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Abstract. Sphere-Decoding (SD) methods are branch-and-bound-like
techniques used for optimal detection of digital communications signals
over in wireless MIMO (Multiple input Multiple Output) channels. These
methods look for the optimal solution in a tree of partial solutions; the
size of the tree depends on the parameters of the problem (dimension of
the channel matrix, cardinality of the alphabet), and such search can be
much more expensive depending on these parameters. This search often
has to be carried out in real time. This paper presents parallel versions
of the Sphere-Decoding method for different parallel architectures with
the goal of reducing the computation time.

1 Introduction

Let us consider the following minimum squares problem:

min
s∈Dm

‖x − Hs‖
2

(1)

where D is a set of discrete values that can be finite or infinite. Since D is
discrete, this can be considered as an Integer Programming problem.

The simplest method to solve this problem would be to solve the uncon-
strained minimum square problem

min
s

‖x − Hs‖2 (2)

and then “truncate” the solution to its closest value in Dm. However, for many
problems (specially when H is bad conditioned) this gives wrong results. There-
fore, special methods have to be applied.



Usually, this problem is described in terms of Lattices. Given v1, · · · , vm a
set of linearly independent vectors, a lattice is the set of vectors

λ1v1 + · · · + λmvm λ1, · · · , λm ∈ Z (3)

If the elements of D are equally spaced (as is the case in communication
problems) the set Dm forms a rectangular lattice like the displayed in Figure
1(a). When the elements of Dm are multiplied by the channel matrix H , they
will form a skewed lattice (see Figure 1(b)).

(a) (b)

Fig. 1. (a)Rectangular Lattice; (b)Skewed Lattice.

The problem (1) is equivalent to the problem of finding the closest point (to
a given point x) in a lattice with generating matrix H . This problem is known to
be NP-Complete. It appears in the wireless communications field, where digital
communications signals sent through systems with multiple send and receive
antennas (multiple input - multiple output or MIMO systems) must be correctly
“decoded” [4], [11].

The systems we are interested in, are composed of M transmit antennas
and N receive antennas, through which a signal s̄ = [s1, s2, . . . , sM ]

T
∈ CM is

transmitted. Real and imaginary parts of each component of the transmitted
signal belong to a discrete set D, finite (|D| = L) and named constellation or
symbol alphabet. The received signal x̄ ∈ CN is a linear combination of the
transmitted signal s plus a white gaussian noise term v̄ ∈ CN , with variance σ2

x̄ = H̄s̄ + v̄. (4)

Here, the channel matrix H̄ is a general complex-valued matrix with N rows
and M columns that models the MIMO channel response.

To simplify the programming details, usually the complex model (4) is trans-
formed in a real model, where the vector s of dimension m = 2M , and the
vectors x and v of dimensions n = 2N are defined as:

s =
[

R (s̄)
T
I (s̄)

T
]T

, x =
[

R (x̄)
T
I (x̄)

T
]T

, v =
[

R (v̄)
T
I (v̄)

T
]T

,



and the matrix H of dimensions n × m as:

H =

[

R
(

H̄
)

I
(

H̄
)

−I
(

H̄
)

R
(

H̄
)

]

Thus, the real model equivalent to (4) is given by:

x = Hs + v. (5)

The search within the whole lattice looking for the optimal solution of (1)
where |D| = L would require an exponential time. However, there are better
methods that take into account the special characteristic of problem (1). Exam-
ples of such methods are Kannan’s algorithm [8], (where the search is limited to
a rectangular parallelepiped), and the algorithms proposed by Fincke and Pohst
[3] and improved by Schnorr and Euchner [9],[1] known as sphere-decoding, where
the search is limited to an hyper-sphere of a given radius and with center in the
point x.

In any case, Sphere-Decoding methods can be quite costly in time and mem-
ory when the problems grow in complexity; either by an increase in the number
of transmitting-receiving antennas, by using larger alphabets, or by an increase
in the variance of the noise.

