
A Parallel Matrix Scaling Algorithm?

Patrick R. Amestoy1, Iain S. Duff2,3, Daniel Ruiz1, and Bora Uçar3

1 ENSEEIHT-IRIT, 2 rue Camichel, 31071, Toulouse, France
amestoy@enseeiht.fr, Daniel.Ruiz@enseeiht.fr
2 Atlas Centre, RAL, Oxon, OX11 0QX, England

i.s.duff@rl.ac.uk
3 CERFACS, 42 Av. G. Coriolis, 31057, Toulouse, France

duff@cerfacs.fr, ubora@cerfacs.fr

Abstract. We recently proposed an iterative procedure which asymp-
totically scales the rows and columns of a given matrix to one in a given
norm. In this work, we briefly mention some of the properties of that
algorithm and discuss its efficient parallelization. We report on a parallel
performance study of our implementation on a few computing environ-
ments.

Key words: sparse matrices; matrix scaling; equilibration; parallel com-
puting

1 Introduction

Scaling a matrix consists of pre- and post-multiplying the original matrix by
two diagonal matrices. We consider the following scaling problem: given a large,
sparse matrix A ∈ Rm×n, find two positive diagonal matrices D1 and D2 so
that all rows and columns of the scaled matrix Â = D1AD2 have the same
magnitude in some norm. Two common choices for the norm are the ∞- and
the 1-norm. Recently, we proposed an iterative algorithm for this purpose [15].
In this paper, we present the algorithm briefly and discuss how we parallelize it.
We report experimental results with the parallel code on three parallel systems
that have different processors and interconnection networks.

Scaling or equilibration of data for linear systems of equations is a topic of
great importance that has already been the subject of several scientific publica-
tions, with many different developments depending on the properties required
from the scaling. It has given rise to several well known algorithms; see, for ex-
ample, [10, 16]. If we denote by Â the scaled matrix Â = D1AD2, we then solve
the equation Âx̂ = b̂, where x̂ = D−1

2 x and b̂ = D1b.
A standard and well known approach to scaling is to do a row or column

scaling. For row scaling, each row in the original matrix is divided by the norm
of the row (using different norms, such as the∞-norm or the 1-norm, depending

? This work was supported by “Agence Nationale de la Recherche” Solstice project
number ANR-06-CIS6-010.

1

2

on the application). Column scaling is identical to row scaling, except that it
considers the columns of the original matrix. A different approach that considers
the matrix entries more globally is the one used in the HSL [13] routine MC29,
which aims to make the nonzeros of the scaled matrix close to one by minimizing
the sum of the squares of the logarithms of the moduli of the nonzeros in the
scaled matrix; see [7]. MC29 reduces this sum in a global sense and therefore
should be useful on a wide range of sparse matrices. There is also the routine
MC30 in HSL that is a variant of the MC29 routine for symmetric matrices. Scaling
can also be combined with permutations; see [11] and the HSL routine MC64.
In this approach, the matrix is first permuted so that the product of absolute
values of entries on the diagonal of the permuted matrix is maximized (other
measures such as maximizing the minimum element are also options). Then the
matrix is scaled so that the diagonal entries are one and the off-diagonals are less
than or equal to one. This provides a useful preprocessing tool for pivoting for
sparse direct solvers, as well as for building good preconditioners for an iterative
method.

A good scaling will normally improve (i.e., reduce) the condition number of
the matrix. Although this is not the whole story, for example in determining the
efficacy of scaling for direct methods, this is a metric that we will later use to
compare scaling algorithms.

The scaling algorithm and some of its properties are introduced in Section 2.
We discuss our parallelization approach in Section 3. Section 4 contains the
experimental results.

2 The algorithm

Consider a general m × n real matrix A, and denote by ri = aT
i· ∈ Rn×1,

i = 1, . . . ,m, the row-vectors from A and by cj = a·j ∈ Rn×1, j = 1, . . . , n, the
column-vectors from A. Denote by DR and DC the m×m and n× n diagonal
matrices given by:

DR = diag
(√
‖ri‖∞

)
i=1,...,m

and DC = diag
(√
‖cj‖∞

)
j=1,...,n

(1)

where ‖ · ‖∞ stands for the ∞-norm of a real vector (that is the maximum entry
in absolute value; sometimes called the max-norm). If a row (or a column) in
A has all entries equal to zero, we replace the diagonal entry in DR (or DC

respectively) by 1. In the following, we will assume that this does not happen,
considering that such cases are fictitious in the sense that zero rows or columns
should be taken away and the system reduced.

