
A list scheduling algorithm for scheduling

multi-user jobs on clusters

J. Barbosa1 and A.P. Monteiro1,2

1Universidade do Porto, Faculdade de Engenharia,
Departamento de Engenharia Informática

2INEB - Instituto de Engenharia Biomédica, Lab. Sinal e Imagem
Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

e-mail: {jbarbosa,apm}@fe.up.pt

Abstract. This paper addresses the problem of scheduling multi-user
jobs on clusters, both homogeneous and heterogeneous. A user job is
composed by a set of dependent tasks and it is described by a direct
acyclic graph (DAG). The aim is to maximize the resource usage by al-
lowing a floating mapping of processors to a given job, instead of the
common mapping approach that assigns a fixed set of processors to a
user for a period of time. The simulation results show a better clus-
ter usage. The scheduling algorithm minimizes the total length of the
schedule (makespan) of a given set of parallel jobs, whose priorities are
represented in a DAG. The algorithm is presented as producing static
schedules although it can be adapted to a dynamic behavior as discussed
in the paper.
Keywords: static and dynamic scheduling, parallel task, list scheduling,
cluster computing.

1 Introduction

The aim of the work herein presented is to improve the performance of clus-
ters in the processing of applications (or jobs) composed by a set of dependent
tasks. The common scheduling approach is to consider a fixed number of available
processors to schedule the set of tasks [13, 14, 17, 18, 20] which on a multi-user
environment corresponds to fix the number of processors available for each user.
The presented model is based on a former model [2] to schedule DAGs of de-
pendent parallel tasks. A parallel task, also called malleable task, is a task that
can be executed on any number of processors with its execution time being a
function of the processors alloted to it [7, 12, 15].

The target computer platform is a cluster, either homogeneous or heteroge-
neous, with a dedicated network. Such clusters can be private clusters of some
organization but also they can be the nodes of a Grid infrastructure which to
have a good performance requires, at least, that the end clusters have also a
good performance.

The cluster schedulers usually allow that users specify the number of proces-
sors required to run their jobs, which imposes a static allocation of the cluster



nodes and a non-unified cluster management based only on user requests. Users
try to allocate as much capacity as possible and there is not a global man-
agement. The proposed algorithm intends to optimize the cluster utilization by
allowing different number of processors to be used along the processing of the
tasks of a given user job. The algorithm is non-preemptive and achieves the goal
by considering different number of processors to process the tasks of a given
job. The DAG to schedule has two levels of detail. There is a master DAG, that
establishes priorities among user jobs, and there is a DAG for each job. Figure 1
exemplifies a typical DAG. The scheduler input is the global DAG and all ready
tasks are considered to schedule at a given time.

Fig. 1. A DAG composed by jobs of different users where job dependencies are created
by priority policies; each job is described by a DAG of dependent tasks

The common approach to schedule DAG’s is the task parallel paradigm,
which assigns one task to one processor. The scheduling consists on the distri-
bution of the DAG nodes among the machine nodes, so that the makespan is
minimum [1, 11, 18–20]. Here it is considered the parallel task model where each
task can execute in more than one processor but one processor only participates
in the execution of a task at any given time [7, 12, 21].

The remaining of the paper is organized as follows: section 2 defines the
scheduling problem and revises related work in scheduling parallel and non-
parallel tasks. Section 3 presents the computational model and the methodology
used in this paper. Section 4 presents the list scheduling algorithm proposed in
this paper. Finally, section 5 presents results and section 6 conclusions.

2 Problem definition and related work

The problem addressed in this paper is the scheduling of a parallel applica-
tion represented by a directed acyclic graph (DAG) on a distributed memory
computer (i.e. a cluster). A DAG G = (V, E), where V is the set of v nodes of
the graph, representing the tasks to be processed, and E is the set of e edges,
representing precedence among tasks and communication costs. For each node
vi it is defined a schedule start-time (ST (vi)) and a finish-time (FT (vi)), being



the schedule length given by maxi{FT (vi)}. Therefore, the goal of scheduling is
to minimize maxi{FT (vi)} [13].

