
High Performance Preconditioning Techniques

for the Solution of Two-Group Transient

Neutron Diffusion Equation

Omar Flores12, Vicente Vidal1, L.A. Drummond3, and Gumersindo Verdú4

1 Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia, España
{oflores,vvidal}@dsic.upv.es

2 Departamento de Sistemas y Computación
Instituto Tecnológico de Tuxtepec

Av. Bravo Ahuja s/n, Col. 5 de Mayo, C.P. 68300, Tuxtepec, Oaxaca, México
3 Computational Research Division

Lawrence Berkeley National Laboratory
One Cyclotron Road
Berkeley, CA 94720
LADrummond@lbl.gov

4 Departamento de Qúımica e Ingenieŕıa Nuclear
Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia, España
gverdu@iqn.upv.es

Abstract. We evaluate the performance of preconditioned Second-Order
degree iterative methods for the solution of large-sparse linear systems
of equations related to the 3D multi-group time-dependent Neutron Dif-
fusion Equation. Efficient solutions to these problems are important for
studies of stability and security of nuclear reactors. For this, first we
present the results of a comparison among preconditioners available in
Hypre[1][2][3] that are more appropriated for our problem. Secondly, they
are compared against results obtained from preconditioners available in
the PETSc library[4][5][6]. Our test examples are based on the commer-
cial nuclear reactor of Leibstadt.

Key words: Second-Order Iterative Methods, Transient Neutron Dif-
fusion Equation, Parallel Computing.

1 Introducción

The neutron population into the reactor core is modeled using the Boltzmann
transport equation. This three-dimensional problem is modeled as a system of
coupled partial differential equations, the multigroup neutron diffusion equa-
tions[7][8], that have been discretised using a nodal collocation method in space
and one-step Backward-Difference Method in time. The solution of these equa-
tions can involve very intensive computing. Therefore, it is necessary to find

2 Omar Flores-Sánchez et al.

effective algorithms for the solution of the three-dimensional model to perform
faster and more accurate safety analysis of Nuclear Reactors [9].

Bru et al in [10] apply two Second-Degree iterative methods [11] to solve
the linear system of equations related to a 2D Neutron-Diffusion equation case.
These same techniques with new modifications have been applied to a 3D real
test case and presented in [12]. The focus of this paper is to try and find the
preconditioners that offer the best performance. As we have mentioned before,
we have choosen the HYPRE and PETSc libraries due to their facility of use.
Also we compare the performance of such preconditioners.

This papers is organized as follows. In section 2, we introduce some basic
knowledge of the mathematical model of the Time-dependent Neutron Diffusion
Equation and its discretisation. Then we give some details about second-degree
iterative methods in section 3. In section 4 we describe the hardware and software
used. The test case is presented in section 5. In section 6 some numerical results
are presented. Finally, section 7 contains some brief concluding remarks.

2 Problem Description

Plant simulators mainly consist of two different modules which account for the
basic physical phenomena taking place in the plant: a neutronic module which
simulates the neutron balance in the reactor core, and the evaporation and con-
densation processes. In this paper, we will focus on the neutronic module.

The balance of neutrons in the reactor core can be approximately modeled
by the time-dependent two energy group neutron diffusion equation, which is
written using standard matrix notation as follows[13]:

[v−1]φ̇+ Lφ = (1 − β)Mφ + χ

K
∑

k=1

λkCk (1)

Ċk = βk[νΣf1
νΣf2

]φ− λkCk, k = 1, . . . ,K (2)

where

L =

[

−∇ · (D1∇) +
∑

a1 +
∑

12 0
−

∑

12 −∇ · (D2∇) +
∑

a2

]

, [v−1] =

[1
v1

0

0 1
v2

]

,

and

M =

[

νΣf1 νΣf2

0 0

]

, φ =

[

φf

φt

]

, χ =

[

1
0

]

,

where

– φ is the neutron flux on each point of the reactor; so, it is a function of time
and position.

Title Suppressed Due to Excessive Length 3

– Ck is the concentration of the k-th neutron precursor on each point of the
reactor (it is as well a function of time and position). λkCk is the decay rate
of the k-th neutron precursor.

