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Abstract. In this paper we developed a new Lanczos algorithm on the
Grassmann manifold. This work comes in the wake of the article by A.
Edelman, T. A. Arias and S. T. Smith, The geometry of algorithms with
orthogonality constraints [EAS98], where they presented a new conju-
gate gradient algorithm on the Grassmann and Stiefel manifolds. These
manifolds which are based on orthogonality constraints, yields penetrat-
ing insight into many numerical algorithms of linear algebra. They have
developed an approach to numerical algorithms involving orthogonality
constraints. As the Lanczos method and the method of conjugate gra-
dients are closely related, and one of the main problems of the Lanczos
method is the loss of orthogonality, arose the idea of checking whether
it would be possible to get a Lanczos algorithm on the Grassmann man-
ifold.

1 Introduction

The problem of computing eigenvalues, eigenvectors and invariant subspaces is
always present in areas as diverse as Engineering, Physics, Computer Science and
Mathematics. Considering the importance of these problems in many practical
applications, it is not surprising that has been and continues to be the subject of
intense research. Lately, it has been verified that the iterations of eigenvalue and
eigenvector problems are best analyzed in some special spaces. This geometric
approach has helped us to analyse methods such as the QR algorithm, but how-
ever, it hasn’t led to new algorithms largely due to the difficulty in establishing
a bridge between the geometry of the abstract spaces and the well known algo-
rithms of numerical linear algebra. The optimization problem of the estimative
of the invariant subspaces is made explicit with a geometric approach. However
a geometrical treatment of Grassmann manifold appropriate for numerical linear
algebra is not present in standard references. The iterations start from an initial
estimative and produce a sequence of p-dimensional subspaces which become in-
creasingly better estimative of the invariant subspaces. Thus successive iterates
belong to a particular space, formed by all the p-dimensional subspaces of Rn,
called Grassmann manifold, denoted by Gr(p, n).

The concept of the fiber bundle structure that allows us to describe the rela-
tionship between subspaces and bases and also allows us to explain how objects



in geometric abstract of the Grassmann manifold can be translated into numer-
ical formulas. One of the objectives of this work is to prove that a geometric
approach could lead to a new efficient algorithm, even in problems as classics as
computing invariant subspaces, due to the fiber bundle structure on the Grass-
mann manifold. We develop a Restarted Block Lanczos algorithm, and we show
that this algorithm is an iteration on Gr(p,n) and is competitive when compared
with other algorithms.

2 Grassmann and Stiefel Manifolds in Numerical Linear
Algebra

In standard differential geometry references we cannot found an appropriate ge-
ometrical treatment of the Stiefel and Grassmann manifolds for numerical linear
algebra. It is essential to understand these manifolds, which represent orthogo-
nality constraints, as in the symmetric eigenvalue problem and for that we must
understand the relationship between the geometric entities and the numerical
representation of these quantities. If we wish to represent a subspace we can pick
a basis of vectors that span the subspace. The relationship between subspaces
and bases is done by the principal fiber bundle structure on the Grassmann man-
ifold. The Grassmann manifold is the set of all p-dimensional subspaces of Rn

aand is represented by Gr(p, n) . One possible way to represent numerically an
element y of Gr(p, n) i e, a p-dimensional subspace of Rn , consists of specifying
an n×p full column rank matrix Y whose columns span the space y, and we can
write Y = span(y). The span of full rank n× p matrix is an element of Gr(p, n)
if and only if Y has full rank.

The set of n × p matrices with full rank is called the non compact Stiefel
manifold and is denoted by ST (p, n), i.,

ST (p, n) = {Y ∈ Rn×p : r(Y ) = p} (1)

We denote by St(p, n), termed the Stiefel manifold, the set of all n×p orthogonal
real matrices

St(p, n) = {Y ∈ Rn×p : Y T Y = Ip} (2)

The set of n× n invertible matrices is denoted by GLn,

GLn = {A ∈ Rn×n : det(a) 6= 0} (3)

The Grassmann manifold can be identified with the quotient space

Gr(p, n) = ST (p, n)/GLp (4)

For details concerning Stiefel manifolds, Grassmann manifolds, please refer to
standard texts such as [Boo75].



3 Lanczos on Grassmann Manifold

The Lanczos algorithm is a method for computing some eigenvalues of a large
symmetric matrix A and their eigenvectors. The idea consists in building a se-
quence of nested subspaces span{ν,Aν,A2ν, . . .} and solving the eigenproblem
reduced to these subspaces. We will generalize this method and its variants to
the Grassmann manifold and show that such generalization is not useless as a
numerical algorithm. The block restarted Lanczos is a method on Grassmann
because if we record the subspaces we get just after restarting, then we obtain a
sequence of subspaces with the same dimension. Until now, as far as we know,
people haven’t though of Lanczos as a subpace iteration, so it may be inter-
esting to point out that restarted Lanczos is a Grassmann iteration. We intend
to obtain new convergence results and make extensive comparisons with other
Grassmannian methods like the ones mentioned in ([1998]). We propose a new
algorithm called Grassmann-Lanczos, which induces a subspace iteration, i.e, an
iteration on the Grassmann manifold, that can be written as follows.

