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Abstract. This work proposes a load balance algorithm to parallel processing 

based on a variation of the classical knapsack problem. The problem consid-

ers the distribution of a set of partitions, defined by the number of clusters, 

over a set of processors attempting to achieve a minimal overall processing 

cost.  

The work is an optimization for the parallel fuzzy c-means (FCM) clus-

tering analysis algorithm proposed in a previous work composed by two dis-

tinct parts: the cluster analysis, properly said, using the FCM algorithm to 

calculate of clusters centers and the PBM index to evaluate partitions, and the 

load balance, which is modeled by the multiple knapsack problem and im-

plemented through a heuristic that incorporates the restrictions related to 

cluster analysis in order to gives more efficiency to the parallel process.  

Topics of Interest: Unsupervised Classification, Fuzzy c-Means, Load Bal-

ance, Optimization. 

1. Introduction 

Cluster analysis is the unsupervised classification of data into groups (clusters) 

and it is one of the most intensive computational tasks in data mining. It is thus very 

attractive for parallel processing and many parallel and distributed clustering algo-

rithms have been recently studied [1][2][3].  

There are several approaches that have been studied for cluster analysis algo-

rithms [4]. In the partition approach, two main optimization problems are addressed: 

to find the number of clusters presents in the data and the location of clusters centers. 

The later problem is much easier to solve, and iterative greedy optimization algo-

rithms, such as the k-means algorithm and its variants, are widely used for that pur-

pose, being well known by the data mining community.  

The k-means algorithm has been extended to the fuzzy c-means algorithm by 

Bezdek in the early eighties [5]. The fuzzy c-means (FCM) algorithm computes a 



“fuzzy” partition where data records may be related to more than one cluster but with 

different membership values. The FCM solution is very useful in real applications 

because it provides soft boundaries for clusters taking classification uncertainty into 

account. 

The problem of determining the number of clusters in a dataset is much more dif-

ficult to solve, both for crisp and fuzzy clustering algorithms. In general, a validation 

index that reflects the quality of the result is used as an optimization index and the 

clustering algorithm is executed for a range of clusters. Several cluster validation 

indexes have been proposed [6][7][8] and most of them are based on geometrical 

approaches with the aim of finding dense and separated clusters. 

In a previous work, Modenesi et al. [3] have presented a parallel clustering algo-

rithm that computes the location of clusters centers and the validation index simulta-

neously. In their approach, the FCM algorithm is iterated within the cluster validation 

loop, in which the clustering quality is computed by the PBM index, recently pro-

posed by Pakhira et al. [8]. In the parallel implementation, the dataset is equally di-

vided among the available processors, which compute the iterative steps, and the 

cluster and validation results are integrated by the master processor [3]. This approach 

causes a natural load balance in the parallel processing, but it has a high communica-

tion cost due to the need of frequent interaction among processors. The results show 

that parallelization is not efficient for a low number of clusters but the greater the 

dataset the better is the speed-up. 

In cluster analysis, the question of minimizing communication costs and maxi-

mizing the parallel processing efficiency can be understood as a knapsack problem 

where computational capacity must be fulfilled minimizing the cluster analysis com-

putation cost. 

The knapsack problem, proposed initially by Dantzig [9], consists in the problem 

of selecting, from a collection of items, with distinct benefits and costs, the ones that 

fit in a knapsack resulting in the maximum possible value and minimal cost. It is a 

well known problem in the area of combinatorial analysis with extensive applicability 

in many practical cases, such as: production and logistics planning, financial engineer-

ing, vehicles shipment, budget, among others. The knapsack problem is a NP-

complete problem and, therefore, there is no global optimum solution known to be 

computed in polynomial time. Many methods, called heuristics, are studied for solv-

ing the knapsack problem. They only give approximate solutions to the problem 

[10][11][12]. 