The above definition is valid either for homogeneous or heterogeneous ma-
chines and either for parallel tasks (executed on several processors) and non-
parallel tasks (executed on one processor). The existing work on scheduling
parallel tasks deals almost exclusively on homogeneous computers, and either
dependent or independent tasks. The problem is known as NP-Complete so that
several authors proposed polynomial approximation schemes [6, 7, 12, 15, 16, 21].

The problem studied here considers the scheduling of general task depen-
dency graphs and both homogeneous and heterogeneous clusters. Tasks are con-
sidered parallel and non-monotonic, this is, the execution time of task i, ti,p, is
considered to be non-monotonic so that there is a number p of processors for
which ti,p < ti,p−1 and ti,p < ti,p+1. Mainly for heterogeneous clusters connected
by a standard network it was shown that, due to communication constraints and
task granularity, leaving processors in the idle state can reduce the processing
time [3–5]. The solution proposed is based on the list scheduling technique used
for non-parallel tasks [13, 18–20].

DAG scheduling is commonly addressed as a non-parallel task problem [13,
14, 17, 18, 20], therefore the algorithm proposed in this paper is compared to the
Heterogeneous Earliest-Finish-Time (HEFT) algorithm [20]. The authors com-
pared several scheduling algorithms for heterogeneous computing and conclude
that HEFT is the best one for scheduling DAG’s on those systems. HEFT com-
prises two phases: first, there is a task prioritizing phase and second, a processor
selection phase that selects the processor that minimizes the task finish time. It
implements an insertion based policy which considers the possibility of insert-
ing a task in an earliest idle time slot between two already scheduled tasks on
a processor. The aim of comparing to HEFT is to show that the parallel-task
approach can improve significantly the performance of a cluster, heterogeneous
or not, in scheduling DAGs, with a scheduling algorithm of the same time com-
plexity as HEFT, which is O(v2 × P ) for a DAG of v tasks and a P processor
machine.

The former techniques are all static approaches of the mapping problem that
assume static conditions for a given period of time. A dynamic approach intends
to be more flexible concerning the availability of information about tasks arrival
time and machine availability. Dynamic mapping of tasks is usually addressed as
an independent task scheduling [9] problem. This approach can be applied here
at the job level because these are independent and our master DAG is also based
on job priorities and job deadlines. The dynamic scheduling can be applied with
our scheduling algorithm in the following way: a dynamic policy like [9] specifies
the DAG for a given scheduling instant and our algorithm scheduled tasks based
on that DAG. The DAG is updated when new jobs arrive and a schedule instant
happens when there are tasks ready to schedule. However, in this paper dynamic
scheduling is not considered, because it requires more research and also it would
obfuscate the main comparison that is to show that a parallel task scheduling
achieves better performance than a non-parallel one on a cluster.



3 Computational model

The computational platform considered is a distributed memory machine
composed by P processors of possibly different processing capacities (hetero-
geneous cluster), connected by a switched network. It supports simultaneous
communications between different pairs of machines. It is assumed that the ap-
plication is represented by a DAG and the execution time of the tasks can be
estimated at compile time or before starting the execution. The communications
required to complete a task are included in the computation time as a function
of the processors p used by that task. The inter-task communication is defined
as a function of the computational time of the sender task and it is represented
by the edges weight in the DAG.

The computational model that supports the estimation of the processing
time, for each task, is based on the processing capacity Si of processor i (i ∈
[1, P ]) measured in Mflop/s, the network latency TL, and the bandwidth ω mea-
sured in Mbit/s. The total computation time is obtained by summing the time
spent communicating, Tcomm, and the time spent in parallel operations, Tparallel.
The time required to transmit a message of b elements is Tcomm = TL+bω−1. The
time required to compute the pure parallel part of the code, without any sequen-
tial part or synchronization time, on p processors is Tparallel = f(n)/

∑p
i=1 Si.

The numerator f(n) is the cost function of the algorithm, measured in floating
point operations, depending on problem size n.

