
A simulation of seismic wave propagation at
high resolution in the inner core of the Earth on

2166 processors of MareNostrum

Dimitri Komatitsch1,2, Jesús Labarta3, and David Michéa1

(1) Université de Pau et des Pays de l’Adour,
CNRS UMR 5212 & INRIA Sud-Ouest Magique-3D,

Avenue de l’Université, 64013 Pau Cedex, France
{dimitri.komatitsch,david.michea}@univ-pau.fr

http://www.univ-pau.fr
(2) Institut universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France

http://www.cpu.fr/Iuf
(3) Barcelona Supercomputing Center, Technical University of Catalonia,

c/ Jordi Girona, 31 - 08034 Barcelona, Spain
jesus@cepba.upc.es

http://www.bsc.es

Abstract. We use 2166 processors of the MareNostrum (IBM PowerPC
970) supercomputer to model seismic wave propagation in the inner
core of the Earth following an earthquake. Simulations are performed
based upon the spectral-element method, a high-degree finite-element
technique with an exactly diagonal mass matrix. We use a mesh with 21
billion grid points (and therefore approximately 21 billion degrees of free-
dom because a scalar unknown is used in most of the mesh). A total of
2.5 terabytes of memory is needed. Our implementation is purely based
upon MPI. We optimize it using the ParaVer analysis tool in order to
significantly improve load balancing and therefore overall performance.
Cache misses are reduced based upon renumbering of the mesh points.

Key words: load balancing, cache misses, mesh partitioning, seismic
wave propagation, global Earth

1 Introduction

Modeling of seismic wave propagation resulting from large earthquakes in the
three-dimensional (3D) Earth is of considerable interest in seismology because
analyzing seismic wave propagation in the Earth is one of the few ways of study-
ing the structure of the Earth’s interior, based upon seismic tomography. Seismic
waves resulting from earthquakes can be classified in two main categories: body
waves, which propagate inside the medium and are of two types: compressional
(pressure) waves, called P waves, and shear waves, called S waves; and surface
waves, which travel along the surface of the medium and have an exponentially
decreasing amplitude with depth. The analysis of the 3D geophysical structure of

2 D. Komatitsch, J. Labarta, D. Michéa

the Earth therefore requires the ability to calculate accurate numerical seismo-
grams (time series representing the three component of displacement at points
located on the surface of the Earth). In particular, pressure waves can be used
to study the solid inner core of the Earth and its anisotropy (i.e. varying seismic
wave speed in different spatial directions). Figure 1 shows a sketch of PKP seis-
mic phases, which are pressure waves that travel inside the core of the Earth.
They travel through the Earth’s mantle, then through its fluid outer core and
solid inner core, then again in the mantle, and then reach the surface, where
they are recorded.

Fig. 1. Sketch of how PKP
seismic phases propagate in
the Earth after an earth-
quake, i.e. illustration of their
ray paths. They therefore
carry information about the
anisotropic structure of the
inner core.

The field of numerical modeling of seismic wave propagation in 3D geological
media has significantly evolved in the last decade due to the introduction of
the spectral-element method (SEM), which is a high-degree version of the finite-
element method that is very accurate for linear hyperbolic problems such as
wave propagation, having very little intrinsic numerical dispersion. It combines
the flexibility of the finite-element method with the accuracy of the pseudospec-
tral method. In addition, the mass matrix is exactly diagonal by construction,
which makes it much easier to implement on parallel machines because no linear
system needs to be inverted. The 3D SEM was first used in seismology for local
and regional simulations (e.g., [1–3]) and then adapted to wave propagation at
the scale of the full Earth (e.g., [4, 5]). Until recently, at the scale of the global
Earth available computer resources intrinsically limited such large calculations.
For instance, on a PC cluster with 150 processors, Komatitsch and Tromp [4]
reached a maximum seismic frequency of 0.0555 Hz, and on 1944 processors of
the Japanese Earth Simulator Komatitsch et al. [6] reached a maximum seismic
frequency of 0.2 Hz. Such frequencies are not high enough to capture important
differential effects on seismic wave propagation related to anisotropy in the inner
core of the Earth. Here we implement the SEM on MareNostrum, the world’s
number 13 supercomputer as of the November 2007 Top500 list of supercomput-
ers, which is located in Barcelona, Catalonia, Spain. We show that on 2166 of
its IBM PowerPC 970 processors we can simulate seismic waveforms accurately
up to a maximum frequency of 0.5 Hz based upon message passing with MPI.

