
A Parallel Implementation of the Trace
Minimization Eigensolver

Eloy Romero? and Jose E. Roman

Instituto ITACA, Universidad Politécnica de Valencia,
Camino de Vera, s/n, 46022 Valencia, Spain.

Tel. +34-963877356, Fax +34-963877359
{eromero,jroman}@itaca.upv.es

Abstract. In this paper we describe a parallel implementation of the
trace minimization method for symmetric generalized eigenvalue prob-
lems proposed by Sameh and Wisniewski. The implementation includes
several techniques proposed in a later article of Sameh, such as multi-
shifting, preconditioning and adaptive inner solver termination, which
accelerate the method and make it much more robust. A Davidson-type
variant of the algorithm has been also considered. The different methods
are analyzed in terms of sequential and parallel efficiency.

Topics. Numerical algorithms for CS&E, parallel and distributed com-
puting.

1 Introduction

Let A and B be large, sparse, symmetric (or Hermitian) matrices of order n. We
are concerned with the partial solution of the generalized eigenvalue problem
defined by these matrices, that is, the computation of a few pairs (λ, x) that
satisfy

Ax = λBx, (1)

where λ is a real scalar called the eigenvalue and x is an n-vector called the
eigenvector. This problem arises in many scientific and engineering areas such as
structural dynamics, electrical networks, quantum chemistry, and control theory.
In this work, we focus on the particular case that the wanted part of the spectrum
corresponds to the smallest eigenvalues. Also, we are mainly concerned with
matrix pairs where B is positive (semi-)definite, although this condition can be
relaxed under some circumstances.

Many different methods have been proposed for solving the above prob-
lem, including subspace iteration, Krylov projection methods such as Lanc-
zos or Krylov-Schur, and Davidson-type methods such as Jacobi-Davidson. De-
tails of these methods can be found in [1–4]. Subspace iteration and Krylov
methods perform best when computing largest eigenvalues, but usually fail to
compute the smallest or interior eigenvalues. In that case, it can be useful to
? Candidate to the Best Student Paper Award.

combine the method with a spectral transformation technique, that is, to solve
(A − σB)−1Bx = θx instead of Eq. 1. The problem with this approach is its
high computational cost, since linear systems are to be solved at each iteration
of the eigensolver, and they have to be solved very accurately. Preconditioned
eigensolvers such as Jacobi-Davidson try to reduce the cost, by solving systems
only approximately.

This work presents an implementation of the trace minimization eigensolver
with several optimizations, including dynamic multishifting, approximate solu-
tion of the inner system and preconditioning. This method, described in section
2, can be seen as an improvement on the subspace iteration method that is able
to compute smallest eigenvalues naturally. It can also be derived as a Davidson-
type algorithm.

The implementation is being integrated as a solver in SLEPc, the Scalable
Library for Eigenvalue Problem Computations. SLEPc is a software library for
the solution of large, sparse eigenvalue problems on parallel computers, devel-
oped by the authors and other colleagues. An overview is provided in section 3,
together with implementation details concerning the new solver, including the
optimizations (preconditioning, multishifting and adaptive inner solver termina-
tion).

The paper is completed with section 4 showing the parallel performance of
the implementations and the impact of the optimizations, and section 5 with
some conclusions.

2 Trace Minimization Eigensolver

The trace minimization method for solving symmetric generalized eigenvalue
problems was proposed by Sameh and Wisniewski [5], and developed further
in [6]. The main idea of the method is to improve the update step of subspace
iteration for generalized eigensystems as explained below.

Let Eq. 1 be the order n generalized eigenproblem to solve, and assume
that Xk is a B-orthogonal basis of an approximate eigenspace associated to the
smallest p eigenvalues, being 1 ≤ p � n. In subspace iteration, the sequence of
computed approximations Xk is generated by the recurrence

Xk+1 = A−1BXk, k ≥ 0 , (2)

where the initial solution X0 is an n × p full rank matrix. During the process,
B-orthogonality of the columns of Xk is explicitly enforced. It can be shown that
Xk eventually spans a subspace that contains the required eigenvectors [4].

This procedure requires the solution of p linear systems of equations with co-
efficient matrix A at each step k (one system per each column of Xk). Moreover,
this has to be done very accurately (otherwise the global convergence is compro-
mised), which is significantly expensive. Trace minimization tries to overcome
that difficulty by exploiting a property stated in the following theorem.

