
An efficient and robust decentralized algorithm
for detecting the global convergence in

asynchronous iterative algorithms

Jacques M. Bahi1, Sylvain Contassot-Vivier2, and Raphaël Couturier1

1. LIFC, University of Franche-Comte, Belfort, France
{jacques.bahi,raphael.couturier}@univ-fcomte.fr,
Web page: http://info.iut-bm.univ-fcomte.fr/and
2. LORIA, University Henri Poincaré, Nancy, France

sylvain.contassotvivier@loria.fr,
Web page: http://www.loria.fr/∼contasss/homeE.html

Abstract. In this paper we present a practical, efficient and robust al-
gorithm for detecting the global convergence in any asynchronous itera-
tive process. A proven theoretical version, together with a first practical
version, was presented in [1]. However, the main drawback of that first
practical version was to require the determination of the maximal com-
munication time between any couple of nodes in the system during the
entire iterative process. The version presented in this paper does not
require any additional information on the parallel system while always
ensuring correct detections.

Key words: Asynchronous iterative algorithms, convergence detection.

1 Introduction

Iterative algorithms are very well suited to numerous problems in the context of
scientific computations. They are often opposed to direct algorithms which give
the exact solution of a problem within a finite number of operations whereas
iterative algorithms provide successive approximations of it. It is said that they
converge (asymptotically) towards the solution. When dealing with very large
size problems, iterative algorithms are preferred, especially if they give a good
approximation in a little number of iterations [2]. In other cases, they represent
the only way to solve the problem as, for example, in the polynomial roots finding
problem.

For all those reasons, parallel iterative algorithms are very popular. Never-
theless, most of them are synchronous and we showed in [3] that using asynchro-
nism in such parallel iterative algorithms was far more efficient in the emerging
contexts of parallelism such as grid computing. In the scope of this study, the
term asynchronism means that each processor performs its local computations
without waiting for the last updates of data dependencies coming from other
processors. The asynchronous algorithms proposed in our first works used a

2

centralized method to detect the global convergence, which was not best suited
to grid contexts. In [1], both a theoretical and a practical version of a decen-
tralized global convergence detection algorithm were proposed. The validity of
the theoretical version designed for totally asynchronous algorithms was proven,
and a practical version working on partially asynchronous algorithms, i.e. asyn-
chronous algorithms with bounded delays, was deduced. However, that last algo-
rithm presented the drawback of requiring additional information on the parallel
system which is not easy, if not to say impossible, to collect in practice.

In this paper, we present another practical version of the decentralized al-
gorithm for detecting global convergence that no longer requires any additional
information on the system but only the local states of the nodes.

As in the previous version, messages for the computation and messages for the
convergence detection are distinguished. This provides some degree of loss toler-
ance on the computational messages. The messages involved in the convergence
detection are quite small and their limited number avoids any representative net-
work overload which could penalize the progress of the iterative process. Finally,
the delay of detection after the actual convergence stays reduced compared to
the global process.

The following section briefly presents the previous studies related to conver-
gence detection algorithms. Then, in order to be self-contained, the principles of
asynchronous iterative algorithms are given in Section 3. Section 4 describes the
main problems related to the convergence detection and the weaknesses of our
previous algorithm. The new practical version of the decentralized algorithm for
convergence detection is described in Section 5 and evaluated in Section 6.

2 Related works

Most of the previous studies on the convergence detection problem in paral-
lel iterative algorithms (see for example [4]) are based on centralized and/or
synchronous algorithms (typically a global reduction), which are neither suited
to large scale and/or distant distributed computations nor to the decentralized
nature of asynchronous iterative algorithms.

Concerning the specific studies related to asynchronous iterative algorithms,
distributed convergence detection was firstly introduced in [5] under particular
assumptions, such as the particular behavior of the nodes which have reached
local convergence. Moreover, Savari and Bertsekas proposed another distributed
version in [6] under rather restrictive hypotheses such as FIFO communications
and with modifications of the iterative process itself in order to make it termi-
nate in finite time. Other authors have studied implementations of asynchronous
algorithms but always with centralized convergence detection [7].