In this work, the parallel FCM cluster analysis proposed in a previous work [3] is 

extended with a load balancing computed by the solution of the knapsack problem. A 

heuristic algorithm is proposed, based on the bin packing problem, which is a varia-

tion of the multiple knapsacks problem.  

The paper is organized as follows: section two reviews the parallel FCM cluster 

analysis algorithm; section three introduces the knapsack problem; section four pre-

sents the FCM cluster analysis with the load balance algorithm; section five describes 

tests with results and section six presents conclusions and suggests future works.  



2. The Parallel FCM Algorithm 

The cluster analysis FCM [3] aims to find the patterns present in data by process-

ing a range of clusters by the calculation of distances of registers to clusters centers 

through the FCM algorithm and the selection of the best partition through the cluster 

validity index PBM.  

The parallel FCM cluster analysis procedure is described by the following se-

quence: 

Step 1. (Master processor): Splits the data set equally among the available 

processors so that each one receives pN records, where N is the number of 

records and p is the number of processors. 

Step 2. (All processors): Compute the geometrical center of its local data and 

communicate this center to all processors, so that every processor can com-

pute the geometrical center of the entire database. Compute the global data 

density (factor 1E  of the PBM index) on local data and send it to master 

processor. 

Step 3. (Master processor): Sets initial centers and broadcasts them, so that all 

processors have the same clusters’ centers values at the beginning of the 

FCM looping. 

Step 4. (All processors): Until convergence is achieved compute the distances 

from each record in the local dataset to all clusters’ centers; update the parti-

tion matrix, calculate new clusters’ centers. 

Step 5. (All processors): Compute the cluster density (factor KE  of the PBM  

index) on its local data and send it to master processor.  

Step 6. (Master Processor): Integrates the calculations for the PBM index and 

stores it. If the range of number of clusters is covered, stops, otherwise re-

turns to Step3. 

The procedure described above is computed for each number of clusters in the 

cluster analysis, so that the procedure is repeated as many times as the desired range 

of numbers of clusters, so that the PBM index, as a function of the number of centers, 

is computed. The best partition is the one corresponding to the largest value of the 

PBM index. 

The computational cost of the algorithm is exponentially proportional to the 

number of patterns being analyzed.  The bigger is the number of clusters to calculate, 

more cycles of processing of distances of registers to clusters centers are necessary 

and greater is the computational effort. Moreover, each partition has a different com-

putational cost which is related to its number of clusters, meaning that processing 

partitions with bigger number of patterns (clusters) involve more computational effort 

than processing those with smaller ones. 

An approach to minimize the communication cost in the prior algorithm is to dis-

tribute partitions over processors, making processors in charge of calculating a parti-

tions´ group with no need of communication during the FCM loop, having at the end 

of the processing a master processor consolidating the results and indicating which is 

the best partition.   



To make this approach effective, a load balance policy must be implemented, en-

suring that processors receive a balanced charge of partitions to process in order to 

minimize the total time of the parallel processing. The load balance policy must dis-

tribute partitions over processors considering the computational cost of each partition. 

At this point the knapsack problem comes as a model of how to arrange partitions 

minimizing the processing cost. 

3. The Knapsack Problem 

All knapsack problems variations refer to a set of n  items where each item has 

an associated profit jp and weight jw , nj ≤≤1 , which are generally positive inte-

gers. The problem consists in selecting which items must be included into the knap-

sack so that the total value is maximized without exceeding the knapsack capacity 

W . The selection value of an item is represented by the binary project variable 

}1,0{∈jx . 

The knapsack problem in its basic form can be formulated as:  
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Many kinds of knapsack problems arise from real situations where different con-

strains determine special cases. Among the knapsack problem direct generalizations, 

were applicable in this work the subset sum problem and the multiple knapsacks prob-

lem.  

The subset sum problem is characterized by the situation where items costs 

(weights) are equal to profits (values), i.e. jj pw =  [11][12]. It occurs when a quanti-

tative target should be reached, so that its negative deviation (or loss) must be mini-

mized and a positive deviation is not allowed.  