In this paper several variants of the sphere-decoding algoritm are presented,
for use in different parallel architectures. Other algorithms were developed, but,
only those that gave better results are discussed.

A description of the Sphere-Decoding method is given in the next section,
along with a formal description of the method following a branch-and-bound

scheme. In the second section the parallelization of Sphere-Decoding for shared
memory, distributed memory, and hybrid environments, is discussed. Finally, the
experimental results and the conclusions will be presented.

2 Sphere-Decoding

The main idea in the Sphere-Decoding algorithm is to limit the search to the
points in the lattice located into the sphere with center at the given vector x

and radius r (see Fig. 2). Clearly, the closest point to x into the sphere shall be
the closest point to x in the whole lattice. Since the search space is reduced, so
is the computational complexity.

Mathematically speaking, SD algorithms find all the vectors s ∈ Dm such
that

r2 ≥ ‖x − Hs‖2 (6)

and then select the one minimizing the goal function. Using the QR decompo-
sition of the matrix H and the orthogonality of the matrix Q, the condition (6)
can be written as:
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Fig. 2. Idea behind the sphere-decoding

or, equivalently:
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(7)

Defining y = QT
1 x and r′2 = r2 −

∥

∥QT
2 x

∥

∥

2
(7) can be rewritten as

r′2 ≥ ‖y − Rs‖
2

(8)

Since R is upper triangular, equation (8) can be written as

r′2 ≥ (ym − Rm,msm)
2

+ ‖y1:m−1 − R1:m−1,1:ms1:m‖
2

(9)

From this last condition, it can be deduced that a necessary condition for Hs

to be located inside the sphere is that r′2 ≥ (ym − Rm,msm)
2
, or, equivalently,

that the component sm belongs to the interval

⌈

−r′ + ym

Rm,m

⌉

≤ sm ≤

⌊

r′ + ym

Rm,m

⌋

(10)

where ⌈ξ⌉ is the smallest element of the constellation greater or equal than
ξ, and ⌊ξ⌋ is the greatest element of the constellation smaller or equal than ξ.
Therefore, for each value of sm inside the interval (10), it is possible to determine
the interval where the values of sm−1 will lie

⌈

−r′m−1 + ym−1|m

Rm−1,m−1

⌉

≤ sm−1 ≤

⌊

r′m−1 + ym−1|m

Rm−1,m−1

⌋

(11)

where r′2m−1 = r′2 − (ym − Rm,msm)
2

and ym−1|m = ym−1 − Rm−1,msm.
The algorithm continues following the same procedure to determine sm−2, sm−1, · · · , s1.
If no solution is found, the radius r must be increased and the algortihm must

be executed again. A more detailed description of the Sphere-Decoding method,
as well as an analysis of its computational complexity, can be found in [7].

The search in Sphere-Decoding belongs to the Branch–and–Bound general
class; next, an algorithm implementing a general Branch-and-Bound search is
displayed:



Algorithm 1 General Branch-and-Bound Algorithm to find the best solution
Variables:

S: LinearDataStructure;

N, solution : Node;

childs : ARRAY [1..MAXCHILDS] OF Node;

nChilds : INTEGER;

solutionValue : REAL;

1: solution ← NoSolution(); solutionValue ← MAX

2: Generate a initial node N0

3: Add(S, N0) {Add N0 to the Linear Data Structure S}
4: while S is not empty do

5: N ← Extract(S) {A node of S is extracted and assigned to N }
6: [childs, nChilds] ← Branch(N);
7: for i = 1 to nChilds do

8: if IsAcceptable(childs[i]) then

9: if IsSolution(childs[i]) then

10: if Value(childs[i]) < solutionValue then

11: solutionValue ← Value(childs[i])
12: solution ← childs[i]

13: end if

14: else

15: Add(S, N) {Add the node N to the Linear Data Structure S}
16: end if

17: end if

18: end for

19: end while

20: return solution

In the Sphere-Decoding method, the k-level nodes are the lattice points inside
the sphere with radius r′m−k+1

and dimension m− k + 1. The leaves of the tree
would be the solutions of (6).