As in [1], the algorithm presented in this paper is based on a leader election
algorithm to manage the termination of asynchronous iterative algorithms in a
decentralized way. However, contrary to the practical version presented in that
previous paper, the presented practical algorithm does not require any other
information apart from the local convergence states of the nodes.

3

For more information on the distinction between the theoretical and the
practical versions of our convergence detection algorithm, and on the leader
election protocol, the reader should refer to [1] and the references therein.

3 Asynchronous iterative algorithms

Iterative algorithms have the structure xk+1 = g(xk), k = 0, 1, ..., with x0 given,
where each xk is an n - dimensional vector, and g is some function from Rn into
itself. A fixed point x∗ of g is characterized by the property g(x∗) = x∗. The
goal of the iterative algorithm is to reach such a fixed point starting from any
initial vector x0.

The parallel version of the iterative algorithm presented above is obtained by
the classical block-decomposition of x into m block-components
Xi, i ∈ {1, ...,m}, and g into a compatible way of m block-components Gi,
to reformulate the iterative process as: Xk+1

i = Gi

(
Xk

1 , ..., Xk
m

)
, i = 1, ...,m,

with X0 given.

3.1 AIAC algorithms

AIAC algorithms, which have been introduced in [8], are a variant of the totally
asynchronous algorithms. The reader should refer to [9] and [10] to get the two
major formulations of the theoretical model of totally asynchronous iterative al-
gorithms. In this paper, we only remind the reader that those algorithms mainly
induce the notion of delays between the components of the system. In totally
asynchronous iterations, some classical conditions are assumed over those delays
in order to ensure that the process actually evolves (see again [9]).

The acronym AIAC stands for Asynchronous Iterations - Asynchronous Com-
munications. It means that all the processors perform their iterations without
taking care of the progress of the other processors. They do not wait for pre-
determined data to become available from other processors but they keep on
computing, trying to solve the given problem with whatever data happen to be
available at that time. Those algorithms give very good results in the global
context of grid computing as has been shown in [3]. Nevertheless, a centralized
algorithm for detecting global convergence is not well suited to the context of
grid computing in which all the nodes may not be directly accessible to each
other for security reasons. Moreover, another reason for designing a decentral-
ized convergence detection algorithm is that the most general class of parallel
iterative algorithms corresponds to the asynchronous iterative algorithms, which
are not centralized by nature.

4 Practical difficulties with our previous algorithm

The ideal way to detect the global convergence of an asynchronous iterative
algorithm is to monitor the evolution of the global state of the system between
two consecutive periods. In the field of dynamic systems, a period corresponds
to a minimal span of time during which all the components of the system are

4

updated at least once with data at least as recent as the beginning of that
period. The evolution of the system is measured by the residual which is the
distance between the two global states according to an adequately chosen norm.
Hence, for any converging process, it has been shown that the residual using
the adequate norm monotonously decreases from a period to the following one.
So, the convergence detection should only consist in verifying that this residual
becomes small enough (under a convergence threshold).

However, it is quite difficult and penalizing in practice to identify periods
at the global level of dynamical systems implemented on distributed systems.
So, the method commonly used to detect the global convergence is based on
a local notion of convergence. That local convergence is detected according to
the local residual between two consecutive iterates of the local block-component
according to the chosen norm. The local convergence is assumed when that
residual becomes smaller than a given threshold. And the global convergence
detection consists in verifying that all the nodes are in local convergence and
that those local states have been reached with relevant updates of the respective
dependent data. The major problem with this is that the local convergence is
quite an artificial notion which is not directly linked to the global convergence.
In particular, as the local residual is not computed on the global state-vector,
it is subject to slightly less restrictive constraints and it may not monotonously
decrease. So, additional mechanisms are required to avoid false detections.