Seismic wave simulation on 2166 processors of MareNostrum 3

2 Spatial and temporal discretization of the governing
equations

We consider a linear anisotropic elastic rheology for the heterogeneous solid
Earth, and therefore the seismic wave equation can be written in the strong
(i.e., differential) form as:

ρü = ∇ · σ + f ,
σ = C : ε ,
ε = 1

2 [∇u + (∇u)T] ,
(1)

where u denotes the displacement vector, σ the symmetric, second-order stress
tensor, ε the symmetric, second-order strain tensor, C the fourth-order stiffness
tensor, ρ the density, and f an external force. The tensor product is denoted by a
colon, a superscript T denotes the transpose, and a dot over a symbol indicates
time differentiation. The physical domain of the model is denoted by Ω and
its outer boundary by Γ . The material parameters of the solid, C and ρ, can
be spatially heterogeneous. We can then rewrite the system (1) in a weak (i.e.,
variational) form by dotting it with an arbitrary test function w and integrating
by parts over the whole domain:

∫

Ω

ρw · üdΩ +
∫

Ω

∇w : C : ∇udΩ =
∫

Ω

w · f dΩ +
∫

Γ

(σ · n̂) ·w dΓ . (2)

The free surface (i.e., traction free) boundary condition is easily implemented
in the weak formulation since the integral of traction τ = σ·n̂ along the boundary
simply vanishes when we set τ = 0 at the free surface of the Earth.

This formulation is solved on a mesh of hexahedral elements in 3D, which
honors both the free surface of the model and its main internal discontinuities
(i.e., its geological layers). The unknown wave field is expressed in terms of
high-degree Lagrange polynomials of degree N on Gauss-Lobatto-Legendre in-
terpolation (GLL) points, which results in a diagonal mass matrix that leads
to a simple time integration scheme (e.g., [1, 3]). Because that matrix is diago-
nal, no linear system needs to be inverted and the method lends itself well to
calculations on large parallel machines with distributed memory. Let wN , uN

denote the piecewise-polynomial approximations of the test functions and the
displacement respectively. Making use of (2), the discrete variational problem to
be solved can thus be expressed as: for all time t, find uN such that for all wN

we have: ∫

Ω

ρwN · üN dΩ +
∫

Ω

∇wN : C : ∇uN dΩ =
∫

Ω

wN · f dΩ . (3)

We can rewrite this system (3) in matrix form as:

Md̈ + Kd = F , (4)

where M is the diagonal mass matrix, F is the source term, and K is the stiff-
ness matrix. For detailed expression of these matrices, the reader is referred for
instance to [3].

4 D. Komatitsch, J. Labarta, D. Michéa

Time discretization of the second-order ordinary differential equation (4) with
a time step ∆t is achieved using the explicit Newmark central finite-difference
scheme [7] which is second-order accurate and conditionally stable :

M d̈n+1 + Kdn+1 = Fn+1 , (5)

where

dn+1 = dn + ∆tḋn +
∆t2

2
d̈n and ḋn+1 = ḋn +

∆t

2
[d̈n + d̈n+1] . (6)

At the initial time t = 0, null initial conditions are assumed i.e., d = 0 and
ḋ = 0. The stability condition is ∆t(cp/∆x)max ≤ c, where ∆x is the distance
between two adjacent grid points, cp is the speed of the pressure waves in the
geological medium, and c is a constant that is of the order of 0.5 [8].