We then scale matrix A on both sides, forming the scaled matrix Â in the
following way

Â = D−1
R AD−1

C . (2)

3

The idea of the proposed algorithm is to iterate that process, resulting in
Algorithm 1. Convergence is obtained when

max
1≤i≤m

{
|(1− ‖r(k)

i ‖∞)|
}
≤ ε and max

1≤j≤n

{
|(1− ‖c(k)

j ‖∞)|
}
≤ ε (3)

for a given value of ε > 0. We have shown [15] that the algorithm has fast linear
convergence with an asymptotic rate of 1/2.

Algorithm 1 Simultaneous row and column iterative scaling in ∞-norm

1: D
(0)
1 = Im

2: D
(0)
2 = In

3: for k = 0, 1, 2, . . . until convergence do

4: DR = diag

„q
‖r(k)

i ‖∞
«

i=1,...,m

5: DC = diag

„q
‖c(k)

j ‖∞
«

j=1,...,n

6: D
(k+1)
1 = D

(k)
1 D−1

R

7: D
(k+1)
2 = D

(k)
2 D−1

C

8: bA(k+1) = D
(k+1)
1 AD

(k+1)
2

For nonnegative square matrices, using the 1-norm, instead of the ∞-norm
in lines 4 and 5 results in a scaling algorithm for the 1-norm, i.e., in the scaled
matrix, the 1-norm of each row and column is asymptotically equal to 1. Con-
vergence in the 1-norm case of both A(k) and D(k)

1 and D(k)
2 is guaranteed for

nonnegative matrices with total support—a square matrix is said to have total
support if all entries can appear in some zero-free diagonal after row or col-
umn permutations. If a matrix does not have total support but just support
(i.e., there exists a zero-free diagonal after row or column permutations), then
the algorithm converges only for the A(k) iterates; see [15] for details. We have
observed in practical experiments that convergence for the 1-norm is fast for ma-
trices with total support; for matrices with support but without total support,
some entries should asymptotically go to zero, and a painfully slow convergence
can be observed. Rothblum et al. have shown [14, page 13] that the problem of
scaling a matrix A in the lp-norm, 1 < p <∞ can be reduced to the problem of
scaling in the 1-norm the pth Hadamard power of A, i.e.,the matrix A[p] = [ap

ij].
We applied that discussion to Algorithm 1 by replacing the matrix A with A[p]

and by taking the Hadamard pth root, e.g., D[1/p]
1 = [d1/p

ii], of the resulting
iterates. Hence, we argue that all of the convergence results that hold for the
1-norm hold for any of the lp norms for 1 < p <∞.

We emphasize that the proposed iterative scaling procedure preserves the
symmetry of the original matrix. If the given matrix A is symmetric, then the
diagonal matrices DR and DC in (1) are equal and, consequently, matrix Â
in (2) is symmetric, as is the case for the matrices Â(k) at any iteration in

4

Algorithm 1. This is not the case for most scaling algorithms which alternately
scale rows followed by columns or vice-versa.

In the case of unsymmetric matrices, one may consider the use of the Sinkhorn-
Knopp iterations [17] with the ∞-norm in place of the 1-norm. This method
simply normalizes all rows and then columns in A, and iterates on this process
until convergence. In the∞-norm, this is obtained after a single step. Because of
its simplicity, this method is very appealing. Notice, however, that the Sinkhorn-
Knopp iteration may provide very different results when applied to A or AT .
On the contrary, Algorithm 1 provides exactly the same results when applied to
A or AT in the sense that the scaled matrix obtained from AT is the transpose
of that obtained from A. Another related property of Algorithm 1 is that it is
independent of matrix permutations. In other words, the scaling factors of the
permuted matrix are equivalent to the permuted scaling factors of the original
matrix.

3 Parallelization

Algorithm 1 involves the scaled matrix Â(k), the original matrix A, the two
scaling (diagonal) matrices D(k)

1 and D(k)
2 , and two temporary (diagonal) ma-

trices DR and DC to compute the next iterates. To reduce the memory re-
quirements, it is advisable not to store the scaled matrix Â(k) = D(k)

1 AD(k)
2

explicitly; an individual matrix entry a
(k)
ij at iteration k can be computed using

d
(k)
1 (i)× |aij | × d

(k)
2 (j), where d

(k)
1 (i) and d

(k)
2 (j) correspond to the ith and jth

diagonal entries of the respective scaling matrices. Therefore, a parallelization
of the algorithm on distributed memory processors necessitates the distribution
of the matrices A, D1, D2, DR and DC . Observe that D1 and D2 are kept and
updated at each iteration, whereas DR and DC are computed afresh at every
iteration.