In [1], each processor counts a given number of consecutive iterations for
which its residual is under the convergence threshold and, only then, it passes
in the local convergence state. Although in theory that number of consecutive
iterations, which ensures the local convergence of the node, exists and is finite, it
is quite difficult to evaluate in practice. Using an approximate value is possible
and greatly reduces the potential false detections. However, it requires a global
detection mechanism that takes into account possible divergences of the nodes.

In addition to that problem, which is common to every kind of iterative
processes, the communication delays induced by the asynchronism change the
behavior of the system and make it even more difficult to perform a correct
convergence detection. Typically, a processor may be under the threshold thanks
to old versions of data coming from some neighbor processors, which is not
representative of its potential stabilization.

In Figure 1 we illustrate such a false detection. We assume that a processor i
has dependencies with processors i− 1 and i + 1. We also assume that there is a
mechanism that detects the global convergence after a given span of time during
which all processors are in the local convergence state. The convergence detection
problem lies in the fact that processor 1 does not receive any message from its
neighbor (processor 2) during several consecutive iterations. Consequently, its
state reaches the local convergence that consequently enables the detection of
a global convergence. Nevertheless, processor 1 only uses old messages from
processor 2 to enter the local convergence state.

In [1], the global convergence detection mechanism is based on the leader
election algorithm in order to obtain a decentralized algorithm. In this way, the

5

P4

P2

P1

P3

time

iterations under the threshold

SLCV

data dependency message

SLCV: supposed local convergence

SLCV

SLCV

SLCV

False convergence detection

Fig. 1. Example of false convergence detection due to the fact that processor 1 does
not receive messages from processor 2 during several consecutive iterations.

local convergences of the nodes are propagated through a spanning tree of the
system until they meet on a single node. Moreover, some canceling messages
are used either to stop the propagation or to inform the elected node that one
node is no longer in local convergence (due to the problem of delays exhibited
above). This implies a waiting period after the global convergence detection
on the elected node, in order to wait for any potential cancellation message
generated in the meantime.

Although that overall detection algorithm works quite well in practice, a
criticism can be formulated against it: two constants that depend on the system
must be evaluated. The first one is the number of successive iterations under
the threshold to assume the local convergence. It indirectly depends on the
maximal delays between a processor and its dependencies, and consequently, on
the computations performed in the iterative process. The second constant is the
maximal traversal time of the system by a cancellation message. It obviously
depends on the network configuration of the system. Such information is not
easily evaluated accurately in practice.

To bypass those problems, we have designed a new decentralized detection
algorithm that does not require any additional information about the system.

5 New practical version of the decentralized algorithm
for convergence detection

As seen above, our major problem in the context of asynchronous algorithms
is to get a correct image of the global state of the system. Indeed, the possible
variations of the local states of the nodes require a robust snapshot of the global
state of the system to ensure that all the nodes have verified the local convergence
conditions at the same time.

The practical version presented here is somewhat different from the one pro-
posed in [1]. Our new version does not require any specific information on the
parallel system used. Our approach is closer to the theoretical version presented
in our previous work in the sense that it lets the global detection happen even

6

if the local evolutions on the nodes change during the election process. Then,
after the global detection, an additional verification phase takes place to ensure
its validity. It is important to notice here that the iterative process is not in-
terrupted either during the global convergence detection process or during the
verification phase. There are two reasons for that; the most obvious one is not
to slow down the iterative process itself, and the second one is that its evolution
during the global detection and verification processes represents a mandatory
piece of information.

The first of the two mechanisms mentioned above concerns the local conver-
gence detection on each node and consists in taking into account what we call
pseudo-periods in place of a given number (arbitrary in practice) of successive
iterations. The pseudo-period is quite a local version of the periods. For each
node, a pseudo-period corresponds to the minimal span of time during which
the node receives at least one newer data message from all its dependencies and
updates itself. In this way, the local evolution of the node is fully representative
between two consecutive pseudo-periods. Thus, the local convergence is assumed
only after at least one (but possibly several successive ones) pseudo-period is per-
formed while the residual is under the threshold. This has a far better regulating
effect on the local convergence detections in practice and, if it cannot avoid all
the false local detections, it strongly limits them.