Theorem 1 (Sameh and Wisniewski [5]). Let A and B be n× n real sym-
metric matrices, with positive definite B, and let X be the set of all n×p matrices
X for which XT BX = Ip, 1 ≤ p ≤ n. Then

min
X∈X

tr(XT AX) =
p∑

i=1

λi , (3)

where λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of Ax = λBx. The equality holds
if and only if the columns of the matrix X, which achieves the minimum, span
the eigenspace corresponding to the smallest p eigenvalues.

The trace of a square matrix, tr(·), is defined as the sum of its diagonal
elements, and it can be shown to be equal to the sum of its eigenvalues [4].

The trace minimization algorithm updates the current approximation Xk by
subtracting a correction ∆k that it obtained by solving the following constrained
minimization problem,

minimize tr
[
(Xk −∆k)T A(Xk −∆k)

]
,

subject to XT
k B∆k = 0 .

(4)

As shown in [5], Xk+1 satisfies

tr(XT
k+1AXk+1) ≤ tr(XT

k AXk) , (5)

if Xk+1 is a B-orthonormal basis of the subspace spanned by Xk −∆k.
By the method of Lagrange multipliers, the solution of the minimization

problem, Eq. 4, can be computed by solving a set of saddle-point systems of
linear equations, (

A BXk

XT
k B 0

) (
∆k

Lk

)
=

(
AXk

0

)
, (6)

being 2Lk the Lagrange multipliers.
Nevertheless, we are interested only in ∆k, so Eq. 6 can be reduce further,

resulting in a set of constrained positive semi-definite systems,

(PAP)∆k = PAXk, XT
k B∆k = 0 , (7)

where P is the projector onto the orthogonal complement of BXk,

P = I −BXk(XT
k B2Xk)−1XT

k B . (8)

These systems can be solved by means of an iterative linear solver such as con-
jugate gradient (CG) or generalized minimal residual (GMRES) method, with a
zero vector as initial solution so that the constraint is automatically satisfied.

It may seem that the projector of Eq. 8 will introduce an excessive overhead
in the computation. However, in practice the overhead is not so high since p is
normally small and the projector is applied implicitly, i.e., without building ma-
trix P explicitly. Furthermore, PAP is better conditioned than A, thus reducing
the required number of linear solver iterations.

Algorithm 1 summarizes the basic trace minimization method.

Algorithm 1 (Trace minimization)

Input: matrices A and B
number of desired eigenvalues p
dimension of subspace s ≥ p

Output: resulting eigenpairs

Choose an n× s full rank matrix V1 such that V T
1 BV1 = Is

For k = 1, 2, . . .
1. Compute Wk ← AVk and Hk ← V T

k Wk.
2. Compute all eigenpairs of Hk, (Θk, Yk).
3. Compute the Ritz vectors, Xk ← VkYk.
4. Compute the residual vectors, Rk ←WkYk −BXkΘk.
5. Test for convergence.
6. Solve the inner system of Eq. 7 approximately.
7. Vk+1 ← B-orthonormalization of Xk −∆k.

End for

In step 2 of Algorithm 1, the eigenvalues have to be arranged in ascending
order and the eigenvectors need to be orthonormalized. Note that the search
subspace has dimension s, which can be for instance twice the number of wanted
eigenpairs. At the end of the computation, the first p diagonal elements of Θk

contain the computed Ritz values, and the first p columns of Xk contain the
corresponding Ritz vectors.

It can be shown that the columns of Xk in Algorithm 1 converge to the eigen-
vectors with an asymptotic rate bounded by λi/λs+1 [6, Th. 2.2]. Convergence
can also be proved under the assumption that the inner systems in Eq. 7 are
solved inexactly [6, §3.1].

Davidson-type version The main drawback of Algorithm 1, inherited from
subspace iteration, is that the dimension of the subspace of approximants is
constant throughout the computation. In [6], Sameh and Tong propose a variant
with expanding subspaces, in which the number of columns of Vk grows, as well
as the dimension of the projected matrix, Hk. This variant is related to the
Generalized Davidson method, because it uses the preconditioned residuals for
expanding the search subspace. These residuals will replace the right hand sides
of the inner systems, Eq. 7. Integrating these two ideas with Algorithm 1 results
in the Davidson-type trace minimization method, Algorithm 2.