– K is the number of neutron precursors. βk is the proportion of fission neu-
trons given by transformation of the k-th neutron precursor; β =

∑K

k=1 βk.
– L models the diffusion (−∇ · (D1∇)), absorption (

∑

a1,
∑

a2) and transfer
from fast group to thermal group (

∑

12).
– M models the generation of neutrons by fission.
– ν

∑

fg gives the amount of neutrons obtained by fission in group g.

– v−1 gives the time constants of each group.

To study rapid transients of neutronic power and other space and time phe-
nomena related to neutron flux variations, fast codes for solving these equations
are needed. The first step to obtain a numerical solution of these equations con-
sists of choosing a spatial discretization for equation (1). For this , the reactor
is divided in cells or nodes and a nodal collocation method is applied[14][15].
In this collocation method, neutron flux is expressed as a series of Legendre
Polynomials.

After a relatively standard process (setting boundary conditions, making use
of the orthonormality conditions, using continuity conditions between cells) we
obtain the following systems of ordinary differential equations:

[v−1]ψ̇ + Lψ = (1 − β)Mψ +X

K
∑

k=1

λkCk, (3)

Ċk = βk[M11M12]ψ − λkCk, k = 1, . . . ,K, (4)

where unknowns ψ and Ck are vectors whose components are the Legendre
coefficients of φ and Ck in each cell, and L, M , [v−1] are matrices with the
following block structure:

L =

[

L11 0
−L21 L22

]

,M =

[

M11 M12

0 0

]

, v−1 =

[

v−1 0
0 v−1

]

, X =

[

I

0

]

.

Depending on flux continuity conditions imposed among the discretisation
cells of the nuclear reactor, the blocks L11 and L22 can be symmetric or not.
For our test case, these blocks are symmetric positive definite matrices[16], while
blocks L21, M11 and M12 are diagonal.

The next step consists of integrating the above ordinary differential equations
over a series of time interval, [tn, tn+1]. Equation (4) is integrated under the
assumption that the term [M11M12]ψ varies linearly from tn to tn+1, obtaining
the solution Ck at tn+1 expressed as

Cn+1
k = Cn

k e
λkh + βk(ak[M11M12]

nψn + bk[M11M12]
n+1ψn+1 (5)

where h = tn+1 − tn is a fixed time step size, and the coefficients ak and bk are
given by

4 Omar Flores-Sánchez et al.

ak =
(1 + λkh)(1 − eλkh)

λ2
kh

−
1

λk

, bk =
λkh− 1 + eλkh

λ2
kh

.

To integrate (3), we must take into account that it constitutes a system of
stiff differential equations, mainly due to the elements of the diagonal matrix
[v−1]. Hence, for its integration, it is convenient to use an implicit backward
difference formula (BDF). A stable one-step BDF to integrate (3) is given by

[v−1]

h
(ψn+1 − ψn) + Ln+1ψn+1 = (1 − β)Mn+1ψn+1 +X

K
∑

k=1

λkC
n+1
k (6)

Taking into account equation (5) and the structure of matrices L and M , we
rewrite (6) as the system of linear equations

[

T11 T12

T21 T22

] [

ψn+1
1

ψn+1
2

]

=

[

R11 R12

0 R22

] [

ψn
1

ψn
2

]

+

K
∑

k=1

λke
−λkh

[

Cn
k

0

]

, (7)

where

T11 =
1

h
v−1
1 + Ln+1

11 − (1 − β)Mn+1
11 −

K
∑

k=1

λkβkbkM
n+1
11 ,

T21 = −Ln+1
21 ,

T12 = −(1 − β)Mn+1
12 −

K
∑

k=1

λkβkbkM
n+1
12 ,

T22 =
1

h
v−1
2 + Ln+1

22 ,

R11 =
1

h
v−1
1 +

K
∑

k=1

λkβkakM
n
11,

R12 =
K

∑

k=1

λkβkakM
n
12, R22 =

1

h
v−1
2 .

Thus, for each time step it is necessary to solve a large and sparse system of
linear equations, with the following block structure:

[

T11 T12

T21 T22

] [

ψ1

ψ2

]

=

[

e1
e2

]

(8)

where the right-hand side depends on both the solution in previous time steps
and the backward difference method used. Usually, the coefficients matrix of
system (8) has similar properties as the matrices L and M in equation (3),
namely blocks T11, T22 are symmetric positive definite matrices, and blocks T12,
T21 are singular diagonal matrices. System (8) will be also denoted as

Tψ = e. (9)

Title Suppressed Due to Excessive Length 5

3 Second Degree Iterative Methods

We begin this section with a brief introduction to the second-degree methods
presented and applied to a 2D and 3D neutron diffusion equation case (see
[10][12].

