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Abstract. Clustering aims to partition a data set by bringing together
similar elements in subsets. Spectral clustering consists in selecting dom-
inant eigenvectors of a matrix called affinity matrix in order to define a
low-dimensional data space in which data points are easy to cluster. The
key is to design a good affinity matrix. If we consider the usual Gaussian
affinity matrix, it depends on a scaling parameter which is difficult to
select. Our goal is to grasp the influence of this parameter and to propose
an expression with a reasonable computational cost.

1 Introduction

Clustering has many applications in a large variety of fields : biology, information
retrieval, image segmentation, etc. Spectral clustering methods use eigenvalues
and eigenvectors of a matrix, called affinity matrix, which is built from the raw
data. The idea is to cluster data points in a low-dimensional space described by a
small number of these eigenvectors. By far, it is commonly agreed that the design
and normalization of this affinity matrix is the most critical part in the clustering
process. We are concerned with the Gaussian affinity matrices because they are
very largely used. The expression of the Gaussian affinity matrix depends on
a parameter σ and the quality of the results drastically depends on the good
choice of this parameter. As said by several authors [3],[6] and [4], the scaling
parameter controls the similarity between data. We propose a new expression
based on a geometrical interpretation which is a trade-off between computational
cost and efficiency and test it with classical challenging problems. This definition
integrates both dimension and density of data.

2 Algorithm Ng, Jordan and Weiss (NJW)

Let x1, ..xm be a m points data set in a n-dimensional euclidean space. The aim
is to cluster those m points in k clusters in order to have better within-cluster
affinities and weaker affinities across clusters. We suppose that the number k
of targeted clusters is given. The affinity between two points xi and xj could



be defined by Aij = exp(−‖xi − xj‖2/σ2) where ‖.‖ is the euclidean norm.We
consider the spectral clustering algorithm proposed by NJW [3] which is based
on the extraction of dominant eigenvalues and their corresponding eigenvectors
from the normalized affinity matrix A. This approach resumes in the following
steps :

– Form the affinity matrix A ∈ Rm×m defined by:

Aij =

{
exp(−‖xi−xj‖2

2σ2 ) if i 6= j,
0 otherwise

– Construct the normalized matrix : L = D−1/2AD−1/2 with Di,i =
∑m

j=1 Aij

– Construct the matrix X = [x1x2..xk] ∈ Rm×k by stacking the eigenvectors
associated with the k largest eigenvalues of L

– Form the matrix Y by normalizing each rows in the m× k matrix X

– Treat each row of Y as a point in Rk, and group them in k clusters via the
K-means method

– Assign the original point xi to cluster j if and only if row i of matrix Y was
assigned to cluster j.

NJW justify this algorithm by considering an ideal case with three well-
separated clusters. With the assumption that the points are already indexed by
clusters consecutively, the affinity matrix has a block-diagonal structure. Thus,
the largest eigenvalue of the normalized affinity matrix is 1, with multiplicity
of order 3. The normalized rows of the extracted dominant eigenvectors are
piecewise constant. In the field of the rows of these largest eigenvectors, it is
easy to identify the three well-separated points that correspond to these three
piecewise constant eigenvectors, and then to define the clusters accordingly. As
already said in [4], one crucial step is to select appropriately the parameter σ
and, in that respect, we have to decide between a global parameter as in [3], [2]
and [1] or a local parameter that depends on the points xi and xj as in [6].

3 Towards the choice of a global parameter from a
geometric point of view

As already said in introduction, the purpose is to build an affinity matrix that
can integrate both the dimension of the problem as well as the density of points
in the given n-th dimensional data set.

For the sake of efficiency, we shall investigate global parameters that can be
used to derive the affinity matrix in the usual way, as a function of the distances
between points in the data set. To this end, we first make the assumption that
the n-th dimensional data set is isotropic enough, in the sense that there does not
exist some privileged directions with very different magnitudes in the distances



between points along these directions. Let us denote by S = {xi, 1 ≤ i ≤ m}
the data set of points, and by

Dmax = max
1≤i,j≤m

‖xi − xj‖ ,

the largest distance between all pairs of points in S. Under this first hypothesis,
we can then state that the data set of points in essentially included in a n-th
dimensional box with edge size bounded by Dmax.