3 Implementation of the Spectral-Element Method on
MareNostrum

3.1 Acoustic/elastic formulation

We are interested in differential effects on very high frequency (0.5 Hertz) seismic
phases when they propagate inside the solid inner core of the Earth, therefore to
significantly reduce the computational cost we suppress the crust of the Earth
and replace it with an extended upper mantle, and convert the whole mantle
from elastic to acoustic, thus reducing the problem in that part of the model
from a vectorial unknown to a scalar unknown, i.e. reducing memory usage and
CPU cost by a factor of roughly three in 3D. In the acoustic mantle and crust
we solve the acoustic wave equation in terms of a fluid potential [4]. We keep
a (much more expensive to solve) elastic anisotropic medium in the inner core
only. In that small part of the mesh we also model seismic attenuation (i.e., loss
of energy by viscoelasticity), which has a significant impact on the cost of that
small part of the simulation because memory requirements increase by a factor
of roughly 2 and CPU time by a factor of roughly 1.5 [4].

3.2 Mesh generation

Figure 2 shows a global view at the surface of the Earth of the spectral-element
mesh we designed, which is accurate up to a frequency of 0.5 Hertz for pressure
waves and which fits on 2166 processor cores (6 blocks of 19 × 19 slices). The
sphere is meshed using hexahedra only, based upon an analytical mapping from
the six sides of a unit cube to a six-block decomposition of the surface of the
sphere called the ‘cubed sphere’ [9, 4, 5]. Each of the six sides of the ‘cubed
sphere’ mesh is divided into 19 × 19 slices, shown with different colors, for a
total of 2166 slices. We allocate one slice and therefore one MPI process per
processor core (which means that in the remainder of the article when we say
‘one processor’ for simplicity we actually mean ‘one processor core’).

Seismic wave simulation on 2166 processors of MareNostrum 5

Fig. 2. The SEM uses a mesh of hexa-
hedral finite elements on which the wave
field is interpolated by high-degree La-
grange polynomials on Gauss-Lobatto-
Legendre integration points. The figure
shows a global view of the mesh at the
surface, illustrating that each of the six
sides of the so-called ‘cubed sphere’ mesh
is divided into 19 × 19 slices, shown here
with different colors, for a total of 2166
slices (i.e., one slice per processor core).

The total number of spectral elements in this mesh is 323 millions, which
corresponds to a total of approximately 21 billion global grid points (the ‘equiv-
alent’ of a 2770 × 2770 × 2770 grid), because each spectral element contains
(N + 1)3 = 5× 5× 5 = 125 grid points since we use polynomial basis functions
of degree N = 4, but with points on its faces shared by neighboring elements.
This in turn also corresponds to approximately 21 billion degrees of freedom
because a scalar unknown is used in most of the mesh (everywhere except in the
inner core of the Earth, as mentioned above). Such simulations use a total of
approximately 2.5 terabytes of memory.

Our SEM software package is called SPECFEM3D. Version 1.0 was released
in 1999 and the current stable version is 3.6. In order to be able to run our
large-scale calculations on MareNostrum, we had to fix some significant load
balancing issues in version 3.6 and therefore produce a new version called 4.0.
Below we discuss the main improvements made.

3.3 Type of operations performed at each time step

At each iteration of the serial time loop, which are all identical, four main types
of operations are performed:

- update of global arrays, for instance: for each i from 1 to Npoint,
displacement[i] += ∆t velocity[i] + ∆t2 acceleration[i] / 2,
where displacement, velocity and acceleration are three global arrays, and Npoint
is the number of grid points

- relatively large and purely local calculations of the product of predefined
derivation matrices with a local copy of the displacement vector along cut planes
in the three directions (i, j and k) of a 3D spectral element, which contains
(N+1)3 = 125 points; therefore, each index i, j or k varies between 1 and N+1

- element-by-element products and sums of arrays of dimension (N+1,N+1,
N+1,Nspec), where Nspec is the number of spectral elements, which involve a
quadruple loop on the dimensions of the arrays

- sum of the contributions (which are elemental force vectors from a physical
point of view) computed locally in arrays of dimension (N+1,N+1,N+1,Nspec)

6 D. Komatitsch, J. Labarta, D. Michéa

into global arrays of dimension Npoint using indirect addressing. This sum is
called the ‘assembly’ process in finite elements.

