
Salable Parallel 3d FFTs for EletroniStruture CodesAndrew CanningCRD, Lawrene Berkeley National Laboratory, Berkeley, CA 94720, USADepartment of Applied Siene, University of California, Davis, CA 95616, USAAbstrat. First-priniples methods based on Density Funtional The-ory (DFT) where the wavefuntions are expanded in plane waves (Fourieromponents) are the most widely used approah for eletroni struturealulations in materials siene. The saling of this method dependsritially on having an eÆient parallel 3d FFT that minimizes om-muniations and alulations. We present an implementation and per-formane data of a parallel 3d FFT spei�ally designed for eletronistruture alulations that sales to thousands of proessors on leadingparallel and vetor omputer platforms (IBM SP, Cray XT, NEC SX).1 Parallel Implementation of 3d FFTFirst-priniples methods based on Density Funtional Theory (DFT) in theKohn-Sham (KS) [1℄ formalism are the most widely used approah for eletronistruture alulations in materials siene. The most ommon implementationof this approah involves the expansion of the wave funtions in plane waves(Fourier omponents) and the use of pseudopotentials to replae the nuleus andore eletrons. In this implementation we require parallel 3d FFTs to transformthe eletroni wavefuntions from Fourier spae to real spae to onstrut theharge density. Parallel 3d FFTs are also required in other parts of the ode e.g.to transform potential terms from real spae to Fourier spae. This gives a om-putationally very eÆient approah with a full quantum mehanial treatmentfor the valene eletrons, allowing the study of systems ontaining hundreds ofatoms on modest-sized parallel omputers. Taken as a method DFT-based odesare one of the largest onsumers of sienti� omputer yles around the worldwith theoretial hemists, biologists, experimentalists et. now beoming users ofthis approah. Parallel 3d FFTs are very demanding on the ommuniation net-work of parallel omputers as they require global transpositions of the FFT gridaross the mahine. The ratio of alulations to ommuniations for 3d FFTs isof order logN where N is the grid dimension (ompared to a ration of N for adistributed matrix multiply of matrix size N ) whih makes it one of the mostdemanding algorithms to sale on a parallel mahine. A salable parallel 3d FFTis ritial to the overall saling of plane wave DFT odes.



The Kohn-Sham formalism of DFT within the Loal Density Approximation(LDA) requires that the wavefuntions of the eletrons f ig satisfy[�12r2 +XR vion(r � R) + Z �(r0)jr � r0jd3r0 + �x(�(r))℄ i = "i i (1)where vion(r) is the ioni pseudopotential, �(r) is the harge density and �x(�(r))is the LDA exhange-orrelation potential. We use periodi boundary onditions,expanding the wavefuntions in plane waves (Fourier omponents), j;k(r) =Xg aj;k(g)ei(g+k):r : (2)The seletion of the number of plane waves is determined by a uto� Eut inthe plane-wave kineti energy 12 jg+ kj2 where fgg are reiproal lattie vetors.This means that the representation of the wavefuntions in Fourier spae is asphere or ellipsoid with eah g vetor orresponding to a Fourier omponent (see�gure 1(a)). The k's are vetors sampling the �rst Brillouin Zone (BZ) of thehosen unit ell (or superell). The Kohn-Sham equations are usually solved byminimizing the total energy with an iterative sheme, suh as onjugate gra-dient (CG), for a �xed harge density and then updating the harge densityuntil self-onsisteny is ahieved (for a review of this approah see referene [2℄).Some parts of the alulation are done in Fourier spae and some in real spaetransforming between the two using 3d FFTs. Our partiular implementationin PARATEC (PARAllel Total Energy Code) [3℄ is based on a Grassmann on-jugate gradient minimization [4℄ where all bands are minimized simultaneously.This allows us to use eÆient BLAS3 routines for many parts of the alulationand also to blok the ommuniations to ensure MPI messaging is not latenydominated in the 3d FFTs.The two most important riteria driving the hoie of any parallelizationstrategy are equal division of the omputational workload among the proessors(load balaning) and