Assume that the matrix A is distributed among P processors. At this point
we do not assume a particular distribution. Rather, we deal with the most gen-
eral case in which each processor holds a set of nonzeros aij along with the
corresponding row and column indices, i.e., each processor holds a set of triplets
of the form 〈i, j, aij〉. We use aij ∈ p to denote that the processor p has the
nonzero aij . At each iteration we first compute the contribution to the matri-
ces DR and DC on each processor, using Dp

R and Dp
C (the latter two matrices

denote the matrices belonging to the processor p such that dp
R(i) and dp

C(j) de-
note the contributions of processor p to d1(i) and d2(j), respectively. These two
matrices are then reduced to update the diagonal matrices D1 and D2 that are
distributed among the processors; i.e., the partial results dp

R(i) and dp
C(j) should

be combined at certain processors according to the partition on D1 and D2.
Hence, our problem reduces to partitioning the diagonal matrices D1 and D2

for a given partition on A to efficiently parallelize Algorithm 1. The most com-
mon communication cost metric addressed in similar parallelization problems is
the total communication volume. Therefore our aim is to find partitions on D1

and D2 for a given partition on A to minimize the total communication volume.

5

In order to solve the partitioning problem, let us examine the computational
dependencies. Each processor p should use its triplets 〈i, j, aij〉 to compute partial
results for dR(i) and dC(j), e.g., for the ∞-norm compute

dp
R(i) = max

j

{
d
(k)
1 (i)× |aij | × d

(k)
2 (j) : aij ∈ p

}
.

The partial results should be reduced for each d
(k+1)
1 (i) and d

(k+1)
2 (j), e.g., in

the ∞-norm the owner of d1(i) should compute

d
(k+1)
1 (i) = d

(k)
1 (i)× 1√

max{dp
R(i) : 1 ≤ p ≤ P}

.

Note that the communication operations take place during these reduction oper-
ations. That is, the partial results dp

R(i) from each processor p, where 1 ≤ p ≤ P
and there exist a aik ∈ p, should be sent to the processor which is responsible for
computing d

(k+1)
1 (i). After computing d

(k+1)
1 (i), the owner should send the new

values back to the contributing processors to enable the computation of Â(k+1).
That is, the owner sends the updated d

(k+1)
1 (i) to each processor p having a

nonzero in row i, e.g., to a processor p where aik ∈ p for some k. Therefore, the
volume of data a processor receives to compute d

(k+1)
1 (i) is equal to the volume

of data it sends after computing the final value.
If the nonzeros in row ri are split among s processors, then a reduction on

s partial results will be necessary. If one of those processors owns d1(i), then
s − 1 partial results will be sent to the owner; if not, then s partial results will
be sent to the owner. Hence, for a given partition on A, the minimum volume
of communication regarding ri is s− 1. The same assertions hold for d2(j) with
respect to the nonzeros in column cj . Therefore, if the nonzeros in row ri and
column cj are split among sr(i) and sc(j) processors, respectively, then the
minimum total communication volume is

2×
∑

(sr(i)− 1) + 2×
∑

(sc(j)− 1) , (4)

where half of the communication volume is incurred while reducing the new
values and the other half is incurred while sending back the updated values. The
minimum total communication volume can be achieved for any partition on A
as long as each d1(i) and d2(j) are assigned to a processor which has nonzeros
in row ri and column cj , respectively. Furthermore, any d1(i) to processor p (or
d2(j) to processor p) assignment will attain the same minimum as long as the
processor p has at least one nonzero in row ri (or column cj).

It can be seen from (4) that the communication volume requirements of the
proposed algorithm are closely related to those of repeated sparse matrix-vector
multiply operations; see for example [4, 12]. In fact, the communication opera-
tions in an iteration of Algorithm 1 are the same as those in the computations
y ← Ax followed by x ← AT y, when the partitions on x and y are equal to
the partitions on D2 and D1, respectively. Having observed that we can use
hypergraph models, see for example [4, 19, 21], to partition the matrix A, and

6

then follow the above development to partition D1 and D2 to obtain efficient
parallelization. Moreover, due to the equivalence between the communication
operations of the proposed algorithm and those of sparse matrix-vector multiply
operations, we can adopt the vector partitioning techniques discussed in [1, 20]
to partition D1 and D2.

