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Abstract. First-principles methods based on Density Functional The-
ory (DFT) where the wavefunctions are expanded in plane waves (Fourier
components) are the most widely used approach for electronic structure
calculations in materials science. The scaling of this method depends
critically on having an efficient parallel 3d FFT that minimizes com-
munications and calculations. We present an implementation and per-
formance data of a parallel 3d FFT specifically designed for electronic
structure calculations that scales to thousands of processors on leading

parallel and vector computer platforms (IBM SP, Cray XT, NEC SX).

1 Parallel Implementation of 3d FFT

First-principles methods based on Density Functional Theory (DFT) in the
Kohn-Sham (KS) [1] formalism are the most widely used approach for electronic
structure calculations in materials science. The most common implementation
of this approach involves the expansion of the wave functions in plane waves
(Fourier components) and the use of pseudopotentials to replace the nucleus and
core electrons. In this implementation we require parallel 3d FFTs to transform
the electronic wavefunctions from Fourier space to real space to construct the
charge density. Parallel 3d FFTs are also required in other parts of the code e.g.
to transform potential terms from real space to Fourier space. This gives a com-
putationally very efficient approach with a full quantum mechanical treatment
for the valence electrons, allowing the study of systems containing hundreds of
atoms on modest-sized parallel computers. Taken as a method DFT-based codes
are one of the largest consumers of scientific computer cycles around the world
with theoretical chemists, biologists, experimentalists etc. now becoming users of
this approach. Parallel 3d FFTs are very demanding on the communication net-
work of parallel computers as they require global transpositions of the FFT grid
across the machine. The ratio of calculations to communications for 3d FFTs is
of order log N where N is the grid dimension (compared to a ration of N for a
distributed matrix multiply of matrix size N) which makes it one of the most
demanding algorithms to scale on a parallel machine. A scalable parallel 3d FFT
is critical to the overall scaling of plane wave DFT codes.



The Kohn-Sham formalism of DFT within the Local Density Approximation
(LDA) requires that the wavefunctions of the electrons {v;} satisfy
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where vjon (7) is the ionic pseudopotential, p(r) is the charge density and piz.(p(r))
is the LDA exchange-correlation potential. We use periodic boundary conditions,
expanding the wavefunctions in plane waves (Fourier components),
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The selection of the number of plane waves is determined by a cutoff F.,; in
the plane-wave kinetic energy %|g + k|? where {g} are reciprocal lattice vectors.
This means that the representation of the wavefunctions in Fourier space is a
sphere or ellipsoid with each g vector corresponding to a Fourier component (see
figure 1(a)). The k’s are vectors sampling the first Brillouin Zone (BZ) of the
chosen unit cell (or supercell). The Kohn-Sham equations are usually solved by
minimizing the total energy with an iterative scheme, such as conjugate gra-
dient (CQG), for a fixed charge density and then updating the charge density
until self-consistency is achieved (for a review of this approach see reference [2]).
Some parts of the calculation are done in Fourier space and some in real space
transforming between the two using 3d FFTs. Our particular implementation
in PARATEC (PARAllel Total Energy Code) [3] is based on a Grassmann con-
jugate gradient minimization [4] where all bands are minimized simultaneously.
This allows us to use efficient BLAS3 routines for many parts of the calculation
and also to block the communications to ensure MPI messaging is not latency
dominated in the 3d FFTs.

The two most important criteria driving the choice of any parallelization
strategy are equal division of the computational workload among the processors
(load balancing) and minimization of the communications. We distribute the g
vectors for each band among the processors by giving out columns of g vectors to
each processor (see figure 1(a)). These columns are of different length depending
on where they are in the sphere with the longest columns cutting the center
of the sphere. The computations in PARATEC that are performed in Fourier
space (e.g. non-local pseudopotential and orthogonalization) are load balanced
by assigning each processor approximately the same number of g vectors. The
load-balancing algorithm first orders the columns in descending order, and then
distributes them among the processors such that the next-available column is
assigned to the processor containing the fewest g vectors. The number of g
vectors a processor has corresponds to the total length of columns it holds. It
is necessary to distribute complete columns of g vectors to each processor as
the first step in the 3d FFT performs 1d FFTs on columns of g vectors. The
real-space data layout of the wavefunctions is on a standard Cartesian grid,
where each processor holds a contiguous part of the space arranged in columns,
as shown in figure 1(f). Each processor holds the same number of columns (to



within one column) which load balances the real space part of the calculation.
The charge density is constructed by performing 3d FFTs on each wavefunction
to obtain the wavefunction on the larger real space grid. The wavefunctions are
then squared and summed on this grid to produced the charge density that is
then used in the calculation of the potential for the next self-consistent step in
the solution of the Kohn-Sham equations.