3.1 Second Degree Method A

Consider the coefficient matrix T of the linear system (9) and the Jacobi splitting,
T = M −N , with matrices M and N given by

M =

[

T11 0
0 T22

]

, N =

[

0 −T12

−T21 0

]

where iteration matrix BJ is represented by

BJ = M−1N =

[

0 −T−1
11 T12

−T−1
22 T21 0

]

Now, considering the matrices G1 = ωBJ , G0 = (1 − ω)BJ , where ω is an
extrapolation factor, and the vector k = M−1e, we can write the following
second degree method based on the Jacobi Over-relaxation (JOR) splitting

ψ(n+1) = G1ψ
(n) +G0ψ

(n−1) + k = BJ (ωψ(n) + (1 − ω)ψ(n−1)) + k,

which corresponds to the following operations

T11ψ
l+1
1 = e1 − T12(ωψ

l
2 + (1 − ω)ψl−1

2),

T22ψ
l+1
2 = e2 − T21(ωψ

l
1 + (1 − ω)ψl−1

1).
(10)

Let us identify these operations as Method A.

3.2 Second Degree Method B

In the same manner, we can construct another method based on the accelerated
Gauss-Seidel splitting, whose iteration matrix BGS is given by

BGS = M−1N =

[

T11 0
T21 T22

]

−1 [

0 −T12

0 0

]

,

The operations that correspond to this method are represented by

T11ψ
l+1
1 = e1 − T12(ωψ

l
2 + (1 − ω)ψl−1

2),

T22ψ
l+1
2 = e2 − T21(ωψ

l+1
1 + (1 − ω)ψl

1).
(11)

Methods A and B, can be described by the following algorithmic scheme

6 Omar Flores-Sánchez et al.

Second-Degree Iterative Method Algorithm

(1) Set ψ0
2; {ψ0

2 := ψ∗

2}
(2) Solve T11ψ

1
1 = e1 − T12ψ

0
2

(3) Solve T22ψ
1
2 = e2 − T21ψ

1
1

(4) Do l = 1, 2, . . .
(4a) Solve ψl+1

1 in accordance with A or B method.

(4b) Solve ψl+1
2 in accordance with A or B method.

until ‖ψl+1
1 − ψl

1‖ < tol and ‖ψl+1
2 − ψl

2‖ < tol

where, ψ∗

2 represents the solution of a previous time step.
As we can see, the main difference between methods (10) and (11), is that

in (11), the new solution for ψ1 is used as soon as it is available to compute
ψ2. Therefore, a faster convergence rate may be expected. In both methods, we
distinguish between outer and inner iterations. The outer iterations are identified
by the Step (4), and inner iterations are represented by Step (4a) and (4b), which
correspond to iterations needed for solving the linear systems with matrices T11

and T22 respectively. General theorems about the convergence of second-degree
methods can be found in [11].

3.3 Method C

As we can see, the solution process with T11 and T22 blocks can be carried out
independently each one of other. This fact has motivated experiments with the
following operations

T11ψ
l+1
1 = e1 − T12(ω1ψ

l
2 + (1 − ω1)ψ

l−1
2)

T22ψ
l+1
2 = e2 − T21(ω2ψ

l+1
1 + (1 − ω2)ψ

l
1).

(12)

In this new scheme, method C, we have added two different parameters ω1 and
ω2 for each system to be solved, in order to accelerate its convergence. From
application of method C to the test case, we find that the optimum value of ω1

is 1.0 and for ω2 is 1.9 (See [12]).

3.4 Method D

Besides to method C, we have carried out experiments with an ’adaptable’ tech-
nique, achieving some improvements in the process efficiency. This technique
computes the solution of the systems T11ψ

l+1
1 and T22ψ

l+1
2 with a cheap pre-

cision ǫi at initial stages of the method. Then, this precision is ’adapted’ or
’improved’ towards a more demanding one in successive iterations. The applica-
tion of this technique to method C gives rise to the following algorithm (method
D), where rl means ’precision’ r achieved in stage l. We believe that applica-
tion of preconditioning techniques to the solve steps can leads to speedup the
convergence rate of these methods.