The knapsack problem becomes useful for load balancing in parallel processing 

when a set of m  knapsacks are considered. This problem is known as the subset-sum 

partition problem when the capacities of all knapsacks are equal, so that each knap-

sack capacity is mWWi /= , where W  is the overall capacity. The solution to the 

problem is represented by the binary variable }1,0{∈ijx  that assigns an item j  to the 

knapsack i . 

The multiple knapsacks’ problem is formulated as:  
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(2) 

A special case of the multiple knapsacks problem is the bin packing problem, 

where items must be placed in the smallest number of knapsacks. 

The formulation of the multiple knapsacks problem for load balancing in the 

FCM parallel cluster analysis is discussed next. 

 

4. The Proposed Algorithm 

4.1. Problem formulation 

The load balancing problem of the parallel FCM cluster analysis algorithm can be 

understood as a knapsack problem whose items are partitions to be processed by the 

algorithm, each partition defined by the number of clusters in the fuzzy partitions 

range nj ≤≤2 . The load balancing problem is a multiple knapsacks problem where 

each processor represents a knapsack and the overall processing capacity is defined 

by the number of the available processors p . 

The main issue in the load balancing problem is to minimize the overall parallel 

processing time. The problem thus becomes a minimization problem, stated as fol-

lows: 
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The project variable }1,0{∈ijx  selects processor i  to evaluate the partition j , 

so that each partition is evaluated only once as it is expressed by the first constraint. 

The second constraint states that all partitions should be evaluated. 

The load ijw  represents the processing cost to evaluate the partition j at proces-

sor i  and depends mainly on the number of partitions itself, besides the number of 

records and variables of the dataset [3].  



In this work, the efficiency results obtained in [3] were used to define the loads 

as: 

ij
ijw

ε

1
=  

(4) 

where ijε  is the efficiency, i.e. the ratio between the speed-up and the number of 

processors, computed by the evaluation of the partition j  on processor i . 

 

4.2. Description of the algorithm 

To ensure the optimization of the parallel processing time the definition of 

the knapsacks size (processing lines) is a critical factor. In the context of the FCM 

cluster analysis all partitions must be processed   and is reasonable to conclude the 

ideal load the average of the partitions values, where, being iK  a set of partitions 

where ni ≤≤2  and p  the number of processors, the average processing load 

would be: 
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(5) 

 

This average size, however, cannot be always obtained in an exact manner. To 

ensure an efficient load balance strategy scalable for any set of partitions and number 

of processors, this work proposes a heuristic that uses two values: a lower limit de-

fined by the partitions average (the ideal load for the distribution) and a superior limit, 

which is the maximum load in the distribution that indicates the least possible cost for 

the parallel processing.  

The heuristic assemblies the knapsacks through an iterative process where a dis-

tribution is generated and evaluated by a variation coefficient passed as a parameter at 

the beginning of the parallel process. If the group of knapsacks generated achieves a 

good variation coefficient, the algorithm goes on processing the FCM cluster analysis. 

Otherwise, the initial average value S  is increased. If the S adjusted value surpasses 

the distribution maximal load, the algorithm goes on processing the FCM cluster 

analysis. On the contrary, a new distribution is generated, in an attempt to push the 

loads to a smaller number of processors, trying to free processors that will be reallo-

cated to the evaluation of the bigger loads in order to reduce the overall parallel proc-

essing time. The looping ends when the distribution evaluation is considered ok or 

when the lower limit gets equal to the superior limit.  

The heuristic core is based on the well known first fit decreasing algorithm much 

used to treat the bin packing problem [13][14]. 

The parallel FCM cluster analysis balancing scheme is described by the following 

sequence: 

 



Step1. (Master processor):  Initial values calculation  

 Sort partitions in decreasing order 

 Calculate the average S  as (5).  