We wanted to have a parallelization of the scaling algorithm independent of
the matrix partitioning. This is because we imagine the use of the algorithm in
a parallel linear system solver context where the matrix is already distributed.
Therefore, as an alternative to the existing partitioning methods [1, 20], we de-
veloped the following parallel algorithm to partition D1 and D2 among P pro-
cessors. Each d1(i) will be assigned to the processor which has the closest entry
to a fictitious diagonal (on a square matrix of order max{m,n}). The same
strategy is used on the columns. In our implementation, we perform a reduction
operation on two arrays of sizes 2×m and 2×n. Each processor sweeps over its
triplets 〈i, j, aij〉 and computes its shortest distance to the diagonal entry in row
i and its shortest distance to the diagonal entry in column j. That is, processor
p computes

gp
r (i) = min{|i− j| : aij ∈ p} and gp

c (j) = min{|j − i| : aij ∈ p} .

These shortest distances are stored in the first half of the arrays. The second
half of the arrays are used to store the ranks of the processors that recorded the
distance in the first half. A global all-reduce operation is performed on these two
arrays to yield the array gr of size 2 ×m and the array gc of size 2 × n on all
processors. The reduction operation is performed with the minimum operation
to set

gr(i) = min
p
{gp

r (i) : 1 ≤ p ≤ P} for 1 ≤ i ≤ m

and
gc(j) = min

p
{gp

c (j) : 1 ≤ p ≤ P} for 1 ≤ j ≤ n .

We use the second half of the arrays to guarantee a unique result. If there is a
tie for an entry in the first half of the arrays, the processor with the smaller rank
is declared as the one giving the minimum.

We make a few observations about the proposed partitioning algorithm.
Firstly, the proposed diagonal matrix partitioning approach tries to exploit the
given partition on the matrix A and obtains the minimum total volume of com-
munication possible (with respect to the given partition on A). Secondly, if the
diagonal of the matrix A is zero-free, the proposed approach will partition D1

and D2 in such a way that the processor which holds aii will own d1(i) and d2(i).
This is the common approach taken in standard matrix partitioning approaches,
see for example [4, 6]. Thirdly, we believe that the algorithm is likely to achieve a
balance on the number of D1 and D2 matrix entries assigned to the processors,
hence in a way it will achieve a balance on communication loads of the proces-
sors. We investigate the issue of achieved balance in the communication loads
of the processors in the next section. We note that the problem of optimizing
the partitioning of D1 and D2 for some other communication cost metrics such

7

as the total number of messages with a balancing constraint on the communi-
cation volume loads of processors, or the maximum volume of messages sent
and received by a single processor is NP-complete; see [19] and [1], respectively.
Rather than addressing such communication cost metrics explicitly, we prefer
the proposed partitioning algorithm, as it is easy to implement and fast to run
in parallel.

4 Experiments

We have implemented a parallel program for the proposed matrix scaling algo-
rithm in C using LAM/MPI [3]. The experiments were carried out on up to 16
nodes of two PC clusters of Beowulf class [18]. In the first cluster, the nodes
are Intel Pentium IV 2.6 GHz processors with 1GB of RAM, and they run De-
bian/GNU Linux. This cluster has a Gigabit Ethernet switch. The cluster has a
measured latency of 37 microseconds and a measured bandwidth of 75MB/s. The
second cluster has an Infiniband interconnection network and is based on Dual
250 Opteron AMD processors each having 4GB of RAM. In this cluster, latency
and bandwidth are measured as 3.3 microseconds and 772MB/s, respectively.
In both of the systems, the program is compiled with gcc using optimization
option -O3.

We ran the program on a set of matrices from the University of Florida sparse
matrix collection [8]. The characteristics of the matrices are shown in Table 1.