Title Suppressed Due to Excessive Length 7

Second-Degree Iterative Method Algorithm (Adaptable version)

(1) Set ψ0
2; {ψ0

2 := ψ∗

2}
(2) Set ǫi = {ǫ1, ǫ2, . . . , ǫn} where ǫi > ǫi+1;

(3) Set i = 1;
(4) Solve T11ψ

1
1 = e1 − T12ψ

0
2 with tolerance ǫi

(5) Solve T22ψ
1
2 = e2 − T21ψ

1
1 with tolerance ǫi

(6) Do l = 1, 2, . . .
(6a) Solve for ψl+1

1 with tolerance ǫi
(6b) Solve for ψl+1

2 with tolerance ǫi
(6c) if rl+1 ≤ rl

i := i+ 1
end if

until ‖ψl+1
1 − ψl

1‖ < tol and ‖ψl+1
2 − ψl

2‖ < tol

The next section presents the hardware and software tools that we have used
to carry out the numerical experiments.

4 Computer Platform

This section presents a brief overview of the hardware and software used to carry
out the numerical experiments.

4.1 Hardware

Sequential and parallel computations have been performed on a 8-node bipro-
cessor cluster subcomplex of an AMD Opteron supercluster named Jacquard[18]
running a Linux operating system at National Energy Research Scientific Com-
puting Center[19]. The machine is named in honor of inventor Joseph Marie
Jacquard. Each processor runs at a clock speed of 2.2GHz, and has a theoret-
ical peak performance of 4.4 GFlop/s. Processors on each node share 6GB of
memory. The nodes are interconnected with a high-speed InfiniBand network.

4.2 Software

The PETSc Library The Portable, Extensible Toolkit for Scientific Com-
putation library (PETSc)[4][5][6], it is a suite of data structures and routines
that provide the building blocks for the implementation of large-scale application
codes on parallel (and serial) computers. Krylov subspace methods, precondi-
tioners including multigrid and sparse direct solvers, etc.

Fig. 1 illustrates the PETSc library hierarchical organization, which enables
users to employ the level of abstraction that is most appropriate for a particular
problem.

There are sequential and parallel AIJ sparse matrix format in PETSc. In the
sequential AIJ sparse matrix, the nonzero elements are stored by rows, along

8 Omar Flores-Sánchez et al.

Fig. 1. Organization of PETSc library.

with an array of corresponding column numbers and an array of pointers to the
beginning of each row. For example, the PETSc partitioning scheme using the
parallel sparse matrix AIJ format for operation Ax, must be as follows

p0

p1

p2

Ax =

























1 2 0 | 0 3 0 | 0 4
0 5 6 | 7 0 0 | 8 0
9 0 10 | 11 0 0 | 12 0

13 0 14 | 15 16 17 | 0 0
0 18 0 | 19 20 21 | 0 0
0 0 0 | 22 23 0 | 24 0

25 26 27 | 0 0 28 | 29 0
30 0 0 | 31 32 33 | 0 34

















































1
0
5
7
9
0

10
11

























p0

p1

p2

where we can see the local parts of matrix A and vector x stored in processor
p0.

Among the most popular Krylov subspace iterative methods contained in
PETSc are Conjugate Gradient, Bi-Conjugate Gradient, Stabilized BCG, Trans-
pose Free Quasi-Minimal Residual, Generalized-Minimal Residual and so on[17].
In addition, PETSc offers preconditioners as Additive Schwarz, Block Jacobi,
Jacobi, ILU, ICC, etc.

The Hypre Library The High Performance Preconditioners (Hypre)[1][2][3]
is a library of high performance preconditioners and solvers for the solution of
large, sparse linear systems of equations on massively parallel computers. The
Hypre library was created with the primary goal of providing users with advanced
parallel preconditioners. The library features parallel multigrid solvers for both
structured and unstructured grid problems.

Title Suppressed Due to Excessive Length 9

The available solvers and preconditioners in Hypre are accessed from the
application code via Hypre’s conceptual linear system interfaces, which allow a
variety of natural problem descriptions (see Fig. 2).

Fig. 2. Organization of conceptual interfaces in Hypre.

In order to use Hypre we have chosen the IJ interface due to our test matrices
are specified in CSR format. Matrices are assumed to be distributed by blocks
of rows as follows:











A0

A1

...
AP−1











. (13)

The above example shows that matrix is distributed accross the P processes,
0, 1, . . . , P − 1 by blocks of rows. Each submatrix Ap is “owned”” by a single
process.