The second mechanism takes place at the global level of the system, when
the global convergence is detected. As in our previous algorithm, the global
detection is performed by a leader-election-like algorithm, according to the local
convergences of the nodes. However, instead of using cancellation messages when
the state of a node changes, as in our previous version, our new process lets
the global detection occur. Nonetheless, a new step is added after that global
detection which consists in verifying that all the nodes were actually in local
convergence at the time of the detection and that their states were representative
of their evolutions. That additional step is decomposed into four steps:

1) Diffusion of a verification message from the elected node through the span-
ning tree to initiate the verification phase;

2) Elaboration on each node of its response to the verification request;
3) Gathering of the responses of all the nodes toward the elected node through

the spanning tree to get the verdict. The actual global convergence detection
occurs at this step under the form of a detection confirmation;

4) Diffusion of a verdict message from the elected node through the spanning
tree to finish the verification phase.

Some of those steps partially overlap in time. For example, when a node receives
the verification message from one of its neighbors (the asking one), it forwards
it to all its other neighbors (the replying ones) in the spanning tree (step 1)
and, while waiting for their responses (step 3), it elaborates its own one (step 2)
according to its local state. As soon as a negative response is detected on the
node (either from itself or from a replying neighbor), the final response to the
asking node can be sent. Otherwise, the node needs to wait for the gathering of
all the responses from its replying neighbors before sending a positive response.

7

Finally, when the elected node has its own response and those of its neighbors,
it deduces the final verdict, which corresponds to the actual global convergence
detection when positive, and sends it to all of its neighbors (step 4). Then,
each node receiving a verdict message forwards it to its other neighbors in the
spanning tree (step 4). At the end of the verification phase, the state of each
node is set up according to that verdict.

As mentioned above, the response of each node depends on its state but also
on its evolution during the verification phase. Indeed, in order to ensure that
all the nodes are in local convergence at the same time (which corresponds to
the criterion used in the sequential and synchronous versions), the response of a
node is positive if and only if its residual stays under the threshold during the
span of time between its last sending of a local convergence message (PartialCV)
and the sending of its response to the verification request.

Moreover, to be sure that the response of each node is representative of its
actual state and evolution, the waiting of a pseudo-period is inserted before
the sending of the response. Hence, each node sends its response (depending on
its residual evolution) only after having performed at least one iteration with
versions of all its data dependencies at least as recent as the global detection
time. In this way, the response is fully representative of the actual evolution and
state of that node until that time. In fact, those pseudo-periods form, at the
global level of the system, a period which spreads from the global convergence
detection to the end of the pseudo-period on the latest node.

In order to force the nodes to use specific data versions during the verification
phase, a tagging system is included in the data messages in order to differentiate
them between the successive phases of the iterative process (normal processing
and verification phase). Moreover, since there may be several verification phases
during the whole iterative process, due to possible cancellations (negative ver-
dicts) of global detections, that tagging is also useful to distinguish the data
messages related to different verification phases.

Finally, such a tagging system is also useful in the messages related to the
global detection and verification processes in order to enhance the reactivity of
the verification phase. Indeed, as mentioned above, each node is allowed to send
a negative response as soon as it is able to deduce it, without waiting for all
the responses of its replying neighbors. It is also the case for the elected node
that will send a negative verdict without waiting for all the responses of its
neighbors. However, those unused responses must be correctly managed when
they finally arrive on a node and, in particular, they must not be confused
with other responses related to a more recent verification phase, as they may
consequently overlap.

In order to respond to all those message distinction constraints, each phase
of the iterative process (normal computing and verification of the global con-
vergence) is distinguished in time by an integer tag incremented at each phase
transition, as shown in Figure 2 with four nodes linearly organized for a span of
time beginning with the tag equal to k.

8

time

P4

P2

P1

P3

verification msg verdict msg

GC

detection

GC

verdict

Tag=k+1Tag=k Tag=k+2

Fig. 2. Distinction of the successive phases during the iterative process.