If we expect to be able to identify some clusters within the set of points S,
we must depart from the uniform distribution of m points in this enclosing n-th
dimensional box. This uniform distribution is reached when dividing the box in
m smaller boxes all of the same size, each with a volume of order Dn

max/m, with
a corresponding edge size that we shall denote as

σ =
Dmax

m
1
n

(1)

What can be expected, indeed, is that if there exists some clusters, there must
be at least some points that will be at a distance lower than a fraction of this
edge size σ. Otherwise, the points should all be at a distance of order σ of each
other, since we have made the assumption of isotropy and since all the points
are included in the box of edge size Dmax.

Our proposal is thus to build the affinity matrix as a function of the ratio of
the distances between points and the reference distance value σ

2 . To incorporate
the dimension n of the problem of clustering, we also propose to consider the
control volumes around points instead of the square of the distances as commonly
used. If we consider for instance the usual affinity matrix made of the exponential
of these distances, we then propose to build the following matrix

Aij = {exp
(−‖xi − xj‖2

(σ/2)

)n

} , (2)

where 1 ≤ i ≤ m correspond to the row indexes and 1 ≤ j ≤ m to the column
indexes in A, and to zero the diagonal in the usual way to get the affinity matrix
to be used in the spectral embedding technique.

We first point out that this model relies upon the fact that the n-th dimen-
sional box can be divided into smaller bricks in all directions. In other words,
this means that the value m

1
n is close to some integer and at least larger than 2.

We shall come back later on this point, which will take some importance when
the dimension n of the problem becomes large, in which case the above model
might be weakened of slight modifications. This will be addressed in more details
in the experiments.

Under the hypothesis that the n-dimensional data set is still isotropic enough,
but when there exists some directions with varying amplitudes in the data, we
can adapt slightly the computation of σ by considering that the set of points is
included in a rectangular n-dimensional box. To approximate the volume of this



non square box, we compute the largest distances between all pairs of points
along each direction to define the size of the edges :

ρk = max
1≤i≤n

xik − min
1≤j≤n

xjk, k ∈ {1, . . . ,m} .

The vector ρ incorporates the sizes of the intervals in which each variable is
included separately and, in this case, we shall consider that the enclosing rect-
angular box has the same aspect ratio as the one defined by the intervals lengths
given in ρ, and with maximum edge size given by Dmax. Then, we can take

σ =
Dmax

√
n

‖ρ‖2

(∏n
i=1 ρi

m

) 1
n

, (3)

which resumes to equation (1) when ρ is all constant and the box is square. A
more general way, which is the basis of the Mahalanobis distance, would be to
compute the spectral orientation of the dispersion of the data to fix the axes
and compute the amplitudes along these axes. But this is more computation-
ally demanding and assumes that the original data are linked together in some
particular way. In this case, we can expect some preprocessing must be done to
prepare the data appropriately.

4 Measures of Clustering

Ng and Weiss [3] suggest to make many tests with several values of σ and to
select the ones with least distortion in the resulting spectral embedding. In some
cases, the choice of σ is not very sensitive and good results can be obtained
easily. Still, there exists many examples where this choice is rather tight, as for
example in cases with geometrical figures plus background noise. In the following
of this section, we introduce two measures of quality that can be used to identify
the interval of appropriate values for the choice of σ.

4.1 Ratio of Frobenius Norms

In general cases, the off-diagonal blocks in the normalized affinity matrix L are
all non-zero and, for example, with k = 3, we can write :

L̂ =




L(11) L(12) L(13)

L(21) L(22) L(23)

L(31) L(32) L(33)




We can then evaluate the ratios between the Frobenius norm of the off-diagonal-
blocks and that of the diagonal ones.

rij =
‖L(ij)‖F

‖L(ii)‖F



with i 6= j and i, j ∈ 1, .., k If the mean (or the max) of these values rij is close
to 0, the affinity matrix has a near block diagonal structure. For example, in the
following figure, we plot the value of these ratios in the case of two examples
with two geometric clusters of points each.
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From the behavior of these measures, we can see that there exists some interval
in which the affinity matrix appears to be near block diagonal. This interval
depends of course on the nature of the problem, and can be very different. For
instance, in these examples, the length of this interval is of 0.4 in the first case
and of 0.1 in the second one. The dash-dot line indicates the value of the heuristic
(1) given in the previous section for the computation of σ. We can observe that
this heuristic value falls in the corresponding intervals.