As an example, for a matrix multiplication of (n, n) matrices, using the al-
gorithm described in [10], the number of floating point operations is estimated
to be f(n) = 2n3. The total amount of data required to be transmitted in order
to complete the algorithm on a grid of processors P = r × c is n2(r − 1) across
rows of processors and n2(c − 1) across columns of processors, resulting in the
total of n2(r + c − 2) data elements. If the broadcast over a column or a row
of processors is considered sequential, then they are transformed in (r − 1) and
(c − 1) messages, respectively.

Finally, the time function for the matrix multiplication algorithm is given
by:

T = Tcomm + Tparallel =
n2(r + c − 2)

w
+ TL +

2n3

∑p
i=1 Si

(1)

This expression is computed for p = 1 to P and the number of processors that
minimize the processing time is determined. The computation of the best pro-
cessor grid for linear algebra kernels, on a heterogeneous machine, was discussed
in [4].

4 Scheduling algorithm

The scheduling algorithm is divided in two steps: first, a construction of a
master DAG where each node is a user job and each edge represents a priority
of one job over another, as shown in Figure 1; and second, a list scheduling



algorithm, based on [2], that schedules the master DAG, this is tasks of all jobs
in a unique DAG.

The master DAG is created based on job priorities and deadlines [9]. Here
it will be assumed that the master DAG is already defined and available to be
scheduled (first step). In the second step the algorithm ensures that user reser-
vation policy is not compromised such that, for example, if a user has reserved
20% of the cluster, their jobs will be sechedule accordingly. The difference for
the fixed capacity schedule is that if the user does not need that capacity at a
given time, it will be available for other users. Figure 2 exemplifies the master
DAG construction. If user 1 has reserved part of the machine, his tasks are put in
parallel, at the top level. The tasks of other users are organized either in parallel
or sequentially according to the prioritizing policy [9].

Fig. 2. Master DAG example; tasks of user 1 are organized separately to guarantee
the reservation policy

The master DAG have artificial nodes in order to impose priorities among
jobs with zero processing time. Jobs are independent so that the edges have zero
communication costs. Communications are only considered inside each job.

The scheduling algorithm applied to the global DAG is a list scheduling
technique [13] which consists in the following steps: a) determine the available
tasks to schedule, b) define a priority to them and c) until all tasks are scheduled,
select the task with higher priority and assign it to the processor that allows the
earliest start-time. For parallel tasks the last step selects not one processor but
several processors that allow the earliest start-time [2]. Note that at this step
we refer to tasks that result from all jobs.

Two frequently used attributes to define the tasks priorities are the t-level
(top-level) and the b-level (bottom-level). The t-level of a node ni is defined as
the length of the longest path from an entry node to ni (excluding ni). The
b-level of a node ni is the length of the longest path from ni to an exit node.
The nodes along the DAG with higher b-level belong to the critical path.

The execution time ti,p is considered to be non-monotonic so that there is
a number p of processors for which ti,p < ti,p−1 and ti,p < ti,p+1. Let t∗i,p be



the minimum processing time of task i on the heterogeneous machine, which is
achieved when the fastest p processors are used. Other combination of p proces-
sors will result in less computational capacity and consequently more processing
time. The specific best processor layout should be a parameter of the tasks so
that it can be considered in the optimal (t∗i,p) processing time computation. From
this definition we can estimate a lower bound for the makespan which is the sum
of the minimum processing time of the tasks on the critical path: t∞ =

∑
i t∗i,p,

which is the time required to solve all tasks assuming an unbounded number
of processors [21], and in this case it means that any task has the cluster fully
available for it.

The expected makespan is higher because not all concurrent tasks can execute
on the fastest processors which may change dynamically the critical path. Lower
priority tasks, after being scheduled, can be transformed in critical path tasks
if the capacity of the machine is lower than the required capacity to obtain t∗i,p
for all concurrent tasks. Therefore, the algorithm [2] evaluates dynamically the
b-level of the tasks being scheduled and makes scheduling corrections in order
to reduce the maximum b-level of those tasks.