Algorithm 2 (Davidson-type trace minimization)

Input: matrices A and B
number of desired eigenvalues p
block size s ≥ p
maximum subspace dimension m ≥ s

Output: resulting eigenpairs

Choose an n× s full rank matrix V1 such that V T
1 BV1 = Is

For k = 1, 2, . . .
1. Compute Wk ← AVk and Hk ← V T

k Wk.
2. Compute s eigenpairs of Hk, (Θk, Yk).
3. Compute the Ritz vectors Xk ← VkYk.
4. Compute the residuals Rk ←WkYk −BXkΘk.
5. Test for convergence.
6. Solve the systems [P (A− σk,iB)P]dk,i = Prk,i s.t. XT

k Bdk,i = 0.
7. If dim(Vk) ≤ m− s

then Vk+1 ← B-orthonormalization of [Vk,∆k],
else Vk+1 ← B-orthonormalization of [Xk,∆k].

End for

In Algorithm 2, the number of columns of Vk is s initially, but grows as the
iteration proceeds. The order of Hk grows accordingly, but only s eigenpairs are
computed in step 2, and therefore the number of columns of Xk is constant.
The other main difference with respect to Algorithm 1 is step 6, in which the
system to be solved is different. Vectors rk,i and dk,i denote the ith column of Rk

and ∆k, respectively. The role of σk,i and other considerations will be discussed
in subsection 3.2. Finally, step 7 expands the working subspace, except if the
maximum dimension has been reached, in which case Vk+1 is set to have 2s
columns only.

Apart from a much better behaviour in terms of convergence of Algorithm
2 with respect to Algorithm 1, there is another significant benefit, namely the
reduction of the cost of enforcement of the constraint. The orthogonality re-
quirement XT

k Bdk,i = 0 is now an implicit deflation of the s Ritz vectors, and s
can be much smaller than in the original algorithm. In fact, our implementation
defaults to s = p in Algorithm 2.

3 Implementation and Parallelization

The implementation has been developed in the context of the SLEPc library,
being our intent to include the eigensolver in forthcoming releases.

3.1 Overview of SLEPc

SLEPc, the Scalable Library for Eigenvalue Problem Computations [7]1, is a
software library for the solution of large, sparse eigenvalue and singular value
problems on parallel computers. It can be used for the solution of problems
formulated in either standard or generalized form, both Hermitian and non-
Hermitian, with either real or complex arithmetic.

1 http://www.grycap.upv.es/slepc/

SLEPc provides a collection of eigensolvers including Krylov-Schur, Arnoldi,
Lanczos, Subspace Iteration and Power/RQI. It also provides built-in support
for different types of problems and spectral transformations such as the shift-
and-invert technique.

SLEPc is built on top of PETSc (Portable, Extensible Toolkit for Scientific
Computation, [8]), a parallel framework for the numerical solution of partial
differential equations, whose approach is to encapsulate mathematical algorithms
using object-oriented programming techniques in order to be able to manage the
complexity of efficient numerical message-passing codes. All the PETSc software
is freely available and used around the world in many application areas.

PETSc is object-oriented in the sense that all the code is built around a set
of data structures and algorithmic objects. The application programmer works
directly with these objects rather than concentrating on the underlying data
structures. The three basic abstract data objects are index sets, vectors and
matrices. Built on top of this foundation are various classes of solver objects,
including linear, nonlinear and time-stepping solvers. Many different iterative
linear solvers are provided, including CG and GMRES, together with various
preconditioners such as Jacobi or Incomplete Cholesky. PETSc has also the
provision to interface with third-party software such as HYPRE.

SLEPc extends PETSc with all the functionality necessary for the solution
of eigenvalue problems. SLEPc inherits all the good properties of PETSc, in-
cluding portability, scalability, efficiency and flexibility. SLEPc also leverages
well-established eigensolver packages such as ARPACK, integrating them seam-
lessly. Some of the outstanding features of SLEPc are the following:

– Easy programming with PETSc’s object-oriented style.
– Data-structure neutral implementation.
– Run-time flexibility, giving full control over the solution process.
– Portability to a wide range of parallel platforms.
– Usable from code written in C, C++ and Fortran.

3.2 Implementation Details

The current prototype implementation incorporates several improvements de-
scribed in [6]. Most of them refer to the solution of the linear system in step 6
in both algorithms, which is the most expensive operation.

