
Parallelisation of the CFD code of a CFD-NWP
coupled system for the simulation of

atmospheric flows over complex terrain

F. A. Castro1,2, C. M. P. Silva Santos1, J. M. L. M. Palma1

1 CEsA - Centre for Wind Energy and Atmospheric Flows
FEUP - Faculdade de Engenharia da Universidade do Porto

{csantos, jpalma}@fe.up.pt
2 ISEP - Instituto Superior de Engenharia do Porto

fac@isep.ipp.pt

Abstract. The sequential simulation of atmospheric flows over complex
terrain using Computational Fluid Dynamics tools (CFD) leads normally
to very large time-consuming runs. With the present day processors only
the power available using parallel computers is enough to produce a
true prediction using CFD tools, i.e. running the code faster than the
evolution of the real weather. In the present work, the parallelisation
strategy used to produce the parallel version of the VENTOS R© CFD
code is shown. A sample of the results included in the present abstract is
enough to show the code behaviour as a function of the number of sub-
domains, both number and direction along which the domain splitting
occurs, and their implications on both the iteration number and code
parallel efficiency.
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1 Introduction

The sequential simulation of atmospheric flows over complex terrain using Com-
putational Fluid Dynamics tools (CFD) leads normally to very large time-
consuming runs, when temporal and spatial descriptions of the flows are needed.
These are for example the requirements of the simulations to be used in the
Short Term Prediction of the atmospheric flows over complex terrain. The Short
Term Prediction means predictions of time periods of 1–3 days, typically, and,
in the present context, requires the use of an operational Numerical Weather
Prediction (NWP) program coupled to a CFD code for performing a zooming
effect over the NWP results, which will produce results with higher accuracy.
With the present day processors only the power available using parallel comput-
ers is enough to produce a true prediction using CFD tools, i.e. running the code
faster than the evolution of the real weather.

In the present work, the parallelisation strategy used to produce the parallel
version of the VENTOS R© CFD code [1, 2] is presented. This code has been used



with success in the site assessment of wind farms and so the natural choice for
us to couple with mesoscale codes to produce a Short Term Prediction tool.

In the following sections, we show the fundamental equations being solved
(section 2). In section 3 the parallelisation strategy is presented and in section 4
the results are discussed. Conclusions are presented in section 5

2 Mathematical Model

This section covers the fundamental equations, coordinate transformation and
the numerical techniques used in the current study. A more complete description
of the model can be found in [2].

The continuity (1), the momentum (2), the potential temperature transport
(3) and the turbulence model equations (4 and 5) were written in tensor notation
for a generic coordinate system.
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The eddy viscosity was given by µt = ρCµk
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C1 = 1.44 C2 = 1.92 Cµ = 0.033 σk = 1.0 σε = 1.85



In the above equations, U , P and θ are the Reynolds averaged velocities, pres-
sure and dry potential temperature, ρ and µ are the air density and molecular
viscosity, and k and ε are the turbulence kinetic energy and its dissipation rate,
whose transport equations (4 and 5) and constants C1, C2 and σk were set as in
[3], whereas the constants Cµ and σε followed the recommendations by [4]. The
turbulent Prandtl number was chosen equal to unity which implies Kθ = µtcp.

The coordinate system is defined by transforming a physical Cartesian co-
ordinate system xi into a computational system ξi, where the co-factors are
βjk = J∂ξj/∂xk and J is the determinant of the Jacobian matrix of the coordi-
nate transformation (cf., [5]). This transformation makes it relatively simple to
treat the boundary conditions and to use a structured mesh, where the physical
domain boundaries are the coordinate surfaces following the topography.

The transport equations (1 – 5) were discretized by finite volume techniques
using a central differencing scheme for the diffusive terms. The advective terms
were discretized by the hybrid scheme. In the case of the momentum equations
(2), an alternative 3rd order truncation scheme was used for the advective terms,
identical to the QUICK scheme for non-uniform meshes [6].

The resulting set of coupled algebraic equations was solved using the SIMPLE
algorithm of [6] and the Tri-Diagonal Matrix Algorithm solver, to take advantage
of the structure of the coefficient matrices. The pressure/velocity coupling in
non-staggered meshes was treated following the pressure-weighted interpolation
as in [7] and [8].

The equations can be solved in time-dependent mode, using a second order
implicit scheme, or in steady state formulation, in which case the time derivatives
in equations (2) – (5) were dropped. In either case the equations were solved
until mass and momentum could be satisfied to a dimensionless residual below
5×10−4.

The development and validation of the VENTOS R© code for a series of at-
mospheric flows, as well as details on boundary and initial conditions, can be
found in [1] and [2].