3.4 Exploiting locality

Increasing and exploiting locality of memory references is an important opti-
mization technique. Locality must be optimized in loops that tend to reference
arrays or other data structures by indices. The principle of locality deals with the
process of accessing a single resource multiple times; in particular regarding tem-
poral locality (a resource referenced at one point in time will be referenced again
sometime in the near future) and spatial locality (the likelihood of referencing a
resource is higher if a resource in the same neighborhood has been referenced).
Memory should therefore be accessed sequentially as often as possible.

1
Ω Ω

Ω Ω

2

3 4

Fig. 3. Illustration of the local and global
meshes for a four-element 2D spectral-element
discretization with a polynomial degree of N =
4. Each element contains (N +1)2 = 25 Gauss-
Lobatto-Legendre points. Points lying on edges
or corners (as well as on faces in 3D) are
shared between elements. The contributions to
the global system of degrees of freedom, com-
puted separately on each element, have to be
summed at the common points represented by
black dots. Corners can be shared by any num-
ber of elements depending on the topology of
the mesh, which is in most cases non struc-
tured.

In the spectral-element method these are important issues because, as can be
seen in Figure 3 drawn in 2D, each spectral element contains (N +1)2 = 25 GLL
points, and points lying on edges or corners (as well as on faces in 3D) are shared
between elements. The contributions to the global system of degrees of freedom,
computed separately on each element, therefore have to be summed at the com-
mon points, and the corners can be shared by any number of elements depending
on the topology of the mesh, which is in most cases (included ours) non struc-
tured. For instance in 3D for a regular hexahedral mesh there are (N+1)3 = 125
GLL integration points in each element, of which 27 belong only to this element
(21.6%), 54 belong to two elements (43.2%), 36 belong to four elements (28.8%)
and eight belong to 8 elements (6.4%). Hence, 78.4% of the points belong to at
least two elements and it is therefore interesting to reuse these points by keeping
them in the cache. During mesh creation we must therefore optimize the global
numbering which maps point (i,j,k) of local element num element to a unique

Seismic wave simulation on 2166 processors of MareNostrum 7

global point number (after removal of the duplicated common points shared by
more than one element) called global addressing(num element, i, j, k).

To do this, the mesh is created element by element, then the common points
are identified, and a global addressing is created. This array must be reordered
once and for all in the mesher to optimize the future memory access order of
the points and elements in the solver, in order to maximize spatial and temporal
locality and to access memory sequentially as often as possible. Simple renum-
bering based on looping on the elements in the mesher in the order in which
they will be accessed in the solver and masking points already found works fine
for this problem. A more sophisticated approach is to also change the order of
the elements (in addition to the numbering of the points) based on the classical
reverse Cuthill-McKee algorithm [10] to reduce the average memory strides to
access the points shared by several elements, but improvements are very small
in the case of the spectral-element method because one spectral element fits en-
tirely in the Level 1 (L1) cache, several tens of spectral elements fit in the L2
cache and a large number of operations are performed on each spectral element
because it contains 125 points. Detailed tests not shown here have shown us that
it is not necessary in practice to use this algorithm for our problem.