The processing capacity required to achieve t∗i,p for task i considers the fastest
processors and is defined as S∗

i =
∑p

j=1 Sj . It is obvious that if slower processors
are used, the capacity that achieves minimum time for task i is S′

i < S∗
i , resulting

t′i > t∗i . Since more processors are required to obtain S∗
i they would imply more

communications and consequently more processing time; therefore, the minimum
processing time achievable will be certainly higher than the estimated t∗i .

Algorithm1.
1. while tasks �= �
2. Compute the set of ready tasks
3. For each User k with limit>0
3. For each ready task i
4. Compute the optimal capacity S∗

i

5. if
∑

i S∗
i > Slimit

6. For each ready task i
7. S′

i = (Slimit/
∑

j S∗
j )S∗

i

8. else
9. For each ready task i S′

i = S∗
i

10. Smax = Smax − ∑
i S′

i

11. For each ready task i
12. Compute the optimal capacity S∗

i

13. if
∑

i S∗
i > Smax

14. For each ready task i
15. S′

i = (Smax/
∑

j S∗
j )S∗

i

16. else
17. For each ready task i S′

i = S∗
i

Algorithm 1 is based on [2]. Smax =
∑P

i=1 Si is the total capacity of the homoge-
neous or heterogeneous machine computed as the sum of the individual capacity
of each node. The while cycle at line 1 refers to all tasks of the DAG. In line 2 the



ready tasks are those for which the predecessors have finished processing. From
line 3 to 9 the algorithm determines the computational capacity that minimizes
each ready tasks S∗

i for the users that have reserved a slice of the cluster (repre-
sented by Slimit), according to the computational model and by assuming that
the fastest processors are used. The number of processors is not important here
and it is not registered. Then if the user limit Slimit is exceeded, the capacity
assigned to each tasks is limited to the relative weight of each task. On line 10
the capacity left to other users that have no cluster reservation is computed.
From line 11 to 17 the algorithm computes the same as from line 3 to 9 for the
remaining tasks. The time complexity of algorithm 1 is O(v × P + v) since each
task is only computed once: step 4 and 12 are O(v × P ); and step 6 and 14 are
O(v).

Algorithm2.
1. Compute tl
2. while ready tasks �= �
3. Select the minimum tl
4. Select processors that allow tl
5. while Si < S′

i and ti,p < ti,p−1

add processor
6. Compute bl
7. while true
8. Select task k with highest bl
9. Select task r with minimum bl
10. if r has been maximum

then break
11. Reduce one processor to task r
12. Assign it to task k
13. Re-evaluate processing time

of tasks r and k
14. Re-evaluate bl of tasks r and k

Algorithm 2 is the second part of the scheduling algorithm. Here t-level and
b-level were replaced by tl and bl respectively. From line 1 to 5 the algorithm
schedules all ready tasks trying to assign to them the processing capacity deter-
mined before in Algorithm 1. The selected processors allow the tasks to start on
their earliest start-time, but it also verifies if starting later, with more proces-
sors, they can finish at an earlier time. The processing time needs to be tested
since in general the processors used are not the fastest ones and consequently
the minimum processing time is achieved with less processing capacity, although
higher than t∗i,p.

From line 6 to 14 the algorithm tries to correct the last schedule by assigning
more processors to the tasks that have higher b-level. The computation of b-level
on line 6 and 14 uses t∗i,p for the tasks on following levels (not processed yet). For
tasks of the current level, the time computed on line 5 and 13 are respectively
used. The algorithm stops if the task with minimum b-level has been maximum
during the minimization procedure. At line 11 the computation time of tasks r



and k are re-evaluated considering the new set of processors assigned which have
resulted from the transference of one processor from the set of r to the set of k.

The time complexity of b-level and t-level is O(e + v) [13]. The time com-
plexity of steps 3 to 5 is O(v × P ) since it is executed once for each task and
combined up to P processors. Steps 7 to 14 are O(v2 × P ) since each task can
be compared to the others (v2) and each of those cases is combined up to P
processors. The resulting time complexity of both algorithms is O(v2 × P ).