3 Parallelisation Technique

The algorithm of the CFD code used in this work can be said to contain two
iterative levels: an inner iteration where the solution of each equation is iterated
a small number of sweeps – to each equation corresponds a different subroutine;
and an outer iteration which contains all the inner levels and is responsible for
the coupling between equations. The equations for different variables are solved
in a segregated manner, one after the other. In the inner iterations, we use
the Tri-Diagonal Matrix Algorithm (TDMA) (see, for example, [9]) to solve the
various algebraic systems. The Message Passing Interface library (MPI) is used
to implement the communication between processes.

The code was parallelised using a domain decomposition strategy, where the
physical domain, discretised by a mesh of control volumes with a central node,
was decomposed into several sub-domains, each being calculated in a dedicated



Table 1. Speed-up and efficiency results for several partition schemes. Two sets
are shown, averaged results until convergence and averaged results at the end
of 1000 iterations. Time is displayed in seconds and efficiency in %. Speedup
corresponds to the ratio of execution times and NP represents the number of
processors.

Until convergence Per 1000 iterations
Partitions NP Iterations Time Efficiency Speed-Up Time Efficiency Speed-Up

1×1×1 1 1060 18504 - - 17456 - -
2×1×1 2 1129 11666 79.3 1.6 10333 84.5 1.7
1×2×1 2 984 9571 96.7 1.9 9727 89.7 1.8
1×1×2 2 1160 9138 101.3 2.0 7877 110.8 2.2
3×1×1 3 1404 16936 36.4 1.1 12063 48.2 1.5
1×3×1 3 968 7511 82.1 2.5 7759 75.0 2.3
1×1×3 3 1181 7779 79.3 2.4 6587 88.3 2.7
4×1×1 4 1815 15425 30.0 1.2 8499 51.4 2.1
2×2×1 4 1068 6997 66.1 2.6 6552 66.6 2.7
2×1×2 4 1194 5184 89.2 3.6 4341 100.5 4.0
1×4×1 4 979 4827 95.8 3.8 4931 88.5 3.5
1×2×2 4 1115 4834 95.7 3.8 4335 100.7 4.0
5×1×1 5 2302 11004 33.6 1.7 4780 73.0 3.7
1×5×1 5 1087 3108 119.1 5.9 2860 122.1 6.1
6×1×1 6 3620 11610 26.6 1.6 3207 90.7 5.4
3×2×1 6 1293 6120 50.4 3.0 4733 61.5 3.7
3×1×2 6 1271 6878 44.8 2.7 5411 53.8 3.2
2×3×1 6 1085 3860 79.9 4.8 3558 81.8 4.9
1×3×2 6 1055 2507 123.0 7.4 2376 122.4 7.4
4×2×1 8 1677 3741 61.8 4.9 2285 95.5 7.6
2×4×1 8 1114 2815 82.2 6.6 2527 86.3 6.9
2×2×2 8 1148 3500 66.1 5.3 3049 71.6 5.7
3×3×1 9 1316 2484 82.8 7.4 1888 102.8 9.3
5×2×1 10 2089 4989 37.1 3.7 2447 71.4 7.1
2×3×2 12 1103 1932 79.8 9.6 1752 83.1 10.0
5×3×1 15 2116 2863 43.1 6.5 1353 86.0 12.9
3×3×2 18 1181 1381 74.5 13.4 1169 83.0 14.9
2×5×2 20 1101 1094 84.6 16.9 994 87.8 17.6



Fig. 1. Representation of overlapped domains

processor. Inside each sub-domain, the code works essentially as its sequential
version plus the necessary communications to exchange the boundary informa-
tion with neighbouring sub-domains. This physical domain decomposition was
performed with a fixed overlap of two grid nodes (see figure 1).

Communication between adjoining sub-domains takes place after each sweep
of the local TDMA solvers, providing the exchange of the overlapped grid node
values. Other communication instances occur at the beginning and end of each
of the subroutines, where communication of shared grid node values, momentum
fluxes at the control volumes boundaries and some algebraic equation coefficients
are exchanged. For convergence checking, global residuals are constructed by
collecting local information from the individual sub-domains, which occurs at
the end of the outer iteration loop. Similar techniques can be found, for example,
in [10].

All computation is thus parallelised: i.e. not only the algebraic solver, but
also the routines that construct the coefficient matrices, the reading of external
files and the writing of output files, with the exception of minimal output to
standard output to monitor the progress of the simulation and the construction
of global residuals and fluxes, which are handled by the master process.

4 Results

4.1 Speed-Up and Efficiency

In this section, we investigate the effect of different partitioning schemes on
convergence and computational time, as well as the effect of the size of the
mesh on the efficiency of the parallelisation. Speed-up and efficiency results were
measured from simulations of a real flow of 60◦ winds (WNW direction) over a
future wind farm at Mendoiro/Bustavade located in the North of Portugal. All



simulations were carried out in a cluster with 64 nodes using Intel(R) Xeon(TM)
CPU 3.00GHz, and all results shown in this section were obtained by averaging
over three different simulations performed at different instances, with the aim of
removing oscilations in the performance of the cluster.