To fit the Sphere-Decoding method into a Branch and Bound scheme, each
node should keep the following information:

– Tree level: m − k + 1
– Value of yk|k+1

– Value of r′k
– Components of the vector ŝ determined up to this moment: ŝm, . . . , ŝk

where k = m, m−1, . . . , 1. The generation of branches of a node of level m−k+1
(given in the algorithm 1 by the routine Branch) should generate as many nodes
as elements has the alphabet or constellation, and the Bounding (given in the
algorithm 1 by the routine IsAcceptable) should be carried out accepting only
the nodes whose component ŝk−1 falls within the interval

[⌈

−r′k−1
+ yk−1|k

Rk−1,k−1

⌉

,

⌊

r′k−1
+ yk−1|k

Rk−1,k−1

⌋]

(12)



All nodes whose level is m are solution nodes. The routine Value is defined for
these nodes, (points inside the hyper-sphere), which would return the value of

‖x − Hŝ‖
2
.

Since the Sphere-Decoding performs a depth-first search, looking for the best
of all possible solutions, the nodes are stored using a LIFO (Last-In First-Out)
Heap. This data structure is initialized using a special node N0 whose level in
the tree shall be 0, the value of ym+1|m+2 shall be the last component of the
vector y, the value of rm+1 might be the initial radius and the vector ŝ would
not have any defined component.

3 Sphere-Decoding Paralellization

In this section several possibilities for parallelization of the Sphere-Decoding

method shall be discussed. The models considered shall be the shared mem-
ory model, distributed memory model and a hybrid model where several shared
memory multiprocessors are interconnected. A study about parallelization of
Branch-and-Bound methods can be found in [5], where different techniques are
considered for distribution of workload among processors. In this section, it is de-
scribed the adaptation of these techniques, for parallelization of Sphere-Decoding,
using specific characteristics of the problem. including as well several novel pro-
posals oriented to minimize the communications and to correctly balance the
workload.

3.1 Distributed memory Parallelization of Sphere-Decoding

The main issue in parallelizing Sphere-Decoding in a message-passing environ-
ment is the distribution of the tree among processors, so that the number of
nodes (and the workload) is distributed as evenly as possible.

The parallel algorithm has the following structure: First, the root processor
creates an initial node, and from this node starts a sequential execution of Sphere-

Decoding, until enough nodes have been generated to be distributed among the
rest of processors (at least one per processor). These nodes are distributed cycli-
cally, so that each processor has its own data structure (the distribution is cyclic
to avoid that some processors receive only nodes from the last levels, while others
receive nodes from the first levels; the nodes from the last levels should generate
much less work than the nodes from the first levels). See figure 3.

Then, in each iteration, each processor expands a fixed number of nodes in
its structure. When these nodes are expanded, there will be a synchronization
point so that all processors broadcast the state of its heap (empty or not) to
the other processors. The processors whose heap is empty select randomly a
processor to send a nodes request message. If it receives a negative (message
reject) answer, it would choose another processor, until it receives a positive
answer or has received a negative answer from all processors.

After expanding the pre-fixed number of nodes, the processors must check
their queue of messages, to see whether they have some request message. In such
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Fig. 3. Initial Expansion and distribution of nodes among processors

case, they answer with reject message if their structure is empty or accept if it
has nodes to send. If a processor is going to send nodes to other processor, it
will send a fixed percentage of nodes from its structure, chosen cyclically.

At the end of each iteration the processors must broadcast their best solution
(to use it for comparison with solutions found in further iterations) and the state
of their heap, to determine the end of the algorithm (which will happen when
all heaps are empty).

An important issue is the choice of the number of nodes to expand by each
processor. To avoid load imbalance, this number must be the same for each
processor. This number should not be neither too small (it would increase the
communications) nor too large (some processors might finish their search soon,
and should wait a long time for the other processors to finish)

It is proposed by the authors that the estimation of the number of nodes
to expand in a given iteration is carried out at the end of the former iteration;
each processor estimates the number of nodes that might expand in the next
iteration, broadcast the estimates to all processors, and the number of nodes to
expand would be the median of all estimates.

