 3d FFT our ele
troni
 stru
ture 
ode 
an s
ale well to thousandsof pro
essors on a variety of di�erent 
omputer ar
hite
tures ranging from ve
torto supers
alar. The limiting fa
tor to s
aling to larger pro
essor 
ounts is the
ommuni
ations in the 3d FFTs and we are investigating di�erent 
ommuni
a-tion s
hemes, su
h as using more 
olle
tive operations, to allow us to s
ale tolarger pro
essor 
ounts.4 A
knowledgmentsThe author would like to thank L. Oliker J. Shalf and J. Carter for useful dis-
ussions and help in gaining a

ess to di�erent 
omputer platforms. The authorwould also like to thank the sta� of the Earth Simulator Center, espe
ially Dr.T. Sato. This resear
h used resour
es of the National Energy Resear
h S
ien-ti�
 Computing Center, whi
h is supported by the OÆ
e of S
ien
e of the U.S.Department of Energy under Contra
t No. DE-AC03-76SF00098. This resear
hused resour
es of the Center for Computational S
ien
es at Oak Ridge NationalLaboratory, whi
h is supported by the OÆ
e of S
ien
e of the Department ofEnergy under Contra
t DE-AC05-00OR22725.Referen
es1. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).2. M. Payne, M.P. Teter, D.C. Allan, T.A. Arias and J.D. Joannopoulos, Rev. Mod.Phys. 64, 1045 (1992).3. PARATEC (PARAllel Total Energy Code) www.ners
.gov/proje
ts/parate
/ by B.Pfrommer, D. Ra
zkowski, A. Canning, S.G. Louie, Lawren
e Berkeley NationalLaboratory (with 
ontributions from F. Mauri, M. Côt�e, Y. Yoon, C. Pi
kard andP. Haynes).4. D. Ra
zkowski, C.Y. Fong, P.A. S
hultz, R.A. Lippert and E.B. STe
hel, Phys.Rev. B, 64. 155203 (2001).



FIGURES(a) (b)
(c) (d)
(e) (f)

1Fig. 1. Parallel three dimensional FFT. This �gure shows whi
h pro
essors deal withwhi
h part of the grid during the three dimensional FFT. The 
olors red, blue andgreen 
orrespond to the part of the grid that resides on pro
essors zero to two