Shifting strategy An important acceleration in the original algorithm, that has
been incorporated also in the Davidson-type version, comes from shifts. Instead
of Eq. 7, this technique solves the systems

[P (A− σk,iB)P]dk,i = PAxk,i, XT
k Bdk,i = 0 , (9)

where dk,i and xk,i are the ith columns of ∆k and Xk, respectively, and σk,i is
the associated shift at step k.

If the desired eigenvalues are poorly separated from the remaining part of the
spectrum, the unshifted method converges too slowly. Choosing an appropriate
value of σk,i can improve the separation of eigenvalues and accelerate the conver-
gence. The shift heuristic strategy implemented in both algorithms is detailed in
[6]. This technique of multiple dynamic shifts consists in computing a different
shift σk,i for each required eigenvalue in every outer iteration. The heuristic can
be summarized as follows (i0 is the number of converged eigenpairs):

– For i0 + 1:
if θi0+1 + ‖ri0+1‖B−1 ≤ θi0+2 − ‖ri0+2‖B−1 (test for cluster)

then σi0+1 ← θi0+1,
else σi0+1 ← max{θi0+1 − ‖ri0+1‖B−1 , λi0} .

– For every j > i0 + 1:
if σj−1 = θj−1 and θj < θj+1 − ‖rj+1‖B−1

then σj ← θj ,
else σj ← max{θl : θl < θj − ‖rj‖B−1} ∪ θi0+1 .

For practical reasons, employing 2-norms instead of B−1-norms is recommended
in [6]. However, this simplification does not result in a safe lower bound for some
B matrices with λmax(B) > 1, because a vector r satisfying θj − ‖r‖B−1 ≤
θj − ‖r‖2 exists if λmin(B−1) < 1, due to the property

‖x‖2
√

λmin(B−1) ≤ ‖x‖B−1 ≤ ‖x‖2
√

λmax(B−1) . (10)

To overcome this difficulty, our implementation can make use of an approxima-
tion of the smallest eigenvalue of B (provided by the user or computed by the
Gershgorin circle theorem) to obtain a better estimation of the shifts, because

‖r‖B−1 =
√

rT B−1r = ‖r‖2
√

zT B−1z ≤ ‖r‖2
√

λmax(B−1) = ‖r‖2λmin(B)−
1
2 .

Linear solver and preconditioning When shifting strategies are used, the
inner system of Eq. 9 may be indefinite or ill-conditioned. In order to make its
resolution feasible with an iterative solver, it is necessary to use an effective
preconditioner. In PETSc, it is very easy to precondition a linear system whose
coefficient matrix is available explicitly. However, the preconditioning of Eq. 9
is not trivial.

Eq. 9 is a projected linear system with an orthogonality constraint, much
like the Jacobi-Davidson correction equation. In [9], Sleijpen et al. describe how
to solve

(I − uuT)(A− σB)(I − uuT)t = r, s.t. t ⊥ u,

using a Krylov solver and an approximation K of A−σB. Adapting this idea to
the context of trace minimization results in solving Eq. 9 using a Krylov solver
with a left preconditioner K for A− σk,iB, the operator (PKP)P (A− σk,iB)P
and right hand side vector (PKP)(PA)xk,i. The transformation

F =
[
I −K−1BX(XT BK−1BX)−1XT B

]
K−1

is employed to optimize the application of the operator because

– if z = Fy and Py = y, then Pz = z and PKPz = y; and
– if the initial solution fed into the Krylov solver, v0, belongs to the range of the

operator, then all the subsequently generated vectors are in that subspace.

As a result, the matrix-vector product z = (PKP)P (A−σk,iB)Pv in the Krylov
solver can be calculated as z = F (A− σk,iB)v.

The F transformation is precomputed as

F =
[
I −K−1BX(XT BK−1BX)−1XT B

]
K−1 (11)

= K−1 −K−1BX(XT BK−1BX)−1XT BK−1 (12)
= K−1 − J̃ J̃T , (13)

where J̃ = K−1J , BX = JR, and JT K−1J = I. In the implementation, in
each external iteration a K−1-orthonormal basis of BX is built and then pre-
multiplied by K−1. Consequently, the product by F only requires an application
of J̃ J̃T and K−1 on the vector, together with a subtraction.