The authors propose as well that each processor carries out its relative esti-
mation taking into account the number of nodes in its heap, the levels of each
node and the cardinal of the constellation D. If the structure has l1 nodes with
level m − 1 and l2 nodes with level less than m − 1, then the estimate of nodes
that the processor might expand in the next iteration is

l1L + l2L
2 (13)

In the parallel version of Sphere-Decoding implemented in this work, both
proposals were included.

3.2 Shared memory Parallelization of Sphere-Decoding

One of the drawbacks of the distributed memory parallelization is that, as shown
above, it is necessary to fix the number of nodes to be expanded in each iteration,
and check the state of the heap of each processor (empty or not). This number
of nodes to expand must be carefully estimated, to avoid extra communications



or load imbalance. In a shared memory environment, this problem would not
exist.

A first design for shared memory implementation would be that all processors
share the heap, so that in each iteration each processor extracts a node, expands
it and adds the generated new nodes to the heap. The algorithm would finish
when the heap is empty.

The main problem of this design is that the operations of extraction and
addition of nodes must be carried out in a critical section, that is, in a given
time point only a single processor can add or extract nodes from the heap. It
has been checked that this creates a severe bottleneck; therefore, to share the
heap is not a good solution, and this means that each processor must keep and
handle its own heap.

The algorithm proposed is, therefore, similar to the one described in the
section 3.1. The main difference would be that there exist a global variable
which controls whether any processor has an empty queue. This variable can
be updated (within a critical section) by the first processor that becomes idle,
and then by the other processors when a redistribution of the nodes is carried
out. Therefore, all the processors search through their heaps until these become
empty or until the global variable indicates that some processor finished its job.
Then, all remaining nodes are collected in a global structure and redistributed
cyclically over all processors.

This variant, which can be applied only in shared memory machines, de-
creases sensibly the likelihood of a workload imbalance.

3.3 Hybrid Parallelization of Sphere-Decoding

A different, hybrid, parallel architecture is formed by networks of shared mem-
ory multiprocessors (the memory of the global system is distributed, but the
multiprocessors share a local memory). Of course, the message passing library
MPI [10], can be used, although the message passing model may not be the most
suitable to take full advantage of the architecture.

Keeping in mind the parallel SD algorithms for shared memory and for dis-
tributed memory, is easy to obtain an algorithm for the hybrid case. The algo-
rithm would have the same parallel distribution that the distributed memory
algorithm described in 3.1, while the search caried out in each multiprocessor
would use the shared memory algorithm described in 3.2.

It must be considered that, in each iteration of the algorithm, each multipro-
cessor must select from its heap a fixed number of nodes to expand. Hence, the
shared memory algorithm to be executed by the processors within a multiproces-
sor is slightly different from the algorithm described above. Apart from sharing
a variable which indicates if a processor emptied its heap, they would share as
well a variable with the number of nodes to be expanded in that iteration by
the processor. Such variable should be decremented (in a critical region) by each
processor every time that a node is expanded, and if this variable becomes zero
all processors must stop to, through a reduction, determine the best solution
found and rebuild the heap with the nodes not yet processed.



4 Experimental Results

The parallel algorithms outlined above where implemented in C, using the BLAS
library [6] for the operations between vectors. The version for shared memory ar-
chitecture was implemented using the OpenMP library [2], while the distributed
memory version was build with MPI. Both libraries were used for the hybrid
version. The algorithms were tested in a cluster composed of two PRIMERGY
RXI600, each one with 4 Dual-Core 1.4 GHz Intel Itanium–2rprocessors, shar-
ing a 4 GB RAM memory.

