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Abstract. A parallel version of the self-verified method for solving linear sys-
tems was presented in [19, 18]. In this research we propose improvements aiming
at a better performance. The idea is to implement an algorithm that uses tech-
nologies as MPI communication primitives associated to libraries as LAPACK,
BLAS and C-XSC, aiming to provide both self-verification and speed-up at the
same time. The algorithms should find an enclosure even for ill-conditioned prob-
lems. In this scenario, a parallel version of a self-verified solver for dense linear
systems appears to be essential in order to solve bigger problems. Moreover, the
major goal of this research is to provide a free, fast, reliable and accurate solver
for dense linear systems.

1 Introduction

Many real problems are simulated and modeled using dense linear systems of equa-
tions like Ax = b with an n × n matrix A ∈ Rn×n and a right hand side b ∈ Rn.
This is true for functional linear equations that occur like partial differential equations
and integral equations that appear in several problems of Physics and Engineering [4].
Many different numerical algorithms contain this task as a subproblem.

There are numerous methods and algorithms which compute approximations to the
solution x in floating-point arithmetic. However, usually it is not clear how good these
approximations are, or if there exists a unique solution at all. In general, it is not possible
to answer these questions with mathematical rigor if only floating-point approximations
are used. These problems become especially difficult if the matrix A is ill conditioned.
The use of self-verified methods can lead to more reliable results [12]. Verified comput-
ing provides an interval result that surely contains the correct result [20, 17]. Like that
the algorithm also proves the existence and uniqueness of the solution of the problem.
The algorithm will, in general, succeed in finding an enclosure of the correct solution.
If the solution is not found, the algorithm will let the user know.



The use of verified computing makes it possible to find the correct result. However,
finding the verified result often increases the execution times dramatically [24]. The
research already developed shows that the execution time of verified algorithms are
much larger than the execution time of algorithms that do not use this concept [14, 13].

To compensate the lack of performance of such verified algorithms, some works
suggest the use of midpoint-radius arithmetic to achieve a better performance, since its
implementation can be done using only floating-point operations [26, 27]. This would
be a way to increase the performance of verified methods.

The advent of parallel computing and its impact in the overall performance of many
algorithms on numerical analysis can be seen in the past years [8]. The use of clus-
ters plays an important role in such a scenario as one of the most effective manner to
improve the computational power without increasing costs to prohibitive values. The
parallel solutions for linear solvers found in the literature explore many aspects and
constraints related to the adaptation of the numerical methods to high performance en-
vironments [5, 25, 10, 31, 22, 11]. However, those implementations do not deal with
verified methods. In the field of verified computing many important contributions have
been done in the last years. Some works related to verified solvers for dense linear sys-
tems [9, 17, 12, 28, 23] can be found in the literature. However, only a few papers on ver-
ified solvers for dense systems together with parallel implementations were found [16,
30, 27], but these authors implement other numerical problems or use a parallel ap-
proach for other architectures than clusters.

The new algorithms should find an enclosure even for very ill-conditioned problems.
Moreover, the major goal of this research is to provide a free, fast, reliable and accurate
solver for dense linear systems.

New algorithms based on the C-XSC methods were implemented, but using just
libraries like BLAS and LAPACK to achieve better performance. The idea of reducing
the switching of rounding mode presented by Bohlender was implemented as well as
an optimization of the residuum based on the INTLAB method. In other words, the new
implementations try to join the best aspects of each library.

To ensure that an enclosure will be found, interval arithmetic was used. Several
implementations and tests were done to find the most appropriate arithmetic to be used.

Aiming at a better performance, the algorithm was parallelized using the libraries
SCALAPACK and PBLAS. The idea of using popular and highly optimized libraries to
gain performance will also be maintained in the parallel version.

One important advantage of the presented algorithm is the ability to find a solution
even for very ill-conditioned problems (in tests on personal computers an enclosure
could be found for condition number up to 1015) while most algorithms may lead to
an incorrect result when it is too ill-conditioned (above condition number 108). Our
main contribution is to increase the use of verified computing through its optimization
and parallelization, once without parallel techniques it becomes the bottleneck of an
application.