Stopping criterion Another issue that has a significant impact on overall
performance is the stopping criterion for the inner system solver. We adapt the
strategy proposed in [5] to the shifted inner system, Eq. 9, as developed in [6].
Like preconditioning, monitoring the convergence of the linear system can avoid
awkward breakdowns and unnecessary iterations.

The linear solver is configured to stop when either the error estimate is less
than a certain tolerance, τk,i, or the iterations of the method exceed a certain
maximum. The tolerances are calculated as

τk,i =

√

tol if k = 1
(θk,i − σk,i)/(θk−1,s − σk,i), if k > 1 and θk,i 6= σk,i

(θk−1,i − σk,i)/(θk−1,s − σk,i), if k > 1 and θk,i = σk,i,
(14)

where tol is the tolerance demanded to the eigensolver. In some cases, τk,i is too
close to 1, resulting in a poor update of the associated eigenvector that slows
down its converge. To avoid this, our implementation allows the user to specify
a maximum value of the tolerance.

The maximum number of allowed iterations is also set by the user, since the
optimal value is dependent on the preconditioner and the conditioning of the
inner system. However too small values may prevent convergence of the method.

Orthogonalization In terms of optimizations for parallel efficiency, the imple-
mentation makes use of an efficient Gram-Schmidt orthogonalization procedure
available in SLEPc and explained in [10]. The default option is set up to Classical
Gram-Schmidt with selective refinement.

4 Performance Analysis

This section summarizes the experiments carried out in order to evaluate the
parallel performance of the implementations and the impact of the optimizations
in the global convergence.

Table 1. Test cases from Matrix Market for testing optimizations (p: positive definite,
s: positive semi-definite, i : indefinite). The column speed-up shows the gain factor of
Algorithm 2 with respect to Algorithm 1.

A B
size nonzeros definiteness nonzeros definiteness speed-up

BCSST02 66 2,211 p 66 p 0.81
BCSST08 1,074 7,017 p 1,074 p 2.80
BCSST09 1,083 9,760 p 1,083 p 2.21
BCSST10 1,086 11,578 p 11,589 s 1.31
BCSST11 1,473 17,857 p 1,473 p 0.90
BCSST12 1,473 17,857 p 10,566 s 1.54
BCSST13 2,003 42,943 p 11,973 s 1.47
BCSST19 817 3,835 i 817 p –
BCSST21 3,600 15,100 i 3,600 p –
BCSST22 138 417 i 138 p –
BCSST23 3,134 24,156 i 3,134 p –
BCSST24 3,562 81,736 i 3,562 p –
BCSST25 15,439 133,840 i 15,439 p –
BCSST26 1,922 16,129 i 1,922 p –
BCSST27 1,224 28,675 p 28,675 i 1.26
BCSST38 8,032 355,460 p 10,485 i –

Table 2. Test cases from UF Matrix Collection for analyzing parallel performance.

size A nonzeros B nonzeros

DIAMON5 19,200 9,347,698 3,115,256
BS01 127,224 6,715,152 2,238,384

GYRO 17,361 1,021,159 340,431

The matrices used for the tests were taken from the Matrix Market and the
University of Florida Sparse Matrix Collection. All test cases correspond to real
symmetric generalized eigenproblems arising in real applications. The test cases
used in the analysis of the various optimizations are listed in Table 1. For parallel
performance tests, larger matrices were used, see Table 2.

The tests were executed on two clusters: Odin, made up of 55 bi-processor
nodes with 2.80 GHz Pentium Xeon processors, arranged in a 2D torus topol-
ogy with SCI interconnect, and MareNostrum, consisting of 2,560 JS21 blade
computing nodes, each with 2 dual-core IBM 64-bit PowerPC 970MP processors
running at 2.3 GHz, interconnected with a low latency Myrinet network.

Although in [6] CG is used as the solver for the linear system, in our experi-
ence only a few simple problems can be solved using that configuration. Unless
otherwise stated, all tests reported in this section use GMRES with an alge-
braic multigrid preconditioner. This preconditioner is one of those provided by
HYPRE [11]. With that configuration, all test cases in Tables 1 and 2 are solved
without convergence problems.

 0

 0.5

 1

 1.5

 2

 2.5

 3

bcsstk02

bcsstk08

bcsstk09

bcsstk10

bcsstk11

bcsstk12

bcsstk13

bcsstk19

bcsstk21

bcsstk22

bcsstk23

bcsstk24

bcsstk26

bcsstk27

bcsstk38

sp
ee

d−
up

shifting
min eig shifting

Fig. 1. Gain factor of dynamic shifting (shifting) and dynamic shifting with corrected
norm (min eig shifting) with respect to the version without optimizations, in terms
of the total number of inner iterations.