For IJ conceptual interface, Hypre provides popular Krylov subspace iter-
ative methods such as Preconditioned Conjugate Gradient, Generalized Mini-
mum Residual and Biconjugate Gradient Stabilized (BICGSTAB). In addition
Hypre contains several families of preconditioner algorithms such as Boomer-
AMG, ParaSails, Euclid and so on[3][2].

5 Test Case

The test case chosen is the comercial reactor of Leibstadt[21], which has been
discretised in a 3D form. The spatial discretisation has 32*32*27 cells, so that the
total number of equations and cells is quite large: 157248 equations and 796080
nonzero elements in the Jacobian matrix. We have applied all methods to the

10 Omar Flores-Sánchez et al.

set of matrices belongs to time step t = 0, which corresponds to a stability test
carried out in 1990 where the reactor oscillates out of phase. Timing is obtained
through the use of MPI Wtime function available in MPI library. For all methods,
we have verified their accuracy and precision with regard to the global system
Tψ = e using the Matlab software.

6 Numerical Results

We have used the same vector as initial solution (ψ∗) for all methods. Also,
we have chosen the Krylov subspace method of Conjugate Gradient, because
the blocks M11 and M22 are nearly-symmetric positive-definite matrices due
to the continuity conditions imposed on the flux among cells. In addition, we
have required that the relative error be less than 10−7 as the criterion for
convergence for the solve phases. Parallel computations were carried out with
p = 1, 2, 4, 6, 8, 10, 14, 16 processors.

6.1 Sequential Execution Times

For the case of Hypre, we have carried out test with preconditioners such as
Diagonal Scaling(DS), BoomerAMG, ParaSails and Euclid and without precon-
ditioning (PCNONE). From the application of these preconditioners we have
obtained the execution times showed in Table 1. From this table, we can com-
ment: first, we see that all methods present the same performance observed in
a prior work, where efficiency of method D is better than method A (see [12]).
Secondly, we can observe that the application of preconditioning techniques had
speed up the convergence rate for some Hypre preconditioners. For example,
the execution time of method D with an Euclid preconditioner represents a re-
duction of almost 40% with respect to the case without preconditioning. This
fact shows that use of preconditioning techniques had improved the performance
substantially for our test case. It is important pointed out, that application of a
sparse approximate inverse preconditioner (ParaSails) is slightly cheaper com-
pared to Diagonal Scaling (DS) for our test matrices. However, numerical test
using higher level sparsity patterns, had lead to worse execution times.

Table 1. Sequential execution times (secs) in Hypre

METHOD PCNONE DS BoomerAMG ParaSails Euclid

A 403.12 310.43 1955.17 290.23 236.66

B 192.18 147.81 885.01 133.50 111.73

C 112.48 86.57 433.25 77.87 63.60

D 79.08 61.45 434.69 56.04 48.27

On the other hand, we are interested in knowing the performance achieved
with application of preconditioners available in the PETSc library. So, under

Title Suppressed Due to Excessive Length 11

same conditions, we have obtained the times represented in Table 2. In the
same manner, we can observe the advantage of use preconditioning techniques.
If we make an analogous analysis as before paragraph, we will find that we have
reduced the execution time of method D to almost 60% when it is combined
with a Block Jacobi preconditioner.

Table 2. Sequential execution times (secs) in PETSc

METHOD PCNONE JACOBI BJACOBI

A 290.17 218.00 176.28

B 148.72 104.71 84.23

C 85.45 62.19 47.09

D 61.81 45.21 36.39

6.2 Parallel Execution Times

For the parallel case with Hypre, we present only those with the preconditioner
Euclid, due to presents the best performance. So, analysis of Table 3 shows the
advantage of use parallel computing to reduce even more the sequential execution
times for all methods. For our case, this reduction is almost 10% for all methods
over their sequential time when we use p = 16 processors.

Also, it is necessary to emphasize, that in the sequential case, the influence of
preconditioning in the methods considered. For example, the execution time for
method A with p = 16 processors without preconditioning (PCNONE) registered
36.71 secs (This value is not showed in Table 3), but when method A is combined
with Euclid preconditioning and equal number of processors, this time is reduced
to a 60% of its value.