The whole mechanism of global detection and verification is detailed in Fig-
ure 3, in the case of a global convergence detected and confirmed on node P2.
First of all, the processors reach local convergence and inform their adequate
neighbor according to the leader election scheme, with partialCV messages.
Then, the global convergence is detected on node P2 which initiates the veri-
fication phase by sending verification messages which are propagated through
the system. As soon as the other nodes receive that message, they send their
current version of local data to their neighbors with tagged data messages. And
as soon as a node has received all its tagged data dependencies (not older than
the last global detection) and has performed one iteration with them (dark grey
blocks), it checks if its residual is still under the threshold since its last local
convergence detection (light grey blocks) and sends the adequate response. As
node P3 is not elected and is not at an extremity of the system, it aggregates its
response with the one of node P4 and sends to its demanding node (P2) the re-
sponse corresponding to that sub-tree of the system relatively to the current root
(P2). The elected node P2 meanwhile performs its own verification and as soon
as it has finished it and has received all the other responses, it emits the verdict.
The actual convergence detection takes place at this step when the verdict is
positive. Finally, the verdict is sent and propagated through the system.

Ensured instant of

local CV on every node

P4

P2

P1

time

P3

verification msg

tagged data msg

response msg

iteration with

tagged (recent)

data dependencies

the threshold

iterations under

detection

GC

PartialCV msg

confirmation

GC

LC detection

Fig. 3. Global convergence detection mechanism.

9

As can be seen, in case of a positive verdict, the whole process ensures that
the residuals of all the nodes are under the threshold at least at the time at
which the global convergence is detected on the elected node. Concerning the
correctness of the detection, we remind the reader that the ideal convergence
criterion consists in verifying that the residual between two consecutive periods
is small enough (under a convergence threshold). However, as mentioned before,
it is quite difficult and penalizing to identify all the periods at the global level
during the process. But it is far simpler to explicitly trigger the execution of
one period at a given time. This is what is done in Algorithm 9 in which the
convergence criterion is composed of:
– A first pseudo-period with residual under the threshold;
– An arbitrary number (possibly 0) of consecutive pseudo-periods with residual
under the threshold (the global convergence detection happens in that part);

– A last pseudo-period performed with data no older than the last global con-
vergence detection and with residual under the threshold (the global conver-
gence confirmation takes place at the end of that part).

The first two elements identify a global context of residual under the thresh-
old. The last two elements contain an actual period which spreads between the
global convergence detection and the global convergence confirmation. That pe-
riod permits to ensure the validity of the detected convergence as it provides a
similar stopping criterion as in the sequential and synchronous cases.

As the behavior of the nodes is not the same according to the different steps
in the detection process and verification phase, it is also necessary to introduce
four main states:
– NORMAL: the basic state during the iterative process when the node is
not in the global convergence detection mechanism.

– WAIT4V: when the node is waiting for the local start of the verification
phase after its sending of a PartialCV message.

– VERIF: when the node is performing the verification phase, either after the
receipt of the corresponding message or by election.

– FINISHED: when the global convergence has been confirmed.
The transitions between those states are depicted in Figure 4. Other states,
present at inner levels (see Table 1), are not depicted here for clarity sake.

PartialCV msg

 WAIT4VNORMAL

VERIF FINISHED

negative verdict

electionnegative verdict

verdict
positive

election or receipt
of a verification msg

sending of a

Fig. 4. State transitions in the global convergence detection process.

The final scheme obtained is given in Algorithm 9. Due to length constraints
on that paper, only the list of the additional variables, according to the previous

10

algorithm, is given in Table 1. The reader should refer to [1] for a description of
the other variables.