Table 1. Matrices used in measuring the parallel performance, their size, number of
nonzeros, and the number of iterations to converge in the ∞- and 1-norms with error
tolerance of 1.0e-6. The number 1000 indicates cases where the method did not converge
in 1000 iterations (those matrices, except Hamrle3, do not have total support). Matrices
are listed in increasing order of the number of nonzeros.

number of iterations
matrix n nnz ∞-norm 1-norm

aug3dcqp 35543 128115 26 50
a5esindl 60008 255004 2 107
a2nnsnsl 80016 355034 22 115
a0nsdsil 80016 355034 22 106
blockqp1 60012 640033 2 48
olesnik0 88263 744216 23 1000
c-71 76638 859554 24 1000
boyd1 93279 1211231 25 28
twotone 120750 1224224 24 1000
lhr71c 70304 1528092 27 1000
H2O 67024 2283760 2 16
filter3D 106437 2813616 3 20
Hamrle3 1447360 5514242 23 1000
G3 circuit 1585478 9246304 2 19
thermal2 1228045 9808358 2 18
SiO2 155331 11438834 2 16

8

We have observed that usually 25–30 iterations of the discussed scaling al-
gorithm is sufficient to improve the condition number of the matrices. We used
the performance profiles discussed in [9] to generate the plot shown in Fig. 1.
The plot compares estimates of the condition numbers for the scaled matrices
resulting from four different scaling algorithms and those of the original matri-
ces. For a given τ , the plot shows the probability for a scaling algorithm that
the condition estimate due to this algorithm is within τ times the best (among
all 5 condition estimates). Therefore, the higher the probability the more prefer-
able the scaling method. We have plotted the performance profiles up to τ =
5. As seen in the plot, the condition estimate of the original matrix has the
worst profile; at any τ , the condition estimate of the original matrix has the
least probability to be the best. As also seen from the plot, the discussed scaling
algorithm with any of the norms (1-, 2-, or ∞) has higher probability to be
better than that of Bunch’s for τ a little larger than 1.5. We note that Bunch’s
algorithm is direct approach, and computes the scaling without any iterations.
Note that, for these results we only run the parallel scaling algorithms for at
most 25 iterations. Although the 1- and 2-norm scaling algorithms did not fully
converge in 136 of the 245 cases, the values returned after 25 iterations were
close to the best values. The Sinkhorn-Knopp algorithm gave almost the same
condition estimates as the parallel scaling algorithm with the 1- and 2-norms.

Fig. 1. Performance profiles for the condition number estimates for 245 matrices. A
marks the condition number estimate of the original matrix; B marks that of Bunch’s
algorithm [2]; inf, 1, and 2 mark that of the parallel scaling algorithm with ∞-, 1-, and
2-norms (with at most 25 iterations). At, for example τ = 3, the curves from top to
bottom correspond to the labels given in the legend from left to right.

9

To measure the average running time of an iteration, we ran the program for
1000 iterations, without testing convergence. We used the fine-grain hypergraph
model [6] and the hypergraph partitioning tool PaToH [5] with default options
to partition the matrices. In the fine-grain model, the nonzeros of a matrix are
partitioned independently, i.e., nonzeros in a row or a column are not necessarily
assigned to a common processor. We compute the partitions on D1 and D2 with
the parallel algorithm proposed towards the end of Section 3.

Table 2 shows the speedups we have obtained for the matrices in our data
set. Note that we measure the time spent in the iterations, and hence assume
that the matrix is already distributed among the processors. During these ex-
periments, the convergence tests are not performed, and hence the reported time
of the iterations does not include the time spent doing the convergence checks.
The speedups are the averages of 10 different matrix partitions obtained with the
fine-grain model. As is seen in the table, good results are obtained for the bigger
(in terms of number of nonzeros) matrices (except for c-71 and H2O). That is,
most of the time, we obtain better speedups for matrices with a larger number of
nonzeros. This is expected as the computation to communication ratio is small
for sparse matrix-vector multiply type operations. Therefore, if the matrix has
a small number of nonzeros, the communication overhead becomes significant
and degrades the performance. We investigated the communication patterns in
an attempt to understand the performance of the proposed parallelization ap-
proach. Notice that the load balance and the total communication volume are
determined according to the given matrix distribution. In all cases, the load im-
balance was less than 0.03; we measure the imbalance as (wmax − wavg)/wavg,
where wmax is the maximum load and wavg is total load divided by the number
processors, so the value zero would indicate perfect balance, a value of 1 that the
maximum load was twice the average and a value greater than 1 would indicate
severe imbalance. The algorithm proposed for partitioning D1 and D2 resulted
in acceptable imbalances among the communication loads of the processors. In
terms of number messages sent by a single processor, the imbalance among loads
of the processors, is on the average, 0.25 with a maximum of 1.45. In terms of
volume of messages sent by a single processor, the average imbalance is 0.4, with
a maximum of 3.27. We further investigated the communication patterns for 64-
and 128-way partitions of the matrices in our data set. Although we have seen
some large numbers, the average imbalance is around 3.2 using a metric of the
maximum number of messages per processor, and 4.3 with the metric being the
maximum volume of messages per processor.