The elementary contributions (internal mechanical forces) from each mesh
element are computed based upon products of cut planes in the 3D memory
block representing the element with a matrix called the ‘derivation matrix’ in
order to compute the derivative of a given vector or scalar field. We therefore
thought about using Basic Linear Algebra Subroutines (BLAS3) ‘sgemm’ calls in
version 4.0 of the code instead of the Fortran loops used in version 3.6. However,
this turned out to be inefficient for several reasons. First, these matrix-matrix
products are performed on 2D cut planes that are extracted from different (or-
thogonal) directions of a given 3D memory block. Therefore, in order to use
BLAS3 we need to perform some memory copies from the 3D blocks to 2D ma-
trices for some (but not all) of the BLAS3 calls, in order for the input matrix to
be correctly structured, which induces significant overhead. Second, these ma-
trices are very small in each element (5 × 5 or 25 × 5) and therefore the matrix
operations are too small to be efficiently replaced by BLAS3 calls because the
overhead is large. Even if we compute all the elements (whose number is large in
each mesh slice, typically more than 100,000) simultaneously with one BLAS3
call, we are still dealing with the multiplication of a 5 × 5 matrix with a 5 ×
500,000 matrix, a situation for which BLAS3 usually does not perform very well.
Third, because we use static loop sizes in the solver (the only drawback being
that we need to recompile the solver every time we change the size of the mesh),
at compile time the compiler knows the size of all the loops and can therefore
very efficiently optimize them (using unrolling for instance). Because the inner
loops are very small (of size N+1 = 5), it is very difficult to do better than
loop unrolling performed automatically by the compiler. Therefore it is better
in terms of performance to let the compiler optimize the static loops rather than
to switch to BLAS3.

8 D. Komatitsch, J. Labarta, D. Michéa

One way of improving performance is to manually use the Altivec/VMX
vector unit of the PowerPC, which can handle four single-precision floating-point
operations in a vector and is therefore well suited for our small matrix products
since we can load a vector unit with 4 floats, perform several ‘multiply-and-add’
(vec MADD) operations to compute the matrix-matrix product, and store the
results in four consecutive elements of the result matrix. Since our matrices are
of size 5 × 5 and not 4 × 4, we use vector instructions for 4 out of each set
of 5 values and compute the last one serially in regular Fortran. To improve
performance and get correct results we align our 3D blocks of 5 × 5 × 5 = 125
floats on 128 in memory using padding with three dummy values, which induces
a negligible waste of memory of 128 / 125 = 2.4% (non aligned accesses lead to
incorrect results in Altivec). We typically gain between 15% and 20% in CPU
time with respect to version 4.0 without Altivec.

3.5 MPI implementation and load balancing

Our SEM solver is based upon a pure MPI implementation. A few years ago
on the Japanese Earth Simulator we implemented a mixed MPI – OpenMP
solution, using MPI between nodes (i.e., between blocks of 8 processors with
shared memory) and OpenMP inside each node. However, in practice, tests on
a small number of processors gave a CPU time that was almost identical to a
pure MPI run, and therefore we decided to permanently switch to pure MPI [6].
We do not claim that this conclusion is general; it might well be specific to our
SEM algorithm, in particular we did not try the mixed OpenMP – MPI solution
on a large number of nodes or on MareNostrum. Other groups have successfully
implemented algorithms based upon mixed OpenMP – MPI models on large
parallel machines.

I/O is not an issue in our simulations because we only output a small number
of time series (called ‘seismograms’) to record seismic motion (the three compo-
nents of the displacement vector) at a small number of points at the surface of
the mesh. This means that the amount of data saved by our SEM is small.

Figure 4 shows that a regular mesh has the undesirable property that the size
of the elements decreases dramatically with depth. To maintain a relatively con-
stant number of grid points per wavelength, element size should increase with
depth. In version 3.6 of SPECFEM3D, this was accomplished in three stages
based on a simple ‘doubling brick’. Each block has four sides that need to match
up exactly with four other blocks to complete the cube. Schematically, these four
sides have one of three designs: A, B, or C. When the six blocks are assembled to
make the entire globe, they match perfectly. However, because with that simple
‘doubling brick’ doubling the mesh in two directions in the same layer is topolog-
ically impossible, the three mesh types A, B and C contain a significantly (15%
to 20%) different number of mesh elements, which in turn results in load imbal-
ance in the same amount because in the SEM one performs the same number
of elementary calculations in each element. In addition, an analysis of version
3.6 performed with the ParaVer analysis tool (Figure 5) also showed significant
load imbalance in terms of the number of Level 2 (L2) data cache misses in

Seismic wave simulation on 2166 processors of MareNostrum 9

each mesh slice (this will be further discussed below). ParaVer (see e.g. [11] and
www.cepba.upc.es/paraver) is a tool developed at the Barcelona Supercomput-
ing Center that is designed to analyze the number of data cache misses and of
instructions of MPI processes as well as the useful duration of calculations per-
formed, among many other things. Let us mention that the imbalance observed
in terms of cache misses was also observed between slices belonging to the same
chunk type (A, B or C) and was therefore mostly due to the numbering of the
mesh points (i.e., the order in which they were accessed) and not only to the
different mesh structure between different chunks.