MyRank unique identifier of the current node
State current state of the node (NORMAL, WAIT4V, VERIF or FINISHED)
PhaseTag identifier of the current phase on the node
PseudoPerBeg boolean indicating that a pseudo-period has begun
PseudoPerEnd boolean indicating the end of a pseudo-period
NbDep number of computational dependencies of the node
NewerDep[NbDep] boolean array indicating for each data dependency if a newer version has

been received since the last pseudo-period
LastIter[NbDep] integer array indicating for each dependency node the iteration of produc-

tion of the last data received from that node
PartialCVSent boolean indicating that a PartialCV message has been sent
ElectedNode boolean indicating that the node is the elected one
Resps[NbNeig] integer array containing the responses of the neighbors of the current node

in the spanning tree. The values are either −1 (negative), 0 (no response
yet) or 1 (positive)

ResponseSent boolean indicating that the response has been sent
Table 1. Description of the additional variables used in Algorithm 9.

The different types of messages are listed below together with their contents:

– data message:
• identifier of the source node
• iteration number on the source node at the sending time
• phase tag of the source node at the sending time
• data

– PartialCV message and verification message:
• identifier of the source node
• phase tag of the source node at the sending time

– response message:
• identifier of the source node
• phase tag of the source node at the sending time
• response of the source node

– verdict message:
• identifier of the source node
• new phase tag to use on the receiver
• verdict

The algorithm also uses additional functions which are briefly described below:

– InitializeState(): (re-)initializes the variables related to the convergence
detection process and sets the node in NORMAL state.

– ReinitializePPer(): (re-)initializes the variables related to the pseudo-
period detection.

– InitializeVerif(): initializes a new verification phase.

– RecvDataDependency():manages the receipts of data dependencies. That
function takes into account any newer data when the receiver is not in ver-
ification phase. Otherwise, it filters the data produced after the last global
convergence detection, that is to say, with the same phase tag as the receiver.

11

– RecvPartialCV(): manages the receipts of PartialCV messages. Also up-
dates the local state of the node when an election is possible. However, a
mutual exclusion mechanism is used to ensure that only one node is elected.

– RecvVerification(): manages the receipts of verification messages. The
message is taken into account only when its phase tag corresponds to the
following phase on the receiver.

– RecvResponse(): manages the receipts of response messages. The message
is taken into account only when the phase tag in the message corresponds
to the current phase tag on the receiver.

– RecvVerdict():manages the receipt of the verdict on the non-elected nodes.
The verdict is always taken into account and propagated through the span-
ning tree to set all the nodes either in FINISHED state or back in NORMAL
state with a new phase tag. As no other global convergence detection can
happen before the end of the propagation of the verdict, there cannot be any
confusion with a similar message coming from a previous verification phase.

– ChooseLeader(integer, integer): chooses the elected node when there
are two possible candidates whose identifiers are given in parameters. That
function is not detailed in the following since it directly depends on the ref-
eree policy used. The choice of that policy is quite free as its only constraint
is to make a choice between the two proposed nodes.

Algorithm 1 Function InitializeState()
NbNotRecvd ← NbNeig
for Ind from 0 to NbNeig−1 do

RecvdPCV[Ind] ← false
end for
ElectedNode ← false
LocalCV ← false
PartialCVSent ← false
ReinitializePPer()
State ← NORMAL

Algorithm 3 Function InitializeVerif()
ReinitializePPer()
PhaseTag ← PhaseTag + 1
for Ind from 0 to NbNeig−1 do

Resps[Ind] ← 0
end for
ResponseSent ← false

Algorithm 5 Function RecvDataDependency()
Extract SrcNode, SrcIter and SrcTag from the
message
SrcIndDep ← index of SrcNode in the list of
dependencies of the receiver (−1 if 6∈)
if SrcIndDep ≥ 0 then

if LastIter[SrcIndDep] < SrcIter and
(State 6=VERIF or SrcTag=PhaseTag) then
Put the data from message at their place
in the local data array used for the com-
putations, according to SrcIndDep
LastIter[SrcIndDep] ← SrcIter
NewerDep[SrcIndDep] ← true

end if
end if

Algorithm 2 Function RecvVerification()
Extract SrcNode and SrcTag from the message
if SrcTag = PhaseTag + 1 then