A 3d FFT consists of three sets of 1d FFTs in the x,y and z directions with
transpositions of the data between each set of 1d FFTs. Only two transposes are
needed if the final data layout is not required to have the same x,y,z order in
both spaces. Since the g vectors are distributed across the processors these two
transposes can require global communications across the parallel computer and
are the most communication intensive part of the whole calculation. We have
therefore written a specialized 3d FFT to minimize the amount of communica-
tions. This 3d FFT is different from a standard 3d FFT as we have a sphere
of points in Fourier space rather than a standard grid. This 3d FFT takes ad-
vantage of the fact that the real space grid is usually about twice the diameter
of the sphere and at each of the three sets of 1d FFTs this sphere 1s in a sense
expanding into the larger grid. We therefore only perform 1d FFTs and com-
munications on the non-zero data elements which greatly reduces the amount of
communications compared to using a standard library routine for the 3d FFT.
Also when performing the second transpose to the final real space data layout
(see figure 1) we choose the data layout to have as closely as possible complete
planes of data on each processor so that the transpose is local and there is little
data communication. In this way it 1s only the first transpose on the smaller
data set where there is significant communication. Our 3d FFT can run on any
number of processors for any grid and sphere size. If we used vendor supplied 3d
FFTs we would have restrictions on grid sizes as well as performing more calcu-
lations and communications than our specialized 3d FFT since the grid size in
Fourier and real space would have to be the same. The details of each step in
our Fourier space to real space 3d FFT are (with z,y,x ordering in Fourier space
and x,y,z in real space):

1. Each processor pads out the ends of each of the z-columns of ¢ vector coeffi-
cients that it holds with zeros to form full length z-columns on each processor.
The complete data set is now a cylinder of length 2d and diameter d where
d is the diameter of the original ¢ vector sphere and 2d is the cube size (see
figure 1(b)).

2. Each processor performs one-dimensional FFTs on its set of z-columns.

3. The cylinder of data is now reorganized from z-columns to y-columns (or-
dered by their x,z indices) with each processor now holding a contiguous set
of y-columns. Global data redistribution is required at this step (ie. going
from figure 1(b) to figure 1(c)),as can be seen by the changes in color of
the data elements. Each processor is given as closely as possible the same
number of y-columns.

4. The y-columns (which are sections through the cylinder) are now padded
with zeros at the ends to form full length columns. The complete data set is



now a slab of dimension d in the x direction and 2d in the other directions
(see figure 1(d)).

5. Each processor performs one-dimensional FFTs on its set of y-columns.

6. The slab of data is now transformed from y-columns (x,z ordered) to x-
columns (y,z ordered) with each processor now having a set of contiguous
x-columns (ie. going from figure 1(d) to figure 1(e)). Each processor is given
as closely as possible the same number of x-columns. Communications are
minimized at this step since most of the transformations are local to the
processor with only data at the interfaces of the colored blocks being com-
municated. In the ideal case where there are complete (y, 2) planes on each
processor the transpose can be done locally on each processor and there
are no communications. Due to our choice of data layouts in the FFT the
main communications are in step 3 where the data set (the cylinder) is much
smaller than the slab.

7. The x-columns are now padded at the ends with zeros so the global data set
is now the complete cube of side 2d (see figure 1(f)).

8. Each processor performs one-dimensional FFTs on its set of x-columns pro-
ducing the final distributed real space representation of the wavefunction in
x,y,z order.

An inverse 3d FFT 1s the reverse of these steps. While it 1s important to
minimize the amount of data transfer in 3d FFTs, communication latency can
also become a major issue. In the first transpose in the 3d FFT all the processors
are sending data to all the other processors so the data packet size (for a fixed
size physical system ) scales as the inverse of the number of processors squared.
Therefore as we scale up to thousands of processors the data packets can become
very small and communication latencies can dominate the code. To avoid this
problem in our code we use an all-band method that allows us to perform many
3d FFTs at the same time and block the communications. There is an input
parameter in our code which chooses the number of 3d FFTs to be performed at
the same time. In this way, at the cost of using more memory, we can increase the
packet size of the communications in the 3d FFTs to avoid the latency problem.
For machines with higher latency like the IBM SP we have found that this can
increase the speed of the code by 50-100% on runs in the hundreds of processor
regime. For large processor counts we typically do up to fifty 3d FFTs at the
same time which greatly reduces the latency problem.