Original version vs Davidson-type version As it was pointed out previ-
ously, Algorithm 2 not only reduces the time spent in the inner iteration, but
also the total number of inner iterations. In order to support that conclusion,
both algorithms have been compared using the test cases listed in Table 1. The
last column of this table shows the gain factor of Algorithm 2 with respect to
Algorithm 1, except for those problems with one of the two matrices indefinite,
which cannot be solved with for Algorithm 1. Furthermore, the frequency of use
of the most expensive operations is very similar in both variants, so the parallel
speed-up and scalability should be very similar (this can be confirmed in Figures
4 and 6). For these reasons, the optimization and parallelism analyses will focus
on the Davidson-type version.

Analysis of optimizations The benefits of the different improvements de-
scribed in section 3.2 have been analyzed using the test cases listed in Table
1. The results are shown in Figures 1, 2, and 3, as gain factors of the different
strategies with respect to the version without optimizations, in terms of the total
number of inner iterations. It can be observed from the figures that the opti-
mizations are effective in most problems (but not all), making the computation
up to 5 times faster in several cases, or even more.

The shifting strategy (Figure 1) accelerates the convergence in 66% of the
problems. The version that employs a shifting strategy with the correction pro-
vided by the smallest eigenvalue of B (see section 3.2) is usually to be preferred,
although it may be worse sometimes depending on the definiteness of matrix B.
The tolerance strategy (Figure 2) presents better speed-up, specially setting its

 0

 1

 2

 3

 4

 5

 6

 7

 8

bcsstk02

bcsstk08

bcsstk09

bcsstk10

bcsstk11

bcsstk12

bcsstk13

bcsstk19

bcsstk21

bcsstk22

bcsstk23

bcsstk24

bcsstk26

bcsstk27

bcsstk38

sp
ee

d−
up

tol<1
tol<1e−1
tol<1e−2

Fig. 2. Gain factor of the tolerance strategy with an upper bound of 1 (tol<1), 0.1
(tol<1e-1) and 0.01 (tol<1e-2), in terms of the total number of inner iterations.

 0

 2

 4

 6

 8

 10

 12

bcsstk02

bcsstk08

bcsstk09

bcsstk10

bcsstk11

bcsstk12

bcsstk13

bcsstk19

bcsstk21

bcsstk22

bcsstk23

bcsstk24

bcsstk26

bcsstk27

bcsstk38

sp
ee

d−
up

shifting+tol<1
shifting+tol<1e−1

Fig. 3. Gain factor of dynamic shifting combined with tolerance strategy, in terms of
the total number of inner iterations.

upper bound to 0.1. Finally, the combination of the two techniques is plotted in
Figure 3.

Parallel analysis We start the parallel performance analysis with a scalability
study, that is, to measure the parallel speed-up for different number of processors
when the problem size is increased proportionally. Figure 4 presents the scala-

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

ideal
tracemin−davidson

tracemin
krylov−schur

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

ideal
tracemin−davidon

tracemin
krylov−schur

Fig. 4. Scalability of Davidson-type trace minimization and Krylov-Schur methods
using a tridiagonal eigenproblem in odin (left) and MareNostrum (right).

bility results in both clusters for the Davidson-type trace minimization method,
and also for the Krylov-Schur method (with shift-and-invert spectral transforma-
tion), using diagonally dominant random tridiagonal A and B matrices. In this
case, the Jacobi preconditioner was employed when solving the inner systems.

The plots in Figure 4 indicate that both algorithms are reasonably scalable,
considering the fact that they consist in a nested inner-outer iteration requiring
a lot of communication among processors. In Odin, trace minimization seems
to scale better than Krylov-Schur, but the roles are reversed in MareNostrum.
This different behaviour could be explained by noticing that trace minimization
spends more time in vector dot products (VecMDot) and norms (VecNorm) than
in vector additions (VecMAXPY) and matrix-vector multiplications (MatMult),
see Table 3. Vector products and norms scale worse, since they require a multi-
reduction operation involving all processors, whereas VecMAXPY operations are
trivially parallelizable and MatMult operations scale usually well. Maybe, the
multi-reduction operation is less efficient in MareNostrum due to the hardware
configuration.