4 Algorithm Grassmann-Lanczos (GL)

Let A be an symmetric matrix n× n
Consider y0 an p-dimensional subspace of IRn, i.e.,y0 ∈ Gr(p, n). The algo-

rithm produce a sequence of subspaces

Gr(p, n) → Gr(p, n)

y → y+

defined by:

– Input(A,Y1, m)
– For i=1 to m do

• For j=1 to i do
∗ Bi j = Y t

i AYj

• Mi = Y t
i AYi

• Zi+1 = AYi − Yi Mi −
i−1∑
j=1

YiBi j

• Compute QR Decomposition of Zi+1: Zi+1 = QjRj = Yi+1Ri+1

– Q = (Y1, Y2, . . . , Ym)
– M = QtAQ
– X = Zi+1

– y+ = span(QX)

The matrix Y1, n × p , is that y ∈ span(Y1). The algorithm is defined as
a mapping Gr(p, n) → Gr(p, n) and this algorithm is well-defined, in other
words, the output Y+ ∈ Gr(p, n) (a p-dimensional subspace) is not affected by
the choices made in the computation process. In order to prove this, we assume



that make another choice in step (1.). We obtain a matrix Ÿ = Y ∗ R , for
some non-singular p × p matrix R. It is easy to see that at point (2.), we will
get a Krylov subspace Km(Ÿ ) = Kn(Y ) .Then we take an orthogonal basis, for
instance we will get a basis Q̈ = Q ∗ R for some orthogonal p× p matrix R. At
point (3.), you compute

M̈ = Q̈T AQ̈ (5)

= (QR)T A(QR) (6)

= RT QT AQR (7)

= RT MR (8)

Notice that M and M̈ have the same spectrum, and the eigenvectores of
M̈ are those of M after left multiplication by RT . Therefore, the dominated
eigenspace of M̈ is equal to RT multiplication by the dominated eigenspace of
M . Consequently, at point (4.), your Ẍ satisfies Ẍ = RT ∗ X ∗ S where S is
another p× p orthogonal matrix. Finally, in (5.), we have

Q̈ ∗ Ẍ = Q ∗R ∗RT ∗X ∗ S = Q ∗X ∗ S (9)

Consequently, Q̈ ∗ Ẍ and Q ∗X have the same column space.
This shows that none of the choices we made affected the output of the

iteration mapping.
Observe that the subspaces

Sk = span{Y,AY,A2Y, . . . , Ak−1Y } (10)

and
S′k = span{Y, G,AG, A2G, . . . , Ak−1G} (11)

with

G = AY − Y (Y T AY ) (12)

= (I − Y Y T )AY (13)

= (I − Y (Y T Y )−1Y T )AY (14)

are identical. If we consider the orthogonal projector onto the orthogonal
complement to the span of the Y defined by

ΠY+ = I − Y (Y T Y )−1Y T (15)



Then, we can write equation (14) as

G = ΠY+AY (16)

and

S′k = span{Y, ΠY+AY,AΠY+AY, . . . , Ak−1ΠY+AY } (17)

5 Parallel Grassmann-Lanczos Algorithm (PGL)

Analyzing the GL algorithm, and as this method is well-defined because the
output Y∗ ∈ Gr(p, n) (a p-dimensional subspace) is not affected by the choices
made in the computation process, we conclude that this method might be imple-
mented in parallel computing. In a message passing programming model we can
distribute the large vectors and/or matrices on the processors while the small
ones kept on just one processor. Each Yi code can be Computed independently
from the others, we only need do the comunication to calculate AY − I.

6 Conclusions and Future Works

This paper offers a new approach to the Lanczos algorithm. Lanczos algorithm
is very competitive method whose main problem is the loss of orthogonality, but
the introduction of Grassman manifolds seems to resolve this problem ([1998])].
Analyzing the algorithm that we have proposed, and as this method is well-
defined because the output Y∗ ∈ Gr(p, n) (a p-dimensional subspace) is not
affected by the choices made in the computation process, we conclude that this
method might be easily implemented by blocks and in parallel computing. Thus,
all the data has lead us to conclude that this method is not only competitive in
sequential computation, but also in parallel computing. Further experimentation
may be needed in practice. If one is really considering the pure linear symmetric
eigenvalue problem, then we think that pure conjugate gradient procedures must
be inferior to Lanczos procedures. In order to remove losses of orthogonality we
try an idealized Grassman algorithm and we hope to prove this is a better way,
because we think that these algorithms should be understood in the correct
geometrical framework following the ideas of Demmel and Parlett.
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