A

A

A

A

A

C C C C

CC

B B

B B

B B

B B

A

C

B

Fig. 4. A regular mesh (top left) has the undesirable property that the size of the
elements decreases dramatically with depth. To maintain a relatively constant number
of grid points per wave length, element size should increase with depth. In version 3.6 of
SPECFEM3D, this is accomplished in three stages based on a simple ‘doubling brick’
(top right). Each block has four sides that need to match up exactly with four other
blocks to complete the cube (bottom), as indicated by the arrows. Schematically, these
four sides have one of three designs: A, B, or C, as illustrated on the right. When the
six blocks are assembled to make the entire globe, they match perfectly. Unfortunately,
the fact that the three types of blocks have a significantly different number of mesh
elements induces significant load imbalance.

10 D. Komatitsch, J. Labarta, D. Michéa

Number of L2 data cache misses in v3.6 Number of L2 data cache misses in v4.0

Histogram of instructions in v4.0 Useful duration of calculations in v4.0

Fig. 5. ParaVer analysis of the code on 96 processors, from processor 1 at the top of
each picture to processor 96 at the bottom. Top left: In version 3.6 of SPECFEM3D,
L2 cache misses were very poorly balanced between mesh slices (irregular blue and
green curve), thus inducing severe load imbalance. In version 4.0 (top right), L2 cache
misses (represented on the same horizontal scale) have been drastically reduced and
very well balanced (straight blue line). The number of instructions executed is also
very well balanced (bottom left, straight blue line). As a result, useful duration of the
calculations (bottom right, orange points) is well balanced too.

In order to address the first issue of geometrical mesh imbalance, in version
4.0 the mesh doubling of Figure 4 is now accomplished in only one level instead
of two based on a more efficient geometrical ‘doubling brick’ which is assembled
in a symmetric block of four ‘doubling bricks’ based on mirror symmetry of
the basic brick (Figure 6). This makes it possible to carry out the doubling in
both directions in the same layer. As a result, while in the old mesh of version
3.6 there are three types of mesh chunks (labeled A, B and C in Figure 4),
in version 4.0 of the code this poor property of the mesh is suppressed and
all the mesh chunks have the same shape and exact same number of elements,
thus resulting in perfect geometrical mesh balancing. Because the number of
operations performed in each element is the same, load balancing is therefore
very significantly improved.

In order to have more uniform mesh sampling in the inner core of the Earth,
in version 4.0 we also slightly inflate the central cube in order to better balance
the mesh angles compared to version 3.6 (Figure 7). When the central cube is
not inflated, some elements can have a poor skewness and/or poor aspect ratio
in the vicinity of the central cube. Inflating it significantly improves both the
skewness and the aspect ratio (both the average value for all the elements and
the worst value for the most distorted element).

In the SEM one needs to assemble internal force contributions between neigh-
boring slices, as mentioned above and in Figure 3. The pattern of communica-
tions needed to assemble such slices on the edges and corners of the six blocks

Seismic wave simulation on 2166 processors of MareNostrum 11

Fig. 6. In version 4.0 of SPECFEM3D, the mesh doubling of Figure 4 is accomplished
in only one level instead of two in each mesh chunk and therefore three in the whole
sphere, based on a more efficient geometrical ‘doubling brick’ (top, left and center)
which is assembled in a symmetric block of four ‘doubling bricks’ based on mirror
symmetry (top right). As a result, when we zoom on a region of contact between three
of the six mesh chunks of Figure 2, we can see that while in the old mesh of version 3.6
(bottom left) there are three types of mesh chunks (labeled A, B and C in Figure 4),
in version 4.0 of the code (bottom right) this poor property of the mesh has been
suppressed and all the mesh chunks have the same shape and exact same number of
elements, thus resulting in perfect geometrical mesh balancing.