4.2 Confusion Matrix

We now introduce an evaluation of the true error in clustering in the sense of the
number of mis-assigned points within clusters. Let C ∈Mk,k(R) be the so-called
confusion matrix :

C =




C(11) C(12) C(13)

C(21) C(22) C(23)

C(31) C(32) C(33)




(as for example in the case of three clusters) where C(ij) is the number of points
that were assigned in cluster j instead of cluster i for i 6= j, and Cii the number



of well-assigned points for each cluster i.
We define the percentage of mis-clustered points by :

p =

∑k
i6=j C(ij)

m
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This matrix gives an estimate of the real error in the clustering method. The
results from the previous two examples show that the interval value for the
appropriate choice of parameter σ is approximatively the same as that observed
with the ratios of Frobenius norms. We note that the clustering percentage of
error varies almost instantaneously when σ just exits the appropriate interval.
Again, we can observe that the value of the heuristic (1) corresponds to a value
of σ with almost no clustering error.

5 Results

In order to validate the geometrical approach detailed in section 3, we consider
two n-dimensional benchmark examples, one with six n-th dimensional uniform
blocks slightly separated from each other, and another one made of pieces of
n-spheres in Rn (see figure 1). The affinity matrix is defined by :

Aij = {exp
(−‖xi − xj‖2

σ/2

)d

} (4)

where d will be alternatively set to the different integer values from 1 to 5, in
order to verify experimentally the adequacy of the power d (usually taken as



−0.4
−0.2

0
0.2

0.4
0.6

0.8
1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0

0.2

0.4

(a) n=3, m=384
0 0.2 0.4 0.6 0.8 100.51

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) n=3,m=1200

Fig. 1. Example 1 & 2 : six blocks and three pieces of n-spheres

d = 2) with respect to the dimension of the problem n, as suggested in section
3. To obtain the results given in the following tables, we have tried consecutive
values of σ from 0.01 to 0.15 and computed the two error measures discussed in
the previous section. This enabled us to determine approximately an interval of
feasibility for the values of σ. The purpose of that was to verify if the heuristics
(1) or (3) would belong to the appropriate intervals or not.

5.1 First example : six blocks

This geometrical example is made of n-th dimensional blocks with uniform dis-
tribution each, slightly separated from each other, and is in perfect agreement
with the assumption of isotropy used in the developments of section 3. Each
block is composed of pn points with a step size of 0.1 in each direction, and with
p = 4 in the case of n = {2, 3} and p = 3 in the case of n = 4. Finally, the blocks
are separated from each other by a step size of 0.13. This example corresponds
to the basic configuration that the heuristic (3) for σ should address well by
default, and is therefore a fundamental case study.

In table (1), we indicate the results obtained for three different values of the
dimension n of the problem, and we also indicate in each case the values σ1 and
σ2 corresponding to the heuristics (1) and (3) respectively. For each of these
dimensions, we vary the power d for the computation of the affinity matrix as
indicated in (4), and we compute in all of these cases the intervals of feasibility
for the values of σ with respect to the quality measures introduced in section
4. To determine these intervals in the case of ratio of Frobenius norms between
blocks, the quality has been taken as acceptable when the mean of these ratios
was inferior or equal to 0.15.

The results in table (1) show that the two heuristics σ1 and σ2 fall into the
appropriate intervals in almost all cases. This is in agreement with the expec-
tations in the sense that the affinity matrix is able to separate well the data.
We also mention that the lengths of the interval, specially with the first quality



measure, are larger for a value of d close to n, which is partly in favor of the con-
sideration of the volumes instead of squared distances when building the affinity
matrix in usual way.

5.2 Second example : three pieces of n-spheres with 1200 points

This second example is built in the same spirit as the first one, except that each
cluster has a different volume, and the spherical shape on some of the boundaries
prevents k-means like techniques to separate well the clusters from scratch.