2 Verified Computing

One possibility to implement verified computing is using interval arithmetic com-
bined with suitable algorithms.

2.1 Interval Arithmetic

Let R denote the set of real numbers and PR the power set over R. The two most
frequently used representations for intervals over R, are the infimum-supremum repre-
sentation

[a1, a2] := {x ∈ R : a1 ≤ x ≤ a2} for some a1, a2 ∈ R, a1 ≤ a2, (1)

where ≤ is the partial ordering x ≤ y and the midpoint-radius representation

〈a, α〉 := {x ∈ R : |x− a| ≤ α} for some a ∈ R, 0 ≤ α ∈ R. (2)

The two representations are identical for real intervals (not for floating-point inter-
vals), whereas for complex intervals the first representation are rectangles, the second
one represents discs in the complex plane.

Today mostly the infimum-supremum arithmetic is used. There are two main rea-
sons for that. First, the standard definition of midpoint-radius arithmetic causes over-
estimation for multiplication and division, and second, the computed midpoint of the
floating point result of an operation is, in general, not exactly representable in floating
point, thus again causing overestimation and additional computational effort. However,
in [27], Rump shows that the overestimation of operations using midpoint-radius repre-
sentation compared to the result of the corresponding power set operation is limited by
at most a factor 1.5 in radius.

In the computer implementation of interval arithmetic, special care has to be taken
for the rounding [27]. Both infimum-supremum und midpoint-radius have advantages
and disadvantages. Some intervals are better represented in one arithmetic and have an
overestimation in other.

As presented in [27], the main point in using midpoint-radius arithmetic is that no
case distinctions, switching of rounding mode in inner loops, etc. are necessary, only
pure floating point matrix multiplications. And for those the fastest algorithms available
may be used, for example, BLAS. The latter bear the striking advantages that

1. they are available for almost every computer hardware, and that
2. they are individually adapted and tuned for specific hardware and compiler config-

urations.

This gives an advantage in computational speed which is difficult to achieve by other
implementations.



2.2 Suitable Algorithm

As mentioned before, we have to ensure that the mathematical properties of inter-
val arithmetic as well as high accuracy arithmetic be held if we want to achieve self-
verification. Based on that, we used Algorithm 1 as the starting point of a first parallel
version. This algorithm is based on the verified method fully described in [12] and will,
in general, succeed in finding and enclosing a solution or, if it does not succeed, will
let the user know. In the latter case, the user will know that the problem is likely to be
very ill-conditioned or that the matrix A is singular. In this case, the user can try to use
higher precision arithmetic.

Algorithm 1 Enclosure of a square linear system
1: R ≈ A−1{Compute an approximate inverse using LU-Decomposition algorithm}
2: x̃ ≈ R · b {compute the approximation of the solution}
3: [z] ⊇ R(b−Ax̃) {compute enclosure for the residuum}
4: [C] ⊇ (I −RA) {compute enclosure for the iteration matrix}
5: [w] := [z], k := 0 {initialize machine interval vector}
6: while not ([w]⊂̊[y] or k > 10) do
7: [y] := [w]
8: [w] := [z] + [C][y]
9: k + +

10: end while
11: if [w] ⊆ int[y] then
12: Σ(A, b) ⊆ x̃+[w]{The solution set (Σ) is contained in the solution found by the method}
13: else
14: no verification
15: end if

These enclosure methods are based on the following interval Newton-like iteration:

xk+1 = Rb + (I −RA)xk, k = 0, 1, ... (3)

This equation is used to find a zero of f(x) = Ax−b with an arbitrary starting value
x0 and an approximate inverse R ≈ A−1 of A. If there is an index k with [x]k+1⊂̊[x]k
(the ⊂̊ operator denotes that [x]k+1 is included in the interior of [x]k), then the matrices
R and A are regular, and there is a unique solution x of the system Ax = b with
x ∈ [x]k+1. We assume that Ax = b is a dense square linear system and we do not
consider any special structure of the elements of A.