12 D. Komatitsch, J. Labarta, D. Michéa

Fig. 7. In order to have more uniform mesh sampling in the inner core of the Earth,
in version 4.0 of SPECFEM (middle) we slightly inflate the central cube in order to
better balance the mesh angles compared to version 3.6 (left), as illustrated here in a
2D cut plane. In 3D this results in the inflated cube represented on the right.

of the cubed-sphere mesh can be determined from Figure 2 (for instance the
valence of most surface points is 4, but it is three at the corners of the six
blocks). Because the mass matrix is exactly diagonal, processors spend most of
their time performing actual computations, and the amount of communications
is comparatively small (in spite of the fact that the number of points to exchange
increases approximately as N2, but the polynomial degree N is always chosen
small, between 4 and 7 in practice, see e.g. [3, 8]). We thought about switching
from the blocking MPI implementation used in version 3.6 to a non-blocking
implementation in order to overlap the communications with calculations. This
would imply first looping on the elements that are located on the edges of the
mesh slices, computing their contributions, starting non-blocking SENDs of their
contributions, and computing the rest of the elements inside the slices while the
communications are being performed (see e.g. [12]). We implemented this strat-
egy in a 2D version of our code (for simplicity) but did not notice any significant
gain in terms of performance because the overall cost of communications is very
small (< 5%) compared to CPU time. We therefore concluded that there was no
real need to switch to non-blocking MPI in the 3D version of the code.

3.6 Performance and scaling results

Let us perform an analysis of the improved code on 96 processors using ParaVer.
Figure 5 shows that in the initial version 3.6, the number of L2 cache misses was
very different between mesh slices, thus inducing severe load imbalance. In the
improved version 4.0, L2 cache misses have been drastically reduced and very
well balanced. The number of instructions executed is also very well balanced.
As a result, useful duration of the calculations is well balanced too. In total, we
gain a huge factor of 3.3 in terms of wall-clock time between both versions. This
shows that the IBM PowerPC 970 is very sensitive to cache misses because the
same run performed on an Intel Itanium and also on an AMD Opteron cluster
shows a factor of ‘only’ 1.55 to 1.60.

Seismic wave simulation on 2166 processors of MareNostrum 13

 1

 2

 4

 8

 16

 32

 32 64 128 256

W
al

l-c
lo

ck
 ti

m
e

pe
r

tim
e

st
ep

 (
s)

Number of processors

Measured
Perfect

Fig. 8. Scaling in logarith-
mic scale measured (in red)
for the same run performed
on 24, 54, 96 and 216 pro-
cessors, compared to perfect
linear scaling (in blue) com-
puted using the run on 96
processors as a reference. The
two curves are very similar.

Let us now analyze scaling by measuring wall-clock time per time step (av-
eraged over 700 time steps in order for the measurement to be reliable) for a
medium-size run performed on 24, 54, 96 and 216 processors (we also tried to
run the test on 6 processors but it was too big to fit in memory). In Figure 8
we compare the scaling curve to the theoretical curve corresponding to per-
fect linear scaling, which we compute using the time measured on 96 processors
and scaling it by the ratio of the number of processors used. The conclusion
is that the scaling of the code is excellent. We therefore conclude that we are
now ready to run the code for a real application on a very large number of
processors of MareNostrum. MareNostrum has 2560 two-biprocessor blades, for
a total of 10240 processor cores. Each blade has 8 gigabytes of memory, for a
total of 20480 gigabytes of memory. For the final high-resolution run, we used
2166 processor cores and computed 50600 time steps of the explicit time integra-
tion scheme of the SEM algorithm. Total memory used was 2.5 terabytes. The
code performed well and performance levels obtained were very satisfactory, the
whole run took slightly less than 60 hours of wall-clock time (being the only user
running on the corresponding dedicated blades). The geophysical analysis of the
seismograms is currently under way.