The results for several runs, using a mesh of 113 × 77 × 45 (= 391 545) grid
nodes and different partition schemes, are presented in table 1 and figures 2–
3. In table 1, the number of sub-domains used in each of the computational
directions is described in the partitions label, the first column. The total number
of processors used in the runs, equal to the number of sub-domains, are shown
in variable NP. Two sets of results are shown: (i) results obtained for converged
simulations; and (ii) results after a fixed number of iterations (1000). Whilst
the former is included to indicate the speed-up of real applications, the latter
reveals the actual speed-up of the code in terms of parallel efficiency (i.e. how
much CPU time is being consumed in communication overheads, etc.). With
respect to the results using this mesh, one may observe that the computational
efficiency per 1000 iterations is quite high and that it does not degrade with
an increasing number of processors, (see blue dashed line in figure 2, which is a
linear regression curve with a slope of 0.849).

However, when CPU times are obtained from completed simulations, the
efficiency decreases due to the larger number of iterations that some partition
schemes require. Partitioning often reduces the convergence rate because of the
slight decoupling that is introduced by the domain splitting. From table 1, one
can see that, in this case, partitioning in the first direction (i.e. schemes 2×1×1,
3×1×1, etc.), which is longitudinal with respect to the flow, has the effect of
increasing the number of iterations until convergence. This is not always the
case, and is highly dependent on the specific flow features. For other flows, it is
slicing the domain horizontally that has a strong impact on convergence, because
quantities vary more quickly in the vertical direction near the ground. What
should be retained, however, is that, despite some reduction in the convergence
rate, the parallelisation efficiency until convergence is still very significant: the
blue dashed line in figure 3, has a slope of 0.702.

A small number of partition schemes produced parallelisation efficiencies
slightly in excess of the maximum theoretical value of SPEED-UP = NP, which
can be confirmed by inspection of table 1 or figure 2. Since this occurred mainly
for the finer mesh and for partition schemes with relatively few subdomains
(namely, NP = 2, 4, 5, 6, 9, which means the size of the subdomains is still fairly
large), it is thought that it is not related to issues of memory management. In-
stead, the explanation is likely to be that the sequential runs were performed
in worse computational conditions than these parallel runs (i.e. the computer
cluster was heavily loaded, there were filesystem delay issues, etc.), which can
lead to some exaggeration of the speed-up of these cases, despite the efforts to
minimise this by performing three runs per case.

Figures 2–3 also contain results for a mesh with half the nodes in each direc-
tion, 57×38×23 (= 49 818) grid nodes. These data are not tabulated here. It can
be seen that for such a smaller case, the parallel efficiency decreases consider-



Fig. 2. Speed-up versus number of processors, NP, per 1000 iterations for two
mesh sizes.

ably. This is to be expected since the bulk of the computational work performed
by the algebraic solver, where most gains are obtained when parallelising, has a
much smaller weight in the overall CPU time, when the mesh is small. This is
especially true when the number of processes is larger than 6, which means the
larger subdomain has less than 8000 grid nodes.

The increase in calculation speed obtained by the present parallelisation
strategy was sufficient to produce fast enough calculations, when using for ex-
ample 9 processors, that enabled us to forecast in 2.5 days a forecast horizon of
5 days.

4.2 Wind Prediction Results

In this section, results of the coupling between the parallel version of VENTOS
and the mesoscale code are presented and compared to field measurements. This
approach consists of two different simulations, mesoscale and microscale (CFD),
with one way coupling linking them. The objective is that the mesoscale model,
feed but planetary weather simulations, provides an accurate numerical weather
prediction for a large (130×130 km) area, encompassing the wind farm. The
CFD code then uses the mesoscale results as boundary conditions, bringing ad-
ditional accuracy due to the higher resolution meshes and more accurate terrain
representation.

A test case for this procedure was performed for the flow over the Men-
doiro/Bustavade wind farm site. Three different occasions were selected from
the year 2006; two winter occasions, 10 to 15 of January and 1 to 5 of December



Fig. 3. Speed-up versus number of processors, NP, until convergence for two
mesh sizes.

and a Spring/Summer occasion, 1 to 5 of June. The 2006 year was chosen only
because of the availability of both experimental and NCEP (National Centers for
Environmental Prediction) results, the latter used to drive the WRF simulations
(Weather Research Forecast code from the National Center for Atmospheric Re-
search (NCAR) and others, see http://www.wrf-model.org).