3 Tools and Solvers for Dense Linear Systems of Equations

3.1 Optimized Tools and Solvers

LAPACK [21] is a fortran library for numerical linear algebra. This package in-
cludes numerical algorithms for the more common linear algebra problems in scientific
computing (solving linear equations, linear least squares, and eigenvalue problems for
dense and banded systems).

The numerical algorithms in LAPACK are based on BLAS routines. The BLAS
(Basic Linear Algebra Subprograms [6]) are routines that provide standard building
blocks for performing basic vector and matrix operations. The Level 1 BLAS perform
scalar, vector and vector-vector operations, the Level 2 BLAS perform matrix-vector
operations, and the Level 3 BLAS perform matrix-matrix operations. BLAS routines are
efficient, portable, and widely available. They utilize block-matrix operations, such as
matrix-multiply in inner loops to achieve high performance. These operations improve
the performance by increasing the granularity of the computations and keeping the most
frequently accessed subregions of a matrix in the fastest level of memory [7].

The ScaLAPACK (or Scalable LAPACK) library includes a subset of LAPACK rou-
tines redesigned for distributed memory computers. Like LAPACK, the ScaLAPACK
routines are based on block-partitioned algorithms in order to minimize the frequency
of data movement between different levels of the memory hierarchy. (For such ma-
chines, the memory hierarchy includes the off-processor memory of other processors,
in addition to the hierarchy of registers, cache, and local memory on each processor.)

The fundamental building blocks of the ScaLAPACK library are distributed mem-
ory versions (PBLAS) of the Level 1, 2 and 3 BLAS, and a set of Basic Linear Algebra
Communication Subprograms (BLACS) for communication tasks that arise frequently
in parallel linear algebra computations. In the ScaLAPACK routines, all interprocessor
communication occurs within the PBLAS and the BLACS.

3.2 Verified Tools and Solvers

There is a multitude of tools and algorithms that provide verified computing. Among
them, an option is C-XSC (C for eXtended Scientific Computing) [17]. C-XSC is a free
and portable programming environment for C and C++ programming languages, of-
fering high accuracy and automatic verified results. This programming tool allows the
solution of many standard problems with reliable results. The Matlab toolbox for self-
verified algorithms, INTLAB [15], is also an option. Like C-XSC, it also provides inter-
val arithmetic for real and complex data including vectors and matrices, interval arith-
metic for real and complex sparse matrices, rigorous real interval standard functions,
rigorous complex interval standard functions, rigorous input/output, accurate summa-
tion, dot product and matrix-vector residuals, multiple precision interval arithmetic with
error bounds, and more. However, this solver can be used just together with the com-
mercial MATLAB environment, which can increase the costs to prohibitive values.



3.3 Comparison

Each tool has its advantages and disadvantages, some are more accurate and some
are faster. Another important aspect is the availability of these tools. A comparison
among C-XSC, INTLAB and LAPACK [1] was performed.

Both C-XSC and LAPACK are free libraries and can be used for educational and
scientific purposes. They can be downloaded from internet and used without any restric-
tions. INTLAB, otherwise, cannot be used freely. INTLAB itself has an open source,
but to be able to use INTLAB you have to buy the commercial product MATLAB [29].
This is a big disadvantage which can make the costs of using INTLAB prohibitively
large.

C-XSC and INLAB present an interval as result. Both present enclosures of the
exact result. In several test cases, C-XSC presented a point interval, while INTLAB
presented some uncertainty digits. The verified result makes possible to evaluate how
good the floating-point approximation is. LAPACK in the other hand, does not provide
a verified result, just an approximation.

As expected, LAPACK presented the best performance. However it gives just an
approximation of the correct result, and not an inclusion as INTLAB and C-XSC. INT-
LAB is based on BLAS, therefore it presents also a good performance comparing with
C-XSC. The performance presented by C-XSC is not so optimal because the algo-
rithm uses special variables (data type dotprecision), which are simulated in software
to achieve high accuracy.

The results show that C-XSC has the most reliable results and the highest accuracy.
LAPACK is the one that presents the best performance, but results are not verified, and
in some cases less accurate. INTLAB is the best compromise between performance and
accuracy. However, as said before, it requires Matlab which is not free. The tests show
that the method used in C-XSC is a good choice, but it should be optimized to gain
performance.