4 Conclusions

MareNostrum has allowed us to reach unprecedented resolution for the simula-
tion of seismic wave propagation resulting from an earthquake in the 3D inner
core of the Earth using a spectral-element method implemented based upon
MPI. A combination of better mesh design and improved point numbering has
allowed us to balance the number of instructions very well, drastically reduce
the number of L2 cache misses and also balance them very well, and as a result
reach very good balancing in terms of the useful duration of the calculations in
each mesh slice. BLAS3 or non-blocking MPI have not been required to achieve
this, but using Altivec vector instructions such as multiply-and-add has allowed
us to gain 20% in terms of CPU time.

14 D. Komatitsch, J. Labarta, D. Michéa

Acknowledgments The authors thank three anonymous reviewers for com-
ments that improved the manuscript, and Jean Roman, Rogeli Grima, Nicolas
Le Goff, Roland Martin, Jean-Paul Ampuero and Jérémie Gaidamour for fruitful
discussion. The idea of computing PKP seismic phases came from discussions
with Sébastien Chevrot. The help of Sergi Girona, Judit Giménez and the BSC
support group was invaluable to perform the calculations. This material is based
in part upon research supported by HPC-Europa, European FP6 MIRG-CT-
2005-017461 and French ANR-05-CIGC-002 NUMASIS.

References

1. Komatitsch, D., Vilotte, J.P.: The spectral-element method: an efficient tool to
simulate the seismic response of 2D and 3D geological structures. Bull. Seismol.
Soc. Am. 88(2) (1998) 368–392

2. Seriani, G.: 3-D large-scale wave propagation modeling by a spectral element
method on a Cray T3E multiprocessor. Comput. Methods Appl. Mech. Engrg.
164 (1998) 235–247

3. Komatitsch, D., Tromp, J.: Introduction to the spectral-element method for 3-D
seismic wave propagation. Geophys. J. Int. 139(3) (1999) 806–822

4. Komatitsch, D., Tromp, J.: Spectral-element simulations of global seismic wave
propagation-I. Validation. Geophys. J. Int. 149(2) (2002) 390–412

5. Chaljub, E., Capdeville, Y., Vilotte, J.P.: Solving elastodynamics in a fluid-solid
heterogeneous sphere: a parallel spectral element approximation on non-conforming
grids. J. Comput. Phys. 187(2) (2003) 457–491

6. Komatitsch, D., Tsuboi, S., Ji, C., Tromp, J.: A 14.6 billion degrees of freedom,
5 teraflops, 2.5 terabyte earthquake simulation on the Earth Simulator. Proceed-
ings of the ACM/IEEE Supercomputing SC’2003 conference (2003) published on
CD-ROM and at www.sc-conference.org/sc2003.

7. Hughes, T.J.R.: The finite element method, linear static and dynamic finite element
analysis. Prentice-Hall International, Englewood Cliffs, New Jersey, USA (1987)

8. De Basabe, J.D., Sen, M.K.: Grid dispersion and stability criteria of some common
finite-element methods for acoustic and elastic wave equations. Geophysics 72(6)
(2007) T81–T95

9. Sadourny, R.: Conservative finite-difference approximations of the primitive equa-
tions on quasi-uniform spherical grids. Monthly Weather Review 100 (1972) 136–
144

10. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In:
Proceedings of the 24th National ACM Conference, New York, USA, ACM Press
(1969) 157–172

11. Jost, G., Jin, H., Labarta, J., Giménez, J., Caubet, J.: Performance analysis of
multilevel parallel applications on shared memory architectures. In: Proceedings
of the IPDPS’2003 International Parallel and Distributed Processing Symposium,
Nice, France (April 2003)

12. Danielson, K.T., Namburu, R.R.: Nonlinear dynamic finite element analysis on
parallel computers using Fortran90 and MPI. Advances in Engineering Software
29(3-6) (1998) 179–186