InitializeVerif()
State ← VERIF
Broadcast the verification message to all its
neighbors but SrcNode

end if

Algorithm 4 Function ReinitializePPer()
PseudoPerBeg ← false
PseudoPerEnd ← false
for Ind from 0 to NbDep−1 do

NewerDep[Ind] ← false
end for

Algorithm 6 Function RecvPartialCV()
Extract SrcNode and SrcTag from the message
SrcIndNeig ← index of SrcNode in the list of
neighbors of the receiver
if SrcIndNeig ≥ 0 and SrcTag = PhaseTag
then

RecvdPCV[SrcIndNeig] ← true
NbNotRecvd ← NbNotRecvd−1
if NbNotRecvd=0 and PartialCVSent=true

and ChooseLeader(MyRank, SrcNode)
= MyRank then

ElectedNode ← true
InitializeVerif()
Broadcast a verification message to all its
neighbors
State ← VERIF

end if
end if

12

Algorithm 7 Function RecvResponse()
Extract SrcNode, SrcTag and SrcResp from
the message
SrcIndNeig ← index of SrcNode in the list of
neighbors of the receiver
if SrcIndNeig ≥ 0

and PhaseTag = SrcTag then
Resps[SrcIndNeig] ← SrcResp

end if

Algorithm 8 Function RecvVerdict()
Extract SrcNode, SrcTag and SrcVerdict from
the message
if SrcVerdict is positive then

State ← FINISHED
else

InitializeState()
PhaseTag ← SrcTag

end if
Broadcast the verdict message to all its neigh-
bors but SrcNode

Algorithm 9 Decentralized algorithm for the global convergence detection
for all Pi, i ∈ {1, . . . , N} do

InitializeState()
UnderTh ← false
PhaseTag ← 0
repeat

. . . iterative process, data sendings and evaluation of UnderTh . . .
if State = NORMAL then

if UnderTh = false then
ReinitializePPer()

else
if PseudoPerBeg = false then

PseudoPerBeg ← true
else

if PseudoPerEnd = true then
LocalCV ← true
if NbNotRecvd = 0 then

ElectedNode ← true
InitializeVerif()
Broadcast a verification message to all its neighbors
State ← VERIF

else
if NbNotRecvd = 1 then

Send a PartialCV message to the neighbor corresponding to the unique cell of
RecvdPCV[] being false
PartialCVSent ← true
State ← WAIT4V

end if
end if

else
if all the cells of NewerDep[] are true then

PseudoPerEnd ← true
end if

. . .

end if
else if State = WAIT4V then

if UnderTh = false then
LocalCV ← false

end if
else if State = VERIF then

if ElectedNode = true then
if UnderTh = false or LocalCV = false

or at least one cell of Resps[] is negative then
PhaseTag ← PhaseTag + 1
Broadcast a negative verdict message to all its neighbors
InitializeState()

else
if PseudoPerEnd = true then

if there are no more 0 in Resps[] then
if all the cells of Resps[] are positive then
Broadcast a positive verdict message to all its neighbors
State ← FINISHED

else
PhaseTag ← PhaseTag + 1
Broadcast a negative verdict message to all its neighbors
InitializeState()

13

end if
end if

else
if all the cells of NewerDep[] are true then

PseudoPerEnd ← true
end if

end if
end if

else
if ResponseSent = false then

if UnderTh = false or LocalCV = false
or at least one cell of Resps[] is negative then
Send a negative response to the asking neighbor
ResponseSent ← true

else
if PseudoPerEnd = true then

if there remains only one 0 in Resps[] then
if the other cells of Resps[] are all positive then

Send a positive response to the asking neighbor
else

Send a negative response to the asking neighbor
end if
ResponseSent ← true

end if
else

if all the cells of NewerDep[] are true then
PseudoPerEnd ← true

end if
. . .