4 Parallel Approach

To implement the parallel version of Algorithm 1, we used an approach for cluster
architectures with message passing programming model (MPI) and the highly opti-
mized library PBLAS and SCALAPACK. Clusters of computers are considered a good
option to achieve better performance without using parallel programming models ori-
ented to very expensive (but not frequently used) machines. A parallel version for this
algorithm runs on distributed processors, requiring communication among the proces-
sors connected by a fast network and the communication library.

The self-verified method presented above is divided in several steps. By tests, the
computation of R, the approximate inverse of matrix A, takes more than 50% of the
total processing time. Similarly, the computation of the interval matrix [C] that contains
the exact value of I −RA (iterative refinement) takes more than 40% of the total time,
since matrix multiplication requires O(n3) execution time, and the other operations are
mostly vector or matrix-vector operations which require at most O(n2). Both operations
could be implemented using SCALAPACK (R calculation) and BLAS (C calculation).



A parallel version of the self-verified method for solving linear systems was pre-
sented in [19, 18]. In this paper we propose the following improvements aiming at a
better performance:

– Calculation of R using just floating-point operations;
– Avoid the use of C-XSC elements that could slow down the execution;
– Use of the fast and highly optimized libraries: BLAS and LAPACK in the first se-

quential version (for the parallel version PBLAS and SCALAPACK respectively);
– Use of both interval arithmetics: infimum-supremum and midpoint-radius (as pro-

posed by Rump [27] );
– Use of techniques to avoid the switching of rounding mode in infimum-supremum

operations (proposed by Bohlender [2, 3]).

To find the best arithmetic for this method, the sequential algorithms for point and
interval input data were written using both infimum-supremum and midpoint-radius
arithmetic. The performance tests showed that the midpoint-radius algorithm needs ap-
proximately the same time to solve a linear system with interval input data, while the
infimum-supremum algorithm needs much more time in this case, since the interval
multiplication must be implemented and optimized functions from BLAS cannot be
used. Therefore, midpoint-radius arithmetic was chosen for the parallel implementa-
tion.

The parallel implementation uses the following SCALAPACK/BLAS routines in
the algorithm 1:

– SCALAPACK
• pdgetrf : for the LU decomposition (matrix R on step 1);
• pdgetri: to find the approximative inverse matrix (matrix R on step 1).

– PBLAS
• pdgemm: matrix-matrix multiplication (matrix C on step 4);
• pdgemv: matrix-vector multiplication (many steps: 2, 3 and 8 to find the vectors

x, z and w);.

It is important to remember that behind every midpoint-radius interval operation
more than one floating-point operation should be done using the appropriate rounding
mode. The matrix multiplication R ∗A from step 4 needs the following operations:

Algorithm 2 Midpoint-radius matrix multiplication in Fn

1: c̃1 = 5(R ·mid(A))
2: c̃2 = 4(R ·mid(A))
3: c̃ = 4(c̃1 + 0.5(c̃2 − c̃1))
4: γ̃ = 4(c̃− c̃1) + |R| · rad(A)

In this case, the routine PDGEMM of PBLAS would be called three times, one for
step 1, one for step 2, and one for step 4.



5 Results

5.1 Performance

Performance analysis of this parallel solver was carried out varying the order of
input matrix A. Matrices with three different orders were used as test cases: 2.500 ×
2.500, 5.000 × 5.000, and 10.000 × 10.000. For each of those matrices, executions
with the number of processors varying from 1 to 64 were performed. All matrices were
specifically generated for these experiments and are composed of random numbers.

The results presented in this section were obtained on the HP XC6000, the high
performance computer of the federal state Baden-Württemberg. The HP XC6000 is a
distributed memory parallel computer with 128 nodes all in all; 108 nodes consist of
2 Intel Itanium2 processors with a frequency of 1.5 GHz and 12 nodes consist of 8
Intel Itanium2 processors with a frequency of 1.6 GHz. All nodes own local memory,
local disks and network adapters. Thus the theoretical peak performance of the system
is 1.9 TFLOPS. The main memory above all compute nodes is about 2 TB. All nodes
are connected to the Quadrics QsNet II interconnect that shows a high bandwidth of
more than 800 MB/s and a low latency. The basic operating system on each node is
HP XC Linux for High Performance Computing (HPC), the compiler used was the
Intel icc 10.0 and the MKL 10.0.011 was used for an optimized version of libraries
SCALAPACK and PBLAS.