Step2. (Master processor): Knapsacks generation  

 2.1 Assign higher cost partitions 

 Place each partition with Sw j >1  into a single processor 

and consider the processor line full 

 Assign remaining partitions 

 For each partition j , place the partition in the next proces-

sor where lines sum >= partition cost 

 2.3 Assign partitions that did not fit in processing lines 

 Until all unassigned partitions are placed 

 Sort processing lines by load size 

 Place partition in the processor with the smaller 

total load 

 If it is the first distribution identify maximum load for the 

processing 

Step3. (Master processor): Knapsacks evaluation  

 3.1Calculate average, standard deviation and the load 

variation coefficient 

 If variation coefficient > input variation  

 3.2 Adjust distribution parameters 

a. S = S + 1  

b. Cancel processors with maximum load 

with idle processors to find out the itera-

tion maximum load 

 3.3 Evaluate if knapsack can be reorganized 

a. If S  < iteration maximal load 

b. Returns to Step 2 

Step4. (Master processor): Assign idle processors  

 If there is any idle processor  

 For each idle processor, assign to processor the 

next greatest load  

Step5. (Master processor): Communicate to processors  

 Communicate processors´ partition lines  

 Communicate group information to processors who are 

part of a group 

Step6. (Master processor): Knapsack processing (All processors) 

 6.1 If processor belongs to a group 

 Split data among the group processors 

 6.2 For each partition in processor calculate FCM and 

PBM loop 

 6.3 Send results to master processor 

Step7. (Master processor): Select partition with the greatest PBM index  

 



When the rate between number of partitions and number of processors is high the 

load balancing generated is usually a good one and presents very small variation coef-

ficient (Figure 1). When the distribution using the average does not achieve a good 

result, such as in cases where the number of partitions is very close to the number of 

processors or, when the processors numbers are bigger than the number of partitions, 

the algorithm recalculates the knapsacks distribution, “pushing” the loads to a point, 

trying to group them in fewer processors, so that some processors can be freed to 

process along others the higher cost loads in an attempt of improve de overall load 

balance (Figure 2). 
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Figure 1 – Knapsacks generated for partitions range of 2 to 32 partitions distrib-

uted among four processors. 
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Figure 2 -Knapsacks generated in the first two iterations of the processing of the 

load balance algorithm when input variation coefficient = 20%. 



5. Results and Discussion 

5.1. Environment and test description 

The SGI ALTIX 450 Venus machine with 32 Intel Itanium2 processor cores (1.6 

GHz) e 64 GB of memory from the High Performance Computing Center (NACAD) 

of COPPE/UFRJ was used for execution and performance analysis of this work. Jobs 

execution was controlled by PBS (Portable Batch System) job scheduler. The applica-

tion was developed using the C programming language and the Message Passing 

Interface (MPI) for processors communication. 

The tests were conducted with a synthetic file of one million record and seven 

variables. The file was processed for ranges of 3, 7, 15 e 31 partitions. The range of 

three partitions had 2, 3 and 4 clusters, the range of seven partitions had values from 2 

up to 8 clusters, the range of fifteen partitions had values from 2 up to 16 clusters and 

the range of 31 partitions had values from 2 up to 32 clusters. 

5.2. Results and analysis 

The load balanced FCM cluster analysis algorithm shows a significant reduction 

in processing time when compared to the prior approach [3] as showed in Table 1.  

 

Table 1: Processing times of the synthetic dataset. 