Table 3. Parallel execution times (secs) in Hypre using Euclid preconditioner

METHOD p = 1 p = 2 p = 4 p = 6 p = 8 p = 10 p = 14 p = 16

A 236.66 128.22 71.94 49.23 38.53 31.68 24.11 22.06
B 111.73 62.82 33.54 23.27 18.16 14.95 11.38 10.51
C 63.60 35.39 19.62 13.46 10.28 8.70 6.84 6.12
D 48.27 26.02 14.64 9.84 7.89 6.39 4.88 4.45

For parallel execution times in PETSc, we represent only execution times
with preconditioner Block Jacobi, because it showed the best ones. These times
are represented in Table 4. As in the case of the Hypre library, we can observe
a reduction of the sequential time almost 12% of its value for most cases in all
methods. Now, with respect the use of preconditioning, we can observed that
sequential times has been reduced almost 8% for all methods too.

12 Omar Flores-Sánchez et al.

Table 4. Parallel execution times (secs) in PETSc using Block Jacobi preconditioner

METHOD p = 1 p = 2 p = 4 p = 6 p = 8 p = 10 p = 14 p = 16

A 176.28 102.18 58.27 42.49 33.70 29.34 23.25 21.93
B 84.23 48.91 27.51 19.95 15.87 13.85 10.88 10.03
C 47.09 28.69 16.31 11.65 9.19 8.04 6.50 5.95
D 36.39 21.37 12.04 8.74 6.92 6.06 4.77 4.60

6.3 Speedup and Efficiency

Parallel performance metrics such as speedup and efficiency[20] of the best com-
bination of solver and preconditioner are presented in Table 5. Generally speak-
ing, we can see that parallel performance does not degrade for down to 16 pro-
cessors in both libraries. However, for the case of Hypre library, even when
registered slightly execution times higher than PETSc, it shows a better parallel
performance. For example, for the case of p = 16 processors using Hypre, shows
a speedup of 10.8 against the value 7.9 registered using PETSc. This fact, talk
us about the efficiency of the library in use of the cluster resources.

Table 5. Speedup and Efficiency

p Hypre PETSc

Tp Sp Ep Tp Sp Ep

1 48.27 1.0 100% 36.39 1.0 100%
2 26.02 1.9 93% 21.37 1.7 85%
4 14.64 3.3 82% 12.04 3.0 76%
6 9.84 4.9 82% 8.74 4.2 69%
8 7.89 6.1 76% 6.92 5.3 66%
10 6.39 7.6 76% 6.06 6.0 60%
14 4.88 9.9 71% 4.77 7.6 54%
16 4.45 10.8 68% 4.60 7.9 49%

If we make a comparison of parallel execution times for both libraries , we
shall observe that in terms of performance, PETSc library is slightly better than
Hypre(see Fig. 3). However, in general both libraries had showed acceptable
performance for our test case.

7 Conclusions

Efficient solution of large-sparse linear systems of equations related to the 3D
multi-group time-dependent Neutron Diffusion Equation play a central role in
stability and security studies of nuclear reactors. We have shown in this paper
the results of four Second-Degree Iterative Methods applied to test matrices of

Title Suppressed Due to Excessive Length 13

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

45

50

PROCESSORS

T
IM

E
 (

se
cs

)

Euclid+CG
B−Jacobi+CG

Fig. 3. Parallel execution times for Hypre and PETSc

real nuclear reactor. In addition, these methods have been combined with a set
of preconditioners contained in two important libraries: PETSc and Hypre. For
PETSc library, the preconditioners applied were Jacobi and block Jacobi. For
Hypre library, the preconditioners applied were Diagonal Scaling, BoomerAMG,
ParaSails and Euclid. All the preconditioners were combined with the method
Conjugate Gradient. The preconditioners more efficient were Block Jacobi and
Euclid for PETSc and Hypre libraries respectively. We have also found that
PETSc preconditioners presented a better performance with respect to Hypre
preconditioners.

We have used parallel computing to decrease the sequential time and we
have achieved acceptable parallel performance for our test case.However, we have
found higher values of speedup and efficiency in the case of Hypre. This means,
that the algorithms of Hypre use the computer resources in a more efficient
manner.

In general, the Hypre and PETSc libraries have shown a good parallel perfor-
mance for our test case. Application of Second-Degree Iterative Methods com-
bined with preconditioning techniques have helped to speedup their convergence
rate in the solution of our test matrices.