We also presents results from some realistic problems, in particular those
listed in Table 2. The speed-up of Algorithm 2 for all three problems is shown in
Figure 5 for both platforms. For reference, the figure plots also the speed-up for

Table 3. Percentage of execution time corresponding to the three most time consuming
operations, with 128 processors in MareNostrum.

VecMAXPY MatMult VecMDot VecNorm

Krylov-Schur 32% 19% 10% 10%
Trace Minimization 29% 26% 24% 8%

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

ideal
BS01

DIAMON5
GYRO

BS01 precond
DIAMON5 precond

GYRO precond

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

ideal
BS01

DIAMON5
GYRO

BS01 precond
DIAMON5 precond

GYRO precond

Fig. 5. Speed-up of Davidson-type trace minimization, as well as only the precondi-
tioner application, for the BS01, DIAMON5, and GYRO problems in Odin (left) and
MareNostrum (right).

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

ideal
tracemin

tracemin davidson
preconditioner

Fig. 6. Speed-up of the original trace minimization and Davidson-type methods, as
well as only the preconditioner application, for the BS01 problem in MareNostrum.

the preconditioner application only, showing a strong correlation between the
speed-up of the method and the preconditioner. We can conclude that a bad
speed-up in the eigensolver can be attributed to a non-scalable preconditioner
or a matrix with a disadvantageous sparsity pattern.

Finally, in Figure 6, we compare the speed-up of the Davidson-type imple-
mentation and the original trace minimization with the largest test case, showing
a slight advantage of the former.

5 Conclusions

A parallel implementation of the trace minimization method for generalized sym-
metric eigenvalue problems has been developed and analyzed, focusing on its
Davidson-type version. This implementation will be made available as a new
solver in the SLEPc library. Our tests with several problems show that the pro-
posed optimizations, such as multishifting, preconditioning and adaptive inner
solver termination, accelerate the method considerably and make it more robust.

The parallel performance is comparable to that of Krylov-Schur, but the
main advantage is that trace minimization can find the smallest eigenvalues in
problems where Krylov-Schur cannot. This development is the prelude to the
implementation in SLEPc of more advanced preconditioned eigensolvers such as
Jacobi-Davidson.

Acknowledgements. The authors thankfully acknowledge the computer re-
sources and assistance provided by the Barcelona Supercomputing Center (BSC).

References

1. Parlett, B.N.: The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood
Cliffs, NJ (1980) Reissued with revisions by SIAM, Philadelphia, 1998.

2. Saad, Y.: Numerical Methods for Large Eigenvalue Problems: Theory and Algo-
rithms. John Wiley and Sons, New York (1992)

3. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H., eds.: Templates
for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA (2000)

4. Stewart, G.W.: Matrix Algorithms. Volume II: Eigensystems. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA (2001)

5. Sameh, A.H., Wisniewski, J.A.: A trace minimization algorithm for the generalized
eigenvalue problem. SIAM J. Numer. Anal. 19(6) (1982) 1243–1259

6. Sameh, A., Tong, Z.: The trace minimization method for the symmetric generalized
eigenvalue problem. J. Comput. Appl. Math. 123(1-2) (2000) 155–175

7. Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: A scalable and flexible toolkit for
the solution of eigenvalue problems. ACM Trans. Math. Soft. 31(3) (2005) 351–362

8. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.,
McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Technical Report
ANL-95/11 - Revision 2.3.3, Argonne National Laboratory (2007)

9. Sleijpen, G.L.G., van der Vorst, H.A., Meijerink, E.: Efficient expansion of sub-
spaces in the Jacobi–Davidson method for standard and generalized eigenproblems.
Electron. Trans. Numer. Anal. 7 (1998) 75–89

10. Hernandez, V., Roman, J.E., Tomas, A.: Parallel Arnoldi eigensolvers with en-
hanced scalability via global communications rearrangement. Parallel Comput.
33(7–8) (2007) 521–540

11. Henson, V.E., Yang, U.M.: BoomerAMG: A parallel algebraic multigrid solver and
preconditioner. Applied Numerical Mathematics: Transactions of IMACS 41(1)
(2002) 155–177

12. Sleijpen, G.L.G., der Vorst, H.A.V.: A Jacobi–Davidson iteration method for linear
eigenvalue problems. SIAM Rev. 42(2) (2000) 267–293