The algorithm can be applied at the beginning of the computation and gener-
ates all the scheduling, resulting in a static scheduling. But if Algorithm 1 and 2
are executed every time that new ready tasks are available, this is, with the feed-
back of the computation and eventually with new jobs that may have arrived,
it will produce a dynamic scheduling that takes into account the availability of
the nodes (some may go off), the new jobs submitted and the expiration of user
reservations. In fact for a cluster only a dynamic behavior will be useful.

5 Results and discussion

In this section the evaluation of the scheduling algorithm proposed in this
paper and a comparison to the HEFT [20], a reference algorithm of the related
work section, is presented. The results shown below are obtained from a simu-
lation setup but based on measures taken in the target cluster. The procedure
to estimate computation and communication times were presented and analyzed
before [4].

5.1 Parallel machine

Although both scheduling algorithms were designed to work on heterogeneous
machines, the machine considered here is homogeneous in order to have an un-
biased comparison of the algorithms behavior. In fact a homogeneous computer
is a particular case of the general heterogeneous paradigm.

The machine considered is composed by 20 processors, connected by a 100Mbit
switched Ethernet. The processors are Pentium IV at 3.2 GHz and 1 GB of RAM
with an individual capacity of 404Mflops. The main characteristic of the net-
work is that it allows simultaneous communications between different pairs of
machines. For parallel tasks this is an important characteristic because to com-
plete a task the involved processors (group) have to exchange data. In the general
case, when accounting for the amount of communication involved, we need to
ensure that inside the group there is no communication conflicts. Otherwise, it
would be very difficult to synchronize communications, in different parallel tasks,
to avoid conflicts.

5.2 DAGs and tasks

There were used three DAGs, one with 10 tasks obtained from [20] and
shown in Figure 3, for direct comparison, and two other DAGs of 30 and 90



tasks. These last two DAGs were generated based on the algorithm presented in
[8] which can be resumed as follows: there are Na nodes with no predecessors and
only successors, with ids ranging from 1 to Na; Nb nodes with both predecessors
and successors, with ids ranging from Na+1 to Na+Nb; Nc nodes with only
predecessors and ids ranging from Na+Nb+1 to Na+Nb+Nc. Here we considered
Na=Nc=4 and Nb equal to the remaining nodes. The minimum and maximum
out node degree is 2 and 5 respectively. We also make all edges pointing from
smaller id nodes to larger id nodes.

Fig. 3. Sample DAG with 10 nodes obtained from [20]

The structure of the randomly generated DAG [8] can represent a collection
of jobs from one or several users that are organized in a master DAG as expressed
on section 4, and representing real applications. In this paper the tasks that form
all DAGs are linear algebra kernels namely tridiagonal factorization (TRD), ma-
trix Q computation, QR iteration and correlation (C). The size of each task is
randomly generated in the interval [100, 400]. The processing times estimated in
the scheduling algorithm are based on real values measured on the target pro-
cessors. Table 1 shows the relative computation and intra-task communication
weight of the tasks. The DAG edges are assigned a inter-task communication
cost of 30% of the computation time of the precedent task (computation to
communication ratio of 0.3).

5.3 Limitations of the non-parallel task scheduling

First, it is shown that a non-parallel approach does not take advantage of
the capacity available mainly due to the serialization of tasks in the same pro-
cessor in order to reduce inter-task communications. The scheduling resulted
from these algorithms, like HEFT, uses few processors because this results in an
optimization of the scheduling length. Figure 4-a) shows the computational load



Task type TRD Q QR C

Task relative
computational weight 1 0.82 2 3

Task relative
communication weight 1 0.125 0.25 0.50

Table 1. Relative computational and intra-communication weights of tasks

for a computer with 20 processors. It can be seen that for the 10 node DAG, of
Figure 3, only 3 processors have significant load; for the 30 node DAG only 4
processors and with very different loads; and for the 90 node DAG, 5 processors
are idle and other 5 have very low load, this is, half of the machine is idle almost
of the time. This behavior shows that if a user reserves a set of nodes for a given
period of time, it is not guaranteed that the machine is well used even if the user
has heavy DAGs to execute.