Figure 1 presents a comparison of the speed-ups achieved for the tested matrices.
The proposed parallel solution presents a good scalability and improves the perfor-
mance of the application. As expected, the larger the input matrix, the better is the
speed-up achieved.
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For larger dimensions, the speed-up is almost linear. In some cases, like for dimen-
sion 10.000 and 16 processors, we found a super linear speed-up. This is possible due
to cache effects resulting from the different memory hierarchies of a modern computer.
The size of accumulated caches from different processors can also change, and some-
times all data can fit into caches and the memory access time reduces dramatically,
leading to a drastic speed-up. It is understandable that this effect occurs in this imple-
mentation since PBLAS and SCALAPACK were optimized to make the best possible
use of cache hierarchies.

Results for more than 64 processors were not presented for these test cases since
beyond this threshold the performance started to drop down. As can be seen in figure 2,
for 64 processors, the efficiency drops significatively, for the test case with dimension
2.500, it drops under 35%.
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5.2 Accuracy

The accuracy depends on the condition number of the matrix A. For well condi-
tioned problems, the new algorithm may deliver a very accurate result with up to 16
correct digits.

For example supposing A is a 10x10 point matrix with condition number 4.06 ·
10+02 and b is a vector where each position has the value 1.0. The developed algorithm
will delivery the following solution for x:

The new implementation also finds an inclusion for ill-conditioned dense matrices,
but the accuracy may vary depending on the condition number as presented in table 2.



Table 1. Midpoint-radius and the equivalent infimum-supremum result

res Midpoint Radius
x[0] = -1.81645396742261731e-05 3.30189340310308432e-18
x[1] = -1.81103764097278691e-06 1.27042988556363316e-18
x[2] = -3.50284396008609789e-06 8.65422361039543574e-19
x[...] = ... ...
x[8] = -2.65213537238245186e-06 1.12671706774209183e-18
x[9] = 3.01161008622528871e-05 4.81485187791373545e-18

res Infimum Supremum
x[0] = -0.00001816453967423 -0.00001816453967422
x[1] = -0.00000181103764097 -0.00000181103764097
x[2] = -0.00000350284396009 -0.00000350284396009
x[...] = ... ...
x[8] = -0.00000265213537238 -0.00000265213537238
x[9] = 0.00003011610086225 0.00003011610086226

Table 2. Relation between condition number and diameter

Condition number diameter
101 10−14

102 10−13

103 10−12

104 10−11

105 10−10

106 10−9

107 10−8

108 10−7

109 10−6

It is important to mention that this relation between condition number and diameter
of the resulting interval was found for a special class of matrix: square, dense with
random numbers.

A well-known example of ill-conditioned matrix are the Boothroyd/Dekker matrices
that are defined by the following formula:

Aij =
(

n+i-1
i-1

)
×

(
n-1
n-j

)
× n

i+j−1 , bi = i,∀i, j = 1..n,

For n = 10 this matrix has a condition number of 1.09 · 10+15. The result found by
this parallel solver is presented in table 3.

As expected for an ill-conditioned problem, the accuracy of the results is not the
same as for a well-conditioned problem. It is important to remark that even if the result



Table 3. Results for the Boothroyd/Dekker 10x10 matrix

res Midpoint Radius Infimum Supremum
x[0] 5.4711703e-07 2.8569585e-06 -0.0000023 0.0000034
x[1] 9.9999473e-01 2.7454332e-05 0.9999672 1.0000221
x[2] -1.9999718e+00 1.4633209e-04 -2.0001182 -1.9998255
x[3] 2.9998902e+00 5.7081064e-04 2.9993194 3.0004611
x[4] -3.9996506e+00 1.8174619e-03 -4.0014680 -3.9978331
x[5] 4.9990383e+00 5.0008707e-03 4.9940374 5.0040392
x[6] -5.9976307e+00 1.2322380e-02 -6.0099531 -5.9853083
x[7] 6.9946526e+00 2.7799205e-02 6.9668534 7.0224518
x[8] -7.9887617e+00 5.8434700e-02 -8.0471964 -7.9303270
x[9] 8.9777416e+00 1.1572349e-01 8.8620181 9.0934651

has an average diameter of 4.436911 · 10−02, it is an inclusion. In other words, it is a
verified result.