2 Code Details and Performance

PARATEC is written in F90 and MPI and is designed primarily for massively
parallel computing platforms, but can also run on serial machines. The code
has run on many computer architectures and uses preprocessing to include ma-
chine specific routines such as the one dimensional FFT calls which are used in
our specialized 3d FFTs. For the parallel vector platforms (Cray X1 and NEC
SX) an efficient vector implementation of the one dimensional FFT libraries was
required. The standard vendor supplied 1D FFT routines (on which our own



Bassi Thunder Phoenix ES Franklin
P | IBM SP P5 Itanium?2 Cray X1E NEC SX6 Cray XT4
Gflop/P %Pk|Gflop/P %Pk |Gflop/P %Pk|Gflop/P %Pk|Gflop/P %Pk
64 — — — — 4.88 27 — — — —
128 5.49 72 2.84 51 3.80 21 5.12 64 — —
256 5.52 73 2.63 47 3.24 18 4.97 62 3.36 65
512 5.13 67 2.44 44 2.22 12 4.36 55 3.15 61
1024 — — 1.77 32 — — 3.64 46 2.93 56
2048 — — — — — — 2.67 33 2.65 46

Table 1. PARATEC results for a 488 atom CdSe quantum dot on the different plat-
forms. The real space grid size for the 3d FFTs is 252*3. Bassi is an IBM SP with
eight Power 5 processors per node, located at the NERSC computer center, Lawrence
Berkeley National Laboratory. Th under is an Intel [tanium2 cluster with four proces-
sors per node and a Quadrics interconnect, located at Lawrence Livermore National
Laboratory. Phoenix is a Cray X1E vector architecture located at Oak Ridge National
Laboratory. The ES is the Earth Simulator which is a custom designed NEC SX6 lo-
cated at the Earth Simulator Center, Yokohama. Franklin is a Cray XT4 with dual
core Opteron processors and a 3d Torus interconnect, located at the NERSC computer
center, Lawrence Berkeley National Laboratory.

specialized 3D FFTs are written) run at a relatively low percentage of peak.
Code transformation was therefore required to rewrite our 3D FFT routines to
use simultaneous (often called multiple) 1D FFT calls, which allow effective vec-
torization across many 1D FFTs. Additionally, compiler directives were inserted
to force the vectorization and multistreaming (on the X1) for loops that con-
tained indirect addressing. The main communications in the code are performed
in the parallel 3d FFTs with most of the other parts of the code performing
dense linear algebra on their local data. For the data presented in this paper the
3d FFTs typically take about 30% of the total runtime. Table 1 presents perfor-
mance data for 3 CG steps of a 488 atom CdSe (Cadmium Selenide) quantum
dot and a standard Local Density Approximation (LDA) run of PARATEC with
a 3b Ry cut-off using norm-conserving pseudopotentials. The real space grid size
for the 3d FFTs is 252 cubed and the calculation is for 709 bands. A typical
calculation would require at least 60 CG iterations to converge the charge den-
sity for a CdSe dot. CdSe quantum dots are luminescent in the optical range at
different frequencies depending on their size and can be used as electronic dye
tags by attaching them to organic molecules. They represent a nanosystem with
important technological applications.

As can be seen from Table 1 PARATEC obtains a high percentage of peak
on both superscalar and vector based architectures. The machines with the best
communication networks and lowest latency, such as the Cray XT4, have the
best scaling to large processor counts for the 3d FFT and hence the whole code.



The Power b chip has the highest per processor performance for this code. This
code makes heavy use of Cache in the FFTs as well as the other dense linear
algebra operations so that RISC type architectures obtain a percentage of peak
that is similar to vector machines. The ES achieved the highest peak performance
of 5.5 Tflops on 2048 processors with the Cray XT4 being only a few percent
slower. The Cray X1E obtained a lower percentage of peak due in part to some
non-vectorizable sections of the code that run on the slow scalar processor. The
NEC ES has a relatively faster scalar processor.

3 Discussion and Conclusions

In this paper we have present an efficient implementation of a parallel 3d FFT
specifically designed for plane wave electronic structure codes. We have shown
that with this 3d FFT our electronic structure code can scale well to thousands
of processors on a variety of different computer architectures ranging from vector
to superscalar. The limiting factor to scaling to larger processor counts is the
communications in the 3d FFTs and we are investigating different communica-
tion schemes, such as using more collective operations, to allow us to scale to
larger processor counts.
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FIGURES

Fig. 1. Parallel three dimensional FFT. This figure shows which processors deal with
which part of the grid during the three dimensional FFT. The colors red, blue and
green correspond to the part of the grid that resides on processors zero to two