As in the previous example, table (2) shows the results for the spectral clus-
tering with the two quality measures in function of both d and n. We can observe
again that the heuristics (1) and (3) are within the validity interval for both mea-
sures, and that for increasing values of the dimension n, the affinity matrix is
better determined with the clusters when the power d is closer to n.

5.3 Image segmentation :

We consider now an example of image segmentation. In this case, we investigate
two different approaches to define the affinity matrix :

– as a 3-dimension rectangular box : since the image data can be considered as
isotropic enough because the steps between pixels and brightness are about
the same magnitude, we can try to identify the image data as a 3-dimensional
rectangular set and incorporate the heuristic (3) for σ in the affinity matrix
given by (2).

– as a product of a brightness similarity term and a spatial one : the second
possibility is to consider that the image data are composed of two distinct
sets of variables, each one with specific amplitude and density. Indeed, the
spatial distribution of the pixels is isotropic but the brightness is scattered
into levels (256 maximum) and the brightness density cannot be derived
from the number of points. Therefore, what is usually considered in papers
dealing with image segmentation (see for instance [4, 5]) is the product of an
affinity matrix for the spatial data with an affinity matrix for the brightness
values, each with its specific σ parameter reflecting the local densities. We
then propose to build the affinity matrix in the following way :

Aij = exp(−‖xi − xj‖2
(σG/2)2

− |I(i)− I(j)|
(σB/2)

) , (5)

where I(i) is the brightness value in R and xi the coordinates of pixel i in
R2. The parameter σG is given by (1) applied only to the spatial data, and
σB is fixed to (Imax/`) with ` a characteristic number of brightness levels.
For instance, in the following example, ` is equal to the number of threshold
in the picture and σB will define the length of the intervals under which
brightness values should be grouped together.
We point out that this way of doing is still in the spirit of the developments in
section 3, because σ given by (1) reflects a clustering reference distance in the



Table 1. 6 n-dimensional blocks

(a) n = 2 and σ1 = 0.1398 and σ2 = 0.1328

d 1 2 3 4 5
Ratio of Frobenius norm < 0.15 [0.02;0.3] [0.02;0.56] [0.02;0.6] [0.02;0.62] [0.02;0.6]

Clustering error [0.12;1.6] [0.06;1.24] [0.08;1.06] [0.1;1.18] [0.12;1.1]

(b) n = 3 and σ1 = 0.1930 and σ2 = 0.1510

d 1 2 3 4 5
Ratio of Frobenius norm < 0.15 [0.02;0.3] [0.02;0.58] [0.02;0.64] [0.02;0.66] [0.02;0.66]

Clustering error [0.02;3] [0.06;2.2] [0.04;1.4] [0.04;1.2] [0.04;1.2]

(c) n = 4, σ1 = 0.2234 and σ2 = 0.1566

d 1 2 3 4 5
Ratio of Frobenius norm < 0.15 [0.02;0.3] [0.02;0.22] [0.02;0.26] [0.02;0.28] [0.02;0.28]

Clustering error [0.02;1.2] [0.04;0.78] [0.02;0.62] [0.12;0.52] [0.14;0.48]

Table 2. 3 pieces of n-sphere

(a) n = 2 and σ1 = 0.0288 and σ2 = 0.0278

d 1 2 3 4 5
Ratio of Frobenius norm < 0.15 [0.04;0.14] [0.04;0.18] [0.6;0.2] [0.06;0.2] [0.06;0.18]

Clustering error [0.04;0.08] [0.02;0.14] [0.06;0.18] [0.6;0.18] [0.06;0.18]

(b) n = 3 and σ1 = 0.1074 and σ2 = 0.1044

d 1 2 3 4 5
Ratio of Frobenius norm < 0.15 [0.02;0.12] [0.02;0.3] [0.04;0.5] [0.06;0.5] [0.08;0.5]

Clustering error [0.02;0.12] [0.04;0.16] [0.04;0.16] [0.08;0.18] [0.08;0.18]

(c) n = 4, σh = 0.1704 and σ2 = 0.1658

d 1 2 3 4 5
Ratio of Frobenius norm < 0.15 [0.04;0.04] [0.02;0.04] [0.04;0.08] [0.06;0.1] [0.1;0.16]

Clustering error [0.02;0.02] [0.04;0.1] [0.06;0.16] [0.08;0.17] [0.1;0.2]



case of locally isotropic and scattered enough distribution of points. With 256
maximum brightness levels, the distribution cannot be considered anymore
as locally scattered (lots of values are even equal to each other) and one
must give a priori the characteristic distance under which brightness values
can be clustered. We note also that the solution of taking σB = Imax/256
would result in grouping the brightness values into clusters of length one
approximately, and the segmentation of the image will require the analysis
of a lot of clusters made of pixels close to each other and with about the
same brightness level, equivalent to a very fine grain decomposition of the
image.