Acknowledgments. This work has been supported by Spanish MEC and
FEDER under Grants ENE2005-09219-C02-02,ENE2005-09219-C02-01 and SEIT-
SUPERA-ANUIES (México).

References

1. Scalable Linear Solvers HYPRE High-Performance Preconditioning, https://

computation.llnl.gov/casc/linear solvers/sls hypre.html

14 Omar Flores-Sánchez et al.

2. HYPRE team: HYPRE Reference Manual. UCRL-CODE-222953 - Software Ver-
sion 2.2.0, Center for Applied Scientific Computating Lawrence Livermore National
Laboratory (2006)

3. HYPRE team: HYPRE User’s Manual. UCRL-CODE-222953 - Software Version
2.2.0, Center for Applied Scientific Computating Lawrence Livermore National Lab-
oratory (2007)

4. Balay S., Gropp W.D., McInnes L.C., Smith B.F.: PETSc home page
http://www.mcs.anl.gov/PETSc (2002)

5. Balay S., Gropp W.D., McInnes L.C., Smith B.F.: PETSc Users Manual. ANL-95/11
- Revision 2.1.5, Argonne National Laboratory (1997)

6. Balay S., Gropp W.D., McInnes L.C., Smith B.F.: Efficient Management of Paral-
lelism in Object Oriented Numerical Software Libraries. Modern Software Tools in
Scientific Computing (1997) 163-202

7. Weston J.R., Stacey M.: SpaceTime Nuclear Reactor Kinetics. Academic Press
(1970)

8. Henry A.F.: Nuclear Reactor Analysis. The M.I.T Press (1975)
9. Garćıa V.M., Vidal V., Verdú G., Miró R.: Sequential and Parallel Resolution of the

3D Transient Neutron Diffusion Equation. Mathematics and Computation, Super-
computing, Reactor Physics and Nuclear and Biological Applications, on CD-ROM,
American Nuclear Society (2005)

10. Bru R., Ginestar D., Maŕın J., Verdú G., Mas J., Manteuffel T.: Iterative Schemes
for the Neutron Diffusion Equation. Computers and Mathematics with Applications,
Vol.44, (2002) 1307-1323

11. D.M. Young.: Iterative Solution of Large Linear Systems. Academic Press Inc.,New
York, N.Y. (1971)

12. Flores-Sánchez, O., Vidal, V., Garćıa, V., Flores-Sánchez, P.: Sequential and
Parallel Resolution of the Two-Group Transient Neutron Diffusion Equation us-
ing Second-Degree Iterative Methods. In: 7th International Conference on High-
Performance Computing for Computational Science - VECPAR 2006, pp. 426–438.
Springer-Verlag, Berlin Heidelberg (2007)

13. Stacey W.M.: Space-Time Nuclear Reactor Kinetics. Academic Press, New York
(1969)

14. Verdú G., Ginestar D., Vidal. V., Muñoz-Cobo J.L.: A Consistent Multidimensional
Nodal Method for Transient Calculation. Ann. Nucl. Energy, 22(6), (1995) 395-410

15. Ginestar D., Verdú G., Vidal V., Bru R., Maŕın J., Muñoz J.L.: High order back-
ward discretization of the neutron diffusion equation. Ann. Nucl. Energy, 25(1-3),
(1998) 47-64

16. Hébert A.: Development of the Nodal Collocation Method for Solving the Neutron
Diffusion Equation. Ann. Nucl. Energy, 14(10), (1987) 527-541

17. Y. Saad. Iterative Methods for Sparse Linear Systems PWS Publishing Company,
Boston, MA (1996)

18. Jacquard - Opteron Clusterhttp://www.nersc.gov/nusers/systems/jacquard/
19. National Energy Research Scientific Computing Center http://http://www.

nersc.gov/
20. V. Kumar and A. Grama and A. Gupta and G. Karypis.: Introduction to paral-

lel computing:design and analysis of parallel algorithms. The Benjamin/Cummings
Publishing Company, Inc.,Redwood City, CA (1994)

21. Blomstrand J.: The KKL Core Stability Test, conducted in September 1990. ABB
Report, BR91-245 , (1992)

22. D. Ginestar and J. Maŕın and G. Verdú.: Multilevel methods to solve the neutron
diffusion equation. Applied Mathematical Modelling, 25, (2001) 463-477