A parallel task scheduling, on the other hand, achieves better load distribu-
tion and consequently better machine usage. Figure 4-b) shows the load distri-
bution for the same DAGs. Although this approach requires data redistribution
between tasks and intra-task communications, it reduces the scheduling length
as shown in table 2.

Algorithm DAG10 DAG30 DAG90

HEFT (s) 7.87 23.85 27.64

Parallel task
scheduling (s) 4.02 14.31 21.41

Table 2. Schedule length obtained with HEFT and Parallel Task scheduling

5.4 Scheduling with user reservation of machine nodes

In point 5.3 it was shown the advantages of the parallel task scheduling.
Figure 4 shows a better load balance for this algorithm but not a perfect one.
A perfect scheduling would result in the same load for all processors assigned
to a user. This may not be achievable due to DAG restrictions. Therefore, the
alternative proposed with algorithms 1 and 2 is to make a flexible management
of the nodes assigned to a user so that if at any given point the user cannot use
that processing capacity, it will be available for jobs of other users. Instead of
assigning processors it is assigned processing capacity so that along a DAG exe-
cution different processors can be used with the restriction of having, together,
the same processing capacity. This strategy is straightforward applied for the
heterogeneous case.

We distinguish two situations that are: a) the user tasks are independent or
the DAG executed allows an efficient usage of the processors reserved with few



0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
tim

e 
(s

)

Node number

Dag10
Dag30
Dag90

(a) HEFT

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 1011121314151617181920

t
i
m
e
 
(
s
)

Node number

Dag10
Dag30
Dag90

(b) Parallel task algorithm

Fig. 4. Load distribution obtained with HEFT and parallel task scheduling algorithm

idle periods; and b) the user DAG imposes some idle periods in the processors
reserved. In the first situation, the algorithm proposed here does not bring any
advantage, apart from the task parallel scheduling that may improve the schedule
as shown in point 5.3. It is for the second hypothesis that the usage of the machine
as a whole can be improved and consequently the schedule length of the jobs
in general. Next, it will be shown with a situation example how the scheduling
algorithm improves the global performance.

Consider that a user reserves 12 nodes of a 20 node computer for a period
of time. However, user1 runs a job with 10 nodes that finishes before the re-
served period. Another user wants to run a job with 30 nodes which would use
the remaining 8 nodes. Table 3 resumes the schedule length obtained when an
exclusive usage is imposed and when a flexible usage is allowed with the global
management as proposed here.



user Schedule length (s)
Exclusive use Global Management

User1 (12 nodes) 106.59 93.60
User2 (8 nodes) 251.78 210.44

Table 3. Schedule length obtained with exclusive use of nodes and a global manage-
ment

In this case even user1 that consumed less computing power than the one
reserved was able to reduce the schedule length of the job. This is due to the
utilization of 13 processors in one given moment of the processing. This happened
due to rounding effects that resulted in the assignment of one more processor
to user1. The algorithm assigns computing power, but in shanks equivalent to
the computing power of the powerful node available. What was expected was to
obtain the same processing time as in the case of exclusive usage. The other user
reduces substantially the schedule length because when user1 does not use the
reserved power it is assigned to the other job. Figure 5 shows the assignment of
nodes to the tasks of user1 and user2 jobs when using the global management. It
can be seen that one task of user1 is executed on processor number 20 and that
before the end of the user1 job, user2’s job uses processors in the set of the first
12. This is because task restrictions in user1 DAG left several nodes idle. The
gaps between tasks of a given user are due to inter-task communications. The
gap is proportional to the edges arriving a node, because the algorithm sums
those communications.