In the following results, we test the approaches (2) and (5) for the computa-
tion of the affinity matrix on a 50× 50 pixels picture. On the left, we show the
original thresholded image and, on the right, the results obtained with either (2)
in figure 2 or with (5) in figure 3.

In both cases, the results are visually acceptable. The 3-dimensional approach
seems to provide nicer results than the 2D by 1D product, but we need more
investigations to ensure which one of these two approaches is the best in general
and to refine the results.

Threshold number = 20 Clusters number = 20

(a) 20 bright levels and 20 clusters

Threshold number = 40 Clusters number = 20

(b) 40 bright levels and 20 clusters

Fig. 2. Test of the 3-dimension rectangular affinity box on a flower



Threshold number = 20 Clusters number = 20

(a) 20 bright levels and 20 clusters

Threshold number = 40 Clusters number = 20

(b) 40 bright levels and 20 clusters

Fig. 3. Test of the product 2D by 1D affinity boxes on a flower

6 Remarks and Conclusions

The problematic of choosing an adequate parameter in order to improve the
results has also been treated by some authors. Different points of view could be
adopted.

– Perona and Zelnik-Manor [6] propose a locally approach. They assign a
different scaling parameter σi to each point xi in the data set. σi is equal
to the distance between xi and its P-th neighbors. This method gives great
results in some kind of problems where the effect of local analyze provides
enough information to create the clusters : for example, recovering a tight
cluster within background noise. But computing a value of σ for each point
xi can be costly and the value P must be fixed empirically (P=7).

– Brand and Huang [2] define a global scale parameter : the mean between
each data point and its first neighbor. In many examples, we obtain well
clustered data representations.

In the examples introduced in figure 5, the density of points varies within each
cluster. These results illustrate the fact that without global density information,
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Fig. 4. Examples with σ proposed by Perona
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Fig. 5. Examples with σ proposed by Brand

it can be difficult to cluster well the data points in some cases. We test our
definition (1) of global parameter for these examples in figure 6:

As recalled above, this global parameter gives good results in these four cases.
We mention however that this heuristic parameter gives information about the
spatial repartition of the data in a box of dimension Dmax. So when we have
cases with an important noise density, the noise is difficult to separate from the
existing clusters and can be assigned to its closest cluster. Only a local parame-
ter can help to identify the noise from the cluster.

In conclusion, we have proposed a parameter for the construction of the affin-
ity matrix used within spectral clustering techniques. This approach is adapted
to n-dimensional cases, and based on a geometric point of view. With an isotropic
assumption, this parameter represents the threshold of affinity between points
within the same cluster. With quality measures such as ratio of Frobenius norms
and confusion matrix, the rule of σ is observed and our definition is validated
on a few n-dimensional geometrical examples. We have also tried a case of im-
age segmentation, but we still need deeper investigations and larger sets of test
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Fig. 6. Examples with the heuristic σ for n = 2

examples to ensure the validity as well as to determine the limitations of this
approach. We plan also to test this general approach in a case of biologic topic.

References

1. M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embed-
ding and clustering. Advances in Neural Information Processing Systems, 14(3),
2002.

2. M. Brand and K. Huang. A unifying theorem for spectral embedding and clustering.
9th International Conference on Artificial Intelligence and Statistics, 2002.

3. A. Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: analysis and
an algorithm. Proc.Adv.Neural Info.Processing Systems, 2002.

4. Freeman W.T. Perona, P. A factorization approach to grouping. European Confer-
ence on Computer Vision, 1998.

5. Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

6. Perona P. Zelnik-Manor, L. Self-tuning spectral clustering. NIPS, 2004.