P r o c e s s o r s

B a la c e d  

A lg o r i t h m
2  -  4 2  -  8 2  -  1 6 2  -  3 2

1 6 2 .5 7 6 7 6 3 2 3 8 .5 1 9 0 6 5 9 5 7 .6 2 4 8 6 9 4 ,0 4 2 .9 1 6 8 2 9

4 2 7 .6 5 9 8 8 7 6 5 .0 0 0 0 0 0 2 4 6 .0 9 3 3 7 5 1 ,0 2 6 .6 7 5 3 0 3

8 1 3 .4 4 0 1 0 2 4 6 .5 3 0 0 7 7 1 3 2 .0 0 0 0 0 0 5 1 7 .9 8 7 7 2 0

1 2 9 .1 0 3 4 4 0 3 1 .8 3 2 8 5 3 9 0 .0 0 0 0 0 0 3 5 2 .3 7 6 7 5 1

U n b a la n c e d  

A lg o r i t h m

1 1 1 9 .4 4 8 0 5 0 4 7 5 .6 1 8 3 6 0 1 ,7 9 4 .8 6 8 0 5 8 7 ,3 5 0 .8 8 1 9 9 1

4 3 0 .3 8 3 5 8 3 1 1 4 .2 6 0 5 3 9 4 5 1 .3 4 7 4 6 6 1 ,8 3 7 .2 5 8 1 8 5

8 1 5 .6 3 6 8 8 1 5 7 .6 4 2 8 2 9 2 2 4 .1 3 0 6 1 9 9 0 9 .5 5 5 9 7 9

1 2 1 0 .3 5 8 8 9 4 3 8 .2 5 3 6 0 3 1 4 8 .8 5 1 8 5 9 6 1 6 .0 0 4 9 6 7

P a r t i t io n s  R a n g e  /  T im e  ( s e c o n d s )

 
 

 

Table 2: Ratio between partitions number and processors numbers 

3 7 15 31

1 3 .00 7 .00 15.00 31.00

4 0 .75 1 .75 3.75 7.75

8 0 .38 0 .88 1.88 3.88

12 0 .25 0 .58 1.25 2.58

Num ber o f Partitions

Ratio  Partitions / Processors

Procs

 
 

 

The best processing times happen when the rate of number of partitions by num-

ber of processors has the highest values (Table 2), which means that communication 



is the biggest hindrance to the good performance of the algorithm. On the other hand, 

when the values rate go lower, the time reduction rate decreases. 

The balanced algorithm reduced the processing time in all tests (Table 3), but the 

best time savings advantages are for the biggest rates of number of partitions by num-

ber of processors. 

 

Table 3: Percentage reduction values from comparing balanced and unbalanced al-

gorithms when processing the one million lines dataset 

Processors 4 8 16 32

1 47.61% 49.85% 46.65% 45.00%

4 8.96% 43.11% 45.48% 44.12%

8 14.05% 19.28% 41.11% 43.05%

12 12.12% 16.78% 39.54% 42.80%

Partition´s Range

 
 

The unbalanced algorithm speed up and efficiency values where compared to the 

balanced algorithm single processor time because the sequential processing time of 

this algorithm was the best of them.  
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Figure 3 & Figure 4 - Balanced and unbalanced algorithms speed up values for 

one million lines dataset processing. 
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Figure 5 & Figure 6 – Balanced and unbalanced algorithms efficiency values for 

one million lines dataset processing. 



 

The load balancing algorithm scales well for an increasing number of processors 

presenting good speed up and efficiency values, and in all cases presents better speed 

up and efficiency values than the unbalanced algorithm (Figure 4) (Figure 5).  

The balanced algorithm presents best speed up values when processing bigger 

range of partitions revealing that minimizing communications is a very effective way 

of reducing parallel processing time.  

6. Conclusions 

This work presents a significant improvement to the performance of the parallel 

FCM cluster analysis algorithm [3]. The load balancing for FCM cluster analysis 

algorithm scales well and presents good efficiency for all parallel contexts, bringing 

new levels of performance to the parallel FCM cluster analysis. 

Nevertheless, the applicability of this approach has to be improved with a strat-

egy for establishing a lower bound for the algorithm, in order to not keep assigning 

processors to evaluate charges when there is no benefit from parallel execution, as in 

the situations of the analysis of small range of partitions. In such cases the parallel 

proposed approach would keep using machine capacity without any benefit.  
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