The VENTOS simulations used a mesh of 39 × 39 × 55 grid nodes with
3×3×1 partitions, covering a domain of 22×22 km in the horizontal and 7500 m
in the vertical. The mesh was almost uniform in the horizontal directions and
concentrated near the ground in the vertical direction, where control volumes of
5 m height were used. The mesoscale simulations, using WRF-ARW core (version
2.2.1 and WPS pre-processing system), were done using a mesh of 44× 44× 31
grid nodes in a single processor, using a uniform mesh spacing in the horizontal
directions of 3000 m and 31 eta levels in the vertical, reaching almost 20 km in
height. The time steps of VENTOS and WRF were 2 s and 10 s respectively.

Representations of the horizontal extensions and meshes used in both codes
are shown in figures 4 and 5. The zooming effect produced by VENTOS is near
6×, as can be seen in figure 4. From figure 5, it can be seen that VENTOS uses
the WRF topography at the boundaries, being then operated a transition to a
higher resolution description of the topography. This transition occurs inside a
region surrounding the VENTOS domain of 3000 m.

To produce the VENTOS results the WRF simulations were first performed.
In the WRF simulations, the results were written to disk every 20 minutes, i.e.
every 120 time steps. These results were then interpolated to the boundaries



Fig. 4. Meshes used by VENTOS (small extension) and WRF. The black line
shows the West Portuguese coast.

of the VENTOS mesh, producing files corresponding to each of the 20 minutes
snapshots from WRF. During the VENTOS simulations the boundary conditions
were updated every time step using linear interpolations in time between WRF
snapshots. All the simulations (VENTOS and WRF) were performed in the
aforementioned cluster during normal operation days. The VENTOS simulations
took nearly 1 cluster day for every 5 days of real time when the 3 × 3 × 1
partitioning was used, whilst the sequential version would require more cluster
days than days of real time.

For the site under study results from three meteorological masts operated
with cup anemometers at 60 m above the ground level were available. For this
study we present only results for one mast, known as PORT267.

The VENTOS and WRF results for the horizontal velocity magnitude (Vh)
are compared with cup anemometer results in figures 6-8. Figure 9 compares the
VENTOS and WRF predictions for the potential temperature (θ).

Figure 6 shows the time series of Vh for the warmer occasion under study,
10 to 15 of June. For this period the wind speed was not very height and so
thermal effects are more prone the determine the flow behaviour. In this case,
the VENTOS results were not a significant improvement over the WRF results.



Fig. 5. Meshes and topography used by both codes.

This is partially explained by the simpler thermodynamics and heat-transfer
models used in VENTOS.

For the winter occasions, figures 7-8, the mean observed wind speed is higher
and the overall improvement introduced by VENTOS is very noticeable. In the
windiest period of the study, the first days of December, the improvement was
quite significant, when the WRF results were showing wind speeds almost 40%
lower than the experimental results.

The potential temperature predicted by VENTOS for December follows very
well the WRF results, as can be seen in figure 9. This shows that the ther-
modynamics and heat-transfer models used in VENTOS are well suited for the
application in mind, i.e. the wind power prediction, that deals mainly with the
operation of wind turbines for velocities above nearly 5 m/s.

The rms errors in m/s for the 3 periods under study are presented in table 4.2.
For the more interesting case, from the wind power point of view, the December
period, VENTOS reduced the error at PORT267 1.7 times.

5 Conclusions

The parallel version of the VENTOS CFD code was developed with the aim
of producing short term weather prediction. The parallelisation of a CFD code
was performed using a domain decomposition strategy, where the physical sim-
ulation domain, discretised by a mesh of control volumes with a central node,
was decomposed into several sub-domains, each being calculated in a dedicated



Fig. 6. Time series of the horizontal velocity for the June occasion.

Fig. 7. Time series of the horizontal velocity for the January occasion.

Fig. 8. Time series of the horizontal velocity for the December occasion.

Fig. 9. Time series of the potential temperature for the December occasion.



Table 2. RMS errors in m/s for the predictions at PORT267 for the 3 occasions
under study.

Month VENTOS WRF
June 1.49 1.59
January 2.17 2.66
December 2.62 4.35

processor. The Message Passing Interface library (MPI) was used to implement
the communication between processes. High parallel efficiencies were obtained
(> 80%) even for 20 processors. The parallelisation introduced some decoupling
between sub-domains which can degrade the converge rate for certain cases.
Nevertheless, efficiencies of 70% are still obtained. The adopted strategy and its
numerical implementation permitted sufficiently faster execution times to enable
true predictions using the current CFD code.

A test case using a real flow over the wind farm of Mendoiro/Bustave, in
Portugal, showed that the coupling procedure can improve the mesoscale re-
sults. The improvement was more noticeable in windy conditions, the preferred
situation for the application in mind, the wind power production. In the better
case, a reduction of 1.7 × in the error of the mesoscale results were obtained.
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