In an attempt to verify empirically that the proposed algorithm for partition-
ing D1 and D2 works well for a number of systems, we performed experiments
on the nodes of a CRAY XD1 system at CERFACS. This system has two AMD
Opteron 2.4 GHz processors per node, each having 2GBytes of memory. The
nodes are connected with a RapidArray interconnect with an MPI latency of
1.7 microseconds and a bandwidth of 4GB/s between nodes. The speedups ob-
tained in this system are similar to the reported results. We tried the following
alternative partitioning approach on the three parallel systems mentioned so far:

10

Table 2. Speedup values of the parallel scaling algorithm with ∞-norm, on P =
2, 4, 8, and 16 processors for two different parallel systems. For each matrix, the first
and second lines correspond to the experiments run on, respectively, PC cluster with
Intel processors and PC cluster with AMD processors. For each matrix, the sequential
running time of the scaling algorithm for 1000 iterations is listed in units of seconds
under the column Seq.Time.

P
matrix Seq.Time 2 4 8 16

aug3dcqp 8.30 1.7 2.9 4.1 4.5
3.06 1.9 3.8 4.3 3.6

a5esindl 15.09 1.8 3.0 4.1 4.8
5.12 1.5 1.9 2.3 3.8

a2nnsnsl 20.71 1.8 3.1 4.0 4.8
7.24 1.5 1.8 2.1 3.3

a0nsdsil 20.92 1.8 3.1 4.0 4.6
7.22 1.5 1.8 2.1 3.2

blockqp1 32.55 1.9 3.4 5.5 7.4
8.97 1.6 2.4 3.3 4.9

olesnik0 46.08 1.9 3.7 6.9 12.3
14.91 1.9 3.9 7.5 13.6

c-71 51.60 1.8 3.3 5.4 7.6
17.54 1.6 3.3 5.3 6.7

boyd1 70.34 1.9 3.6 6.3 10.2
24.57 1.8 3.1 4.9 7.6

twotone 74.76 1.9 3.7 7.0 11.8
25.40 1.9 3.7 6.9 11.3

lhr71 78.25 2.0 3.8 7.3 13.5
18.10 2.0 3.4 6.8 14.0

H2O 111.33 1.9 2.8 2.4 6.7
29.33 1.6 2.5 4.2 7.7

filter3D 146.83 1.9 3.7 7.1 13.3
52.66 2.1 3.5 6.7 12.7

Hamrle3 337.99 1.9 3.8 7.3 13.9
146.15 1.9 3.8 7.0 12.6

G3 circuit 455.25 1.8 3.8 7.4 14.0
173.11 1.9 3.3 6.9 14.5

thermal2 573.24 2.0 3.9 7.6 14.4
208.20 1.6 3.4 6.5 13.1

SiO2 545.90 1.9 3.7 6.9 11.3
180.09 1.9 3.6 5.9 9.5

11

assign d1(i) to the processor with the smallest rank among those having nonze-
ros in row ri; assign d2(j) to the processor with the largest rank among those
having nonzeros in column cj . On the PC cluster with AMD processors and
Infiniband interconnect and also on the CRAY XD1, the use of this alternative
resulted in speedups similar to those resulting from the proposed partitioning
approach. However, the alternative did not perform as well on the PC cluster
mentioned before. Note that the alternative can produce high imbalance among
the number of messages sent by a single processor. Furthermore, the messages
are usually short. Combined with the relatively high message latency overhead,
this is the most probable reason behind the PC cluster being intolerant to simple
partitioning algorithms. In fact, we have observed that the alternative resulted
in imbalances, on the average, of around 1.0 for the communication cost metrics
of number of messages and communication volume per processor, both in terms
of sends and receives, with the maximum being 7.0 for all of the metrics, which
is really a very bad imbalance.

5 Conclusion

In this work, we reviewed an iterative algorithm which scales the l-norm, for
l = 1, 2, . . . ,∞, of the rows and columns of a matrix to 1 and briefly men-
tioned some of its properties. We discussed the parallelization of the algorithm.
We argued that the parallelization requires a careful partitioning of two diag-
onal matrices in addition to a standard sparse matrix partitioning for parallel
matrix-vector multiply operations. We proposed a method based on an all-reduce
operation to partition the diagonal matrices. We discussed performance results
on different parallel systems where good speedups are obtained for matrices
having a reasonably large number of nonzeros.