minimization of the ommuniations. We distribute the gvetors for eah band among the proessors by giving out olumns of g vetors toeah proessor (see �gure 1(a)). These olumns are of di�erent length dependingon where they are in the sphere with the longest olumns utting the enterof the sphere. The omputations in PARATEC that are performed in Fourierspae (e.g. non-loal pseudopotential and orthogonalization) are load balanedby assigning eah proessor approximately the same number of g vetors. Theload-balaning algorithm �rst orders the olumns in desending order, and thendistributes them among the proessors suh that the next-available olumn isassigned to the proessor ontaining the fewest g vetors. The number of gvetors a proessor has orresponds to the total length of olumns it holds. Itis neessary to distribute omplete olumns of g vetors to eah proessor asthe �rst step in the 3d FFT performs 1d FFTs on olumns of g vetors. Thereal-spae data layout of the wavefuntions is on a standard Cartesian grid,where eah proessor holds a ontiguous part of the spae arranged in olumns,as shown in �gure 1(f). Eah proessor holds the same number of olumns (to



within one olumn) whih load balanes the real spae part of the alulation.The harge density is onstruted by performing 3d FFTs on eah wavefuntionto obtain the wavefuntion on the larger real spae grid. The wavefuntions arethen squared and summed on this grid to produed the harge density that isthen used in the alulation of the potential for the next self-onsistent step inthe solution of the Kohn-Sham equations.A 3d FFT onsists of three sets of 1d FFTs in the x,y and z diretions withtranspositions of the data between eah set of 1d FFTs. Only two transposes areneeded if the �nal data layout is not required to have the same x,y,z order inboth spaes. Sine the g vetors are distributed aross the proessors these twotransposes an require global ommuniations aross the parallel omputer andare the most ommuniation intensive part of the whole alulation. We havetherefore written a speialized 3d FFT to minimize the amount of ommunia-tions. This 3d FFT is di�erent from a standard 3d FFT as we have a sphereof points in Fourier spae rather than a standard grid. This 3d FFT takes ad-vantage of the fat that the real spae grid is usually about twie the diameterof the sphere and at eah of the three sets of 1d FFTs this sphere is in a senseexpanding into the larger grid. We therefore only perform 1d FFTs and om-muniations on the non-zero data elements whih greatly redues the amount ofommuniations ompared to using a standard library routine for the 3d FFT.Also when performing the seond transpose to the �nal real spae data layout(see �gure 1) we hoose the data layout to have as losely as possible ompleteplanes of data on eah proessor so that the transpose is loal and there is littledata ommuniation. In this way it is only the �rst transpose on the smallerdata set where there is signi�ant ommuniation. Our 3d FFT an run on anynumber of proessors for any grid and sphere size. If we used vendor supplied 3dFFTs we would have restritions on grid sizes as well as performing more alu-lations and ommuniations than our speialized 3d FFT sine the grid size inFourier and real spae would have to be the same. The details of eah step inour Fourier spae to real spae 3d FFT are (with z,y,x ordering in Fourier spaeand x,y,z in real spae):1. Eah proessor pads out the ends of eah of the z-olumns of g vetor oeÆ-ients that it holds with zeros to form full length z-olumns on eah proessor.The omplete data set is now a ylinder of length 2d and diameter d whered is the diameter of the original g vetor sphere and 2d is the ube size (see�gure 1(b)).2. Eah proessor performs one-dimensional FFTs on its set of z-olumns.3. The ylinder of data is now reorganized from z-olumns to y-olumns (or-dered by their x,z indies) with eah proessor now holding a ontiguous setof y-olumns. Global data redistribution is required at this step (ie. goingfrom �gure 1(b) to �gure 1()),as an be seen by the hanges in olor ofthe data elements. Eah proessor is given as losely as possible the samenumber of y-olumns.4. The y-olumns (whih are setions through the ylinder) are now paddedwith zeros at the ends to form full length olumns. The omplete data set is