The experiments were designed so that the Sphere decoding algorithm gen-
erates a large number of nodes, and, consequently, the CPU time needed is also
large. The sizes of the generated trees (total number of nodes) of the test prob-
lems were 5 ·104, 1 ·105, 5 ·105, 1 ·106, 4 ·106, 5 ·106, 8 ·106 and 1 ·107. These trees
were generated in problems where n = m = 8, so that in all cases the number
of levels of the tree is 8. It must be remarked that the execution time of the
sphere decoding does not depend only on the number of nodes of the tree, but
also on the number of possible solutions (last level nodes, which would represent
lattice points inside the hyper-sphere). Given two trees with the same number
of possible solutions, the one with smaller number of last-level nodes would need
less execution time, since it would insert less nodes in the heap and there would
be less nodes to expand.

Figure 4 shows the speedup of the MPI parallel version for the test problems
considered. In the problems with smaller size (displayed with discontinuous lines)
the speedup decreases for more than 4 processors. In the larger test cases there
is a better speedup, although far from the optimum theoretical speedup.

Fig. 4. SpeedUp of MPI parallel version of SD

The speedup for the OpenMP version is shown in Figure 5. This version was
executed in one of the PRIMERGY RXI600 machines. It is quite remarkable



that all curves present the same trend, and in all problems the optimal number
of processors is 6. The speedups in this case are close to theoretical optimum,
better in most cases than the obtained with the MPI version.

Fig. 5. SpeedUp of OpenMP parallel version of SD

Finally, the speedup of the hybrid version is displayed in Figure 6. This hybrid
version was implemented in two levels, a global level implemented with MPI and
a second, local level implemented with OpenMP. In some cases, the speedup
obtained with this algorithm was far better than with the MPI or OpenMP
versions. The problems in which the speedup was larger than 7 were those with
a larger number of solution nodes in the tree (more than 70% of solution nodes).
In problems where the percentage of solution nodes is small, the performance
decreases, as in the case where the number of nodes is approximately 5 · 105.
From these, only 11% were solution nodes.

5 Conclusions

Several possibilities for parallelization of the Sphere-Decoding method have been
proposed. These cover three possible computing environments: Distribute mem-
ory, shared memory, and hybrid machines, where shared memory machines are
connected. The hybrid version gave the greater speedups, although the shared
memory version had more stable and consistent speedups. This was an ex-
pected behaviour, given the reduced communications and the possibility of a
quite good work distribution. The workload balance is much more troublesome
in distributed memory environments, so that the performance of the MPI and
OpenMP+MPI versions suffers strong variations, depending on the structure
of the tree generated during the search. The overall good performance of the
OpenMP versions is quite relevant, since multicore processors and hybrid archi-
tectures are becoming increasingly popular.



Fig. 6. SpeedUp of hybrid parallel version of SD

References

1. E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest point search in lattices.
IEEE Transactions on Information Theory, 48:2201–2214, 2002.

2. R. Chandra, L. Dagun, D. Kohr, D. Maydan, J. McDonald, and R. M. Parallel

Programming in OpenMP. Morgan Kaufmann Publishers, 2000.
3. U. Fincke and M. Pohst. Improved methods for calculating vectors of short

length in a lattice, including a complexity analysis. Mathematics of Computation,
44(170):463–471, 1985.

4. Gerard J. Foschini. Layered space-time architecture for wireless communication
in a fading environment when using multi-element antennas. Bell Labs Technical

Journal, 1:41–59, 1996.
5. A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction to Parallel Com-

puting. Addison Wesley, 2003.
6. S. Hammarling, J. Dongarra, J. Du Croz, and R. J. Hanson. An extended set of

fortran basic linear algebra subroutines. ACM Trans. Mat. Software, 1988.
7. B. Hassibi and H. Vikalo. On sphere decoding algorithm. i. expected complexity.

IEEE Transactions on Signal Processing, 53:2806–2818, 2005.
8. R. Kannan. Improved algorithms for integer programming and related lattice

problems. ACM Symp. Theory of Computing, 1983.
9. C.P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algo-

rithms and solving subset sum problems. Math. Programming, 66:181–191, 1994.
10. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The

Complete Reference. MIT Press, 1996.
11. I. E. Telater. Capacity of multi-antenna gaussian channels. Europ. Trans. Telecom-

mun., pages 585–595, 1999.