5.3 Real Problem

For a real problem test, the used matrix is from the application of the Hydro-Quebec
power systems’ small-signal model, used for power systems simulations. This problem
uses a square 1484 x 1484 real unsymmetric matrix, with 6110 entries (1126 diagonals,
2492 below diagonal, 2492 above diagonal) as can be seen in figure 3.

Fig. 3. Structure view of matrix QH1484

The presented solver was written for dense systems, therefore, this sparse systems
will be treated as a dense system. No special method or data storage was used/done
concerning the sparsity of this systems.



The first elements of the result vector found for this problem with conditional num-
ber 5.57 · 1017 are the following:

Table 4. Results for QH1484: Quebec Hydroelectric Power System

res Midpoint Radius Infimum Supremum
x[0] −4.1415310 · 10+00 2.0242898 · 10−07 −4.1415312 · 10+00 −4.1415308 · 10+00

x[1] −2.1936961 · 10+00 2.3526014 · 10−07 −2.1936964 · 10+00 −2.1936959 · 10+00

x[2] −4.1417322 · 10+00 2.0242898 · 10−07 −4.1417324 · 10+00 −4.1417320 · 10+00

x[3] −2.1954030 · 10+00 2.3526014 · 10−07 −2.1954032 · 10+00 −2.1954028 · 10+00

x[...] ... ... ... ...

Despite it is an ill-conditioned problem, the average diameter of the interval results
found by this solver was 1.26 · 10−8. This is a very accurate result for such an ill-
conditioned problem.

The execution time for solving this systems of linear equations using 8 processors
was 1.4193 seconds

6 Results and Conclusions

New sequential algorithms based on a verified method were implemented, but us-
ing just libraries like BLAS and LAPACK to achieve better performance. The idea of
reducing the switching of rounding mode presented by Bohlender was implemented as
well as an optimization of the residuum based on the INTLAB method. In other words,
the new implementations join the best aspects of each library.

To ensure that an enclosure will be found, interval arithmetic was used. To find the
best arithmetic for this method, the sequential algorithms for point input data were writ-
ten using both infimum-supremum and midpoint-radius arithmetic. The performance
tests showed that the midpoint-radius algorithm needs approximately the same time
to solve a linear system with interval input data, while the infimum-supremum algo-
rithm needs much more time in this case, since the interval multiplication must be im-
plemented and optimized functions from BLAS cannot be used. Therefore, midpoint-
radius arithmetic was chosen for the parallel implementation.

Aiming at a better performance, the algorithm was parallelized using the libraries
SCALAPACK and PBLAS.

The performance results showed that the parallel implementation leads to nearly
perfect speed-up in a wide range of processor numbers for large dimensions. This is a
very significant result for clusters of computers.

One important advantage of the presented algorithm is the ability to find a solution
even for ill-conditioned problems while most algorithms may lead to an incorrect result
when it is too ill-conditioned (above condition number 108). The accuracy of the results



in many cases depends on the condition number. However, the result of this method is
always an inclusion, given the guarantee that the correct result is inside the interval.

Our main contribution is to provide a free, fast, reliable and accurate solver for dense
linear systems and to increase the use of verified computing through its optimization
and parallelization, once without parallel techniques it becomes the bottleneck of an
application.

Among the ideas for future work the use of interval input data is the first to be
implemented. The parallelization of a verified method for solving sparse matrices is
also a goal for the future. Since many real problems are modeled using these systems,
it is a natural choice to implement such methods, joining the benefits of verified and
parallel computing.
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