now a slab of dimension d in the x diretion and 2d in the other diretions(see �gure 1(d)).5. Eah proessor performs one-dimensional FFTs on its set of y-olumns.6. The slab of data is now transformed from y-olumns (x,z ordered) to x-olumns (y,z ordered) with eah proessor now having a set of ontiguousx-olumns (ie. going from �gure 1(d) to �gure 1(e)). Eah proessor is givenas losely as possible the same number of x-olumns. Communiations areminimized at this step sine most of the transformations are loal to theproessor with only data at the interfaes of the olored bloks being om-muniated. In the ideal ase where there are omplete (y; x) planes on eahproessor the transpose an be done loally on eah proessor and thereare no ommuniations. Due to our hoie of data layouts in the FFT themain ommuniations are in step 3 where the data set (the ylinder) is muhsmaller than the slab.7. The x-olumns are now padded at the ends with zeros so the global data setis now the omplete ube of side 2d (see �gure 1(f)).8. Eah proessor performs one-dimensional FFTs on its set of x-olumns pro-duing the �nal distributed real spae representation of the wavefuntion inx,y,z order.An inverse 3d FFT is the reverse of these steps. While it is important tominimize the amount of data transfer in 3d FFTs, ommuniation lateny analso beome a major issue. In the �rst transpose in the 3d FFT all the proessorsare sending data to all the other proessors so the data paket size (for a �xedsize physial system ) sales as the inverse of the number of proessors squared.Therefore as we sale up to thousands of proessors the data pakets an beomevery small and ommuniation latenies an dominate the ode. To avoid thisproblem in our ode we use an all-band method that allows us to perform many3d FFTs at the same time and blok the ommuniations. There is an inputparameter in our ode whih hooses the number of 3d FFTs to be performed atthe same time. In this way, at the ost of using more memory, we an inrease thepaket size of the ommuniations in the 3d FFTs to avoid the lateny problem.For mahines with higher lateny like the IBM SP we have found that this aninrease the speed of the ode by 50-100% on runs in the hundreds of proessorregime. For large proessor ounts we typially do up to �fty 3d FFTs at thesame time whih greatly redues the lateny problem.2 Code Details and PerformanePARATEC is written in F90 and MPI and is designed primarily for massivelyparallel omputing platforms, but an also run on serial mahines. The odehas run on many omputer arhitetures and uses preproessing to inlude ma-hine spei� routines suh as the one dimensional FFT alls whih are used inour speialized 3d FFTs. For the parallel vetor platforms (Cray X1 and NECSX) an eÆient vetor implementation of the one dimensional FFT libraries wasrequired. The standard vendor supplied 1D FFT routines (on whih our own



Bassi Thunder Phoenix ES FranklinP IBM SP P5 Itanium2 Cray X1E NEC SX6 Cray XT4Gop/P %Pk Gop/P %Pk Gop/P %Pk Gop/P %Pk Gop/P %Pk64 | | | | 4.88 27 | | | |128 5.49 72 2.84 51 3.80 21 5.12 64 | |256 5.52 73 2.63 47 3.24 18 4.97 62 3.36 65512 5.13 67 2.44 44 2.22 12 4.36 55 3.15 611024 | | 1.77 32 | | 3.64 46 2.93 562048 | | | | | | 2.67 33 2.65 46Table 1. PARATEC results for a 488 atom CdSe quantum dot on the di�erent plat-forms. The real spae grid size for the 3d FFTs is 252*3. Bassi is an IBM SP witheight Power 5 proessors per node, loated at the NERSC omputer enter, LawreneBerkeley National Laboratory. Th under is an Intel Itanium2 luster with four proes-sors per node and a Quadris interonnet, loated at Lawrene Livermore NationalLaboratory. Phoenix is a Cray X1E vetor arhiteture loated at Oak Ridge NationalLaboratory. The ES is the Earth Simulator whih is a ustom designed NEC SX6 lo-ated at the Earth Simulator Center, Yokohama. Franklin is a Cray XT4 with dualore Opteron proessors and a 3d Torus interonnet, loated at the NERSC omputerenter, Lawrene Berkeley National Laboratory.speialized 3D FFTs are