end if
until State = FINISHED

end for

6 Experiments

In order to evaluate the efficiency of our algorithm, we have compared it with
our previous convergence detection algorithm on a typical asynchronous iterative
algorithm based on the inverse power method. At each iteration of the algorithm,
we solve a linear system using the multisplitting method [3]. A cluster of 16
machines (Pentium IV 3Ghz) with a 1Gbps network has been used. We have
chosen the problem D of the CG problem, reported in [11], in which the matrix
has a degree equals to 255,000 and 200 iterations are performed. That problem
is very well suited to our comparison as it requires 200 convergence detections.
We have implemented this algorithm in Java with the Jace environment [12].
In Table 2, we report the average times of ten executions of that problem with
our new convergence detection algorithm and with our previous version. In the
"without load" column, the machines run only our program without any other
load. As can be seen, the execution times are very similar although slightly
in favor of our new version. Also, in order to evaluate the robustness of our
new algorithm, we have performed another series of experiments in the same
conditions but we have slowed down some machines (2, 4 and 8) by adding
an additional load on them. In order to obtain a correct convergence detection
with our previous algorithm in such a context, some of its parameters, such
as the number of successive iterations under the threshold and the maximal
traversal time of the system, had to be increased. As can be seen in the last
three columns of Table 2, such tunings imply larger detection latencies and thus

14

worse execution times than our new version, which does not require any context-
dependent tuning.

Version Exec. times (s) Exec. times (s) Exec. times (s) Exec. times (s)
without load with 2 loads with 4 loads with 8 loads

Previous algorithm 661 740 772 866
New algorithm 655 712 732 809

Table 2. Execution times with our two convergence detection algorithms and with or
without external load.

7 Conclusion
A new practical version of our decentralized algorithm for detecting the global
convergence in asynchronous iterative algorithms has been proposed. That new
version presents the advantage of not requiring any information on the parallel
system employed. This strongly broadens the contexts of use of AIAC algorithms
since they are then surely and efficiently usable with large scale parallel systems,
such as grids, in which the communication delays are subject to sharp variations
and their upper bound is difficult to evaluate.

References
1. Bahi, J., Contassot-Vivier, S., Couturier, R., Vernier, F.: A decentralized conver-

gence detection algorithm for asynchronous parallel iterative algorithms. IEEE
Transactions on Parallel and Distributed Systems 16 (2005) 4–13

2. Y.Saad: Iterative methods for sparse linear systems, second edition. SIAM (2003)
3. Bahi, J.M., Contassot-Vivier, S., Couturier, R.: Parallel Iterative Algorithms: from

sequential to grid computing. Numerical Analysis & Scientific Computing Series.
Chapman & Hall/CRC (2007)

4. Maillard, N., Daoudi, E.M., Manneback, P., Roch, J.L.: Contrôle amorti des syn-
chronisations pour le test d’arrêt des méthodes itératives. In: Renpar 14, Hamamet,
Tunisie (2002) 177–182

5. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical
Methods. Prentice Hall, Engelwood Cliffs (1989)

6. Savari, S.A., Bertsekas, D.P.: Finite termination of asynchronous iterative algo-
rithms. Parallel Computing 22 (1996) 39–56

7. Charão, A.S.: Multiprogrammation parallèle générique des méthodes de décompo-
sition de domaine. PhD thesis, INPG (2001)

8. Bahi, J., Contassot-Vivier, S., Couturier, R.: Dynamic load balancing and effi-
cient load estimators for asynchronous iterative algorithms. IEEE Transactions on
Parallel and Distributed Systems 16 (2005) 289–299

9. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical
Methods. Prentice Hall, Englewood Cliffs NJ (1989)

10. Tarazi, M.E.: Some convergence results for asynchronous algorithms. Numer.
Math. 39 (1982) 325–340

11. The NAS parallel benchmark (1996) : science.nas.nasa.gov/Software/NPB/.
12. Bahi, J., Domas, S., Mazouzi, K.: Jace : a java environment for distributed asyn-

chronous iterative computations. In: 12th Euromicro Conference on Parallel, Dis-
tributed and Network based Processing, PDP’04, Coruna, Spain, IEEE Computer
Society Press (2004) 350–357