Fig. 5. Mapping of tasks to computer nodes with the global management; node number
in the vertical axis and time in the horizontal axis



6 Conclusions

The scheduling algorithm presented in this paper can improve the cluster
utilization and the response time once we allow a variable computing power
(number of processors) assigned for a job. Although the results presented are for
a homogeneous cluster, the algorithm was designed for heterogeneous machines.
To overcame the heterogeneity of the machine, the algorithm starts by comput-
ing the amount of capacity in Mflops, instead of number of processors, that
minimizes the processing time of each task. For that it uses the fastest proces-
sors and determines the minimum processing time that each task can achieve in
that machine. Then, the algorithm joins processors until the maximum capacity
required for each task is achieved, independently of the number of processors,
but restricted by the maximum capacity available.

The algorithm proposed does not require a fixed subdivision of processors.
When scheduling a set of ready tasks the machine is viewed has a whole, indepen-
dently of the groups of processors formed in the last level, thus allowing a better
use of the machine and consequently achieving improvements in processing time.

It was demonstrated that, when scheduling DAGs, a non-parallel task schedul-
ing has limitations to efficiently use a set of processors assigned to a job.

Acknowledgments

The work presented was partially done in the scope of the project Seg-
mentation, Tracking and Motion Analysis of Deformable (2D/3D) Objects us-
ing Physical Principles, with reference POSC/EEA-SRI/55386/2004, financially
supported by FCT-Fundação para a Ciência e Tecnologia from Portugal.

References

1. A. K. Amoura, E. Bampis, and J.-C. König. Scheduling algorithms for parallel
gaussian elimination with communication costs. IEEE Transactions on Parallel
and Distributed Systems, 9(7):679–686, July 1998.

2. J. Barbosa, C. Morais, R. Nobrega, and A.P. Monteiro. Static scheduling of depen-
dent parallel tasks on heterogeneous clusters. In Heteropar’05, pages 1–8. IEEE
Computer Society, 2005.

3. J. Barbosa and A.J. Padilha. Algorithm-dependent method to determine the op-
timal number of computers in parallel virtual machines. In VECPAR’98, volume
1573. Springer-Verlag LNCS, 1998.

4. J. Barbosa, J. Tavares, and A.J. Padilha. Linear algebra algorithms in a het-
erogeneous cluster of personal computers. In Proceedings of 9th Heterogeneous
Computing Workshop, pages 147–159. IEEE CS Press, May 2000.

5. F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application-level
scheduling on distributed heterogeneous networks. In Supercomputing 96, 1996.

6. J. Blazewicz, P. Dell’Olmo, M. Drozdowski, and P. Maczka. Scheduling multipro-
cessor tasks on parallel processors with limited availability. European journal of
Operational Research, (149):377–389, 2003.



7. J. Blazewicz, M. Machowiak, J. Weglarz, M. Kovalyov, and D. Trystram. Schedul-
ing malleable tasks on parallel processors to minimize the makespan. Annals of
Operations Research, (129):65–80, 2004.

8. Sameer Shivle et al. Mapping of subtasks with multiple versions in a heterogeneous
ad hoc grid environment. In Heteropar’04. IEEE Computer Society, 2004.

9. Jong-Kook Kim et al. Dynamically mapping tasks with priorities and multiple
deadlines in a heterogeneous environment. Journal of Parallel and Distributed
Computing, 67:154–169, 2007.

10. R. Geijn and J. Watts. Summa: Scalable universal matrix multiplication algorithm.
Technical Report CS-95-286, University of Tennessee, Knoxville, 1995.

11. A. Gerasoulis and T. Yang. On the granularity and clustering of directed acyclic
task graphs. IEEE Transactions on Parallel and Distributed Systems, pages 686–
701, June 1993.

12. K. Jansen. Scheduling malleable parallel tasks: An asymptotic fully polynomial
time approximation scheme. Algorithmica, 39:59–81, 2004.

13. Y. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computing Surveys, 31(4):406–471, December
1999.

14. Y. Kwok and I. Ahmad. On multiprocessor task scheduling using efficient state
space search approaches. Journal of Parallel and Distributed Computing, 65:1515–
1532, 2005.

15. R. Lepère, G. Mounié, and D. Trystram. An approximation algorithm for