written) run at a relatively low perentage of peak.Code transformation was therefore required to rewrite our 3D FFT routines touse simultaneous (often alled multiple) 1D FFT alls, whih allow e�etive ve-torization aross many 1D FFTs. Additionally, ompiler diretives were insertedto fore the vetorization and multistreaming (on the X1) for loops that on-tained indiret addressing. The main ommuniations in the ode are performedin the parallel 3d FFTs with most of the other parts of the ode performingdense linear algebra on their loal data. For the data presented in this paper the3d FFTs typially take about 30% of the total runtime. Table 1 presents perfor-mane data for 3 CG steps of a 488 atom CdSe (Cadmium Selenide) quantumdot and a standard Loal Density Approximation (LDA) run of PARATEC witha 35 Ry ut-o� using norm-onserving pseudopotentials. The real spae grid sizefor the 3d FFTs is 252 ubed and the alulation is for 709 bands. A typialalulation would require at least 60 CG iterations to onverge the harge den-sity for a CdSe dot. CdSe quantum dots are luminesent in the optial range atdi�erent frequenies depending on their size and an be used as eletroni dyetags by attahing them to organi moleules. They represent a nanosystem withimportant tehnologial appliations.As an be seen from Table 1 PARATEC obtains a high perentage of peakon both supersalar and vetor based arhitetures. The mahines with the bestommuniation networks and lowest lateny, suh as the Cray XT4, have thebest saling to large proessor ounts for the 3d FFT and hene the whole ode.



The Power 5 hip has the highest per proessor performane for this ode. Thisode makes heavy use of Cahe in the FFTs as well as the other dense linearalgebra operations so that RISC type arhitetures obtain a perentage of peakthat is similar to vetor mahines. The ES ahieved the highest peak performaneof 5.5 Tops on 2048 proessors with the Cray XT4 being only a few perentslower. The Cray X1E obtained a lower perentage of peak due in part to somenon-vetorizable setions of the ode that run on the slow salar proessor. TheNEC ES has a relatively faster salar proessor.3 Disussion and ConlusionsIn this paper we have present an eÆient implementation of a parallel 3d FFTspei�ally designed for plane wave eletroni struture odes. We have shownthat with this 3d FFT our eletroni struture ode an sale well to thousandsof proessors on a variety of di�erent omputer arhitetures ranging from vetorto supersalar. The limiting fator to saling to larger proessor ounts is theommuniations in the 3d FFTs and we are investigating di�erent ommunia-tion shemes, suh as using more olletive operations, to allow us to sale tolarger proessor ounts.4 AknowledgmentsThe author would like to thank L. Oliker J. Shalf and J. Carter for useful dis-ussions and help in gaining aess to di�erent omputer platforms. The authorwould also like to thank the sta� of the Earth Simulator Center, espeially Dr.T. Sato. This researh used resoures of the National Energy Researh Sien-ti� Computing Center, whih is supported by the OÆe of Siene of the U.S.Department of Energy under Contrat No. DE-AC03-76SF00098. This researhused resoures of the Center for Computational Sienes at Oak Ridge NationalLaboratory, whih is supported by the OÆe of Siene of the Department ofEnergy under Contrat DE-AC05-00OR22725.Referenes1. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).2. M. Payne, M.P. Teter, D.C. Allan, T.A. Arias and J.D. Joannopoulos, Rev. Mod.Phys. 64, 1045 (1992).3. PARATEC (PARAllel Total Energy Code) www.ners.gov/projets/parate/ by B.Pfrommer, D. Razkowski, A. Canning, S.G. Louie, Lawrene Berkeley NationalLaboratory (with ontributions from F. Mauri, M. Côt�e, Y. Yoon, C. Pikard andP. Haynes).4. D. Razkowski, C.Y. Fong, P.A. Shultz, R.A. Lippert and E.B. STehel, Phys.Rev. B, 64. 155203 (2001).
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1Fig. 1. Parallel three dimensional FFT. This �gure shows whih proessors deal withwhih part of the grid during the three dimensional FFT. The olors red, blue andgreen orrespond to the part of the grid that resides on proessors zero to two