Acknowledgements

We thank Prof. C. Aykanat and members of the parallel and distributed com-
puting research group of Bilkent University, Ankara, Turkey; and Prof. Ü. V.
Çatalyürek of the Department of Biomedical Informatics at the Ohio State Uni-
versity, USA for granting us exclusive access to their parallel machines.

References

1. R. H. Bisseling and W. Meesen. Communication balancing in parallel sparse
matrix-vector multiplication. Electronic Transactions on Numerical Analysis,
21:47–65, 2005.

2. J. R. Bunch. Equilibration of symmetric matrices in the max-norm. Journal of
the ACM, 18(4):566–572, 1971.

3. G. Burns, R. Daoud, and J. Vaigl. LAM: an open cluster environment for MPI.
In John W. Ross, editor, Proceedings of Supercomputing Symposium ’94, pages
379–386. University of Toronto, 1994.

12

4. Ü. V. Çatalyürek and C. Aykanat. Hypergraph-partitioning based decomposition
for parallel sparse-matrix vector multiplication. IEEE Transactions on Parallel
and Distributed Systems, 10(7):673–693, 1999.

5. Ü. V. Çatalyürek and C. Aykanat. PaToH: A multilevel hypergraph partitioning
tool, version 3.0. Technical Report BU-CE-9915, Computer Engineering Depart-
ment, Bilkent University, 1999.

6. Ü. V. Çatalyürek and C. Aykanat. A fine-grain hypergraph model for 2d de-
composition of sparse matrices. In Proceedings of 15th International Parallel and
Distributed Processing Symposium (IPDPS), San Francisco, CA, April 2001.

7. A. R. Curtis and J. K. Reid. On the automatic scaling of matrices for Gaussian
elimination. IMA Journal of Applied Mathematics, 10(1):118–124, 1972.

8. T. Davis. University of Florida sparse matrix collection: http://www.cise.ufl.
edu/research/sparse/matrices. NA Digest, 92/96/97, 1994/1996/1997.

9. E. D. Dolan and J. J. More. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91(2):201–213, 2002.

10. I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, London, 1986.

11. I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal
of a sparse matrix. SIAM Journal on Matrix Analysis and Applications, 22(4):973–
996, 2001.

12. B. Hendrickson and T. G. Kolda. Partitioning rectangular and structurally un-
symmetric sparse matrices for parallel processing. SIAM Journal on Scientific
Computing, 21(6):2048–2072, 2000.

13. HSL: A collection of Fortran codes for large-scale scientific computation. http:

//www.cse.scitech.ac.uk/nag/hsl, 2004.
14. U. G. Rothblum, H. Schneider, and M. H. Schneider. Scaling matrices to prescribed

row and column maxima. SIAM Journal on Matrix Analysis and Applications,
15(1):1–14, 1994.

15. D. Ruiz. A scaling algorithm to equilibrate both rows and columns norms in
matrices. Technical Report RAL-TR-2001-034 and RT/APO/01/4, Rutherford
Appleton Laboratory, Oxon, UK and ENSEEIHT-IRIT, Toulouse, France, 2001.

16. M. H. Schneider and S. Zenios. A comparative study of algorithms for matrix
balancing. Operations Research, 38(3):439–455, 1990.

17. R. Sinkhorn and P. Knopp. Concerning nonnegative matrices and doubly stochastic
matrices. Pacific Journal of Mathematics, 21(2):343–348, 1967.

18. T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranaweke, and C. V.
Packer. BEOWULF: A parallel workstation for scientific computation. In Proceed-
ings of the 24th International Conference on Parallel Processing, 1995.

19. B. Uçar and C. Aykanat. Encapsulating multiple communication-cost metrics
in partitioning sparse rectangular matrices for parallel matrix-vector multiplies.
SIAM Journal on Scientific Computing, 25(6):1827–1859, 2004.

20. B. Uçar and C. Aykanat. Revisiting hypergraph models for sparse matrix parti-
tioning. SIAM Review, 49(4):595–603, 2007.

21. B. Vastenhouw and R. H. Bisseling. A two-dimensional data distribution method
for parallel sparse matrix-vector multiplication. SIAM Review, 47(1):67–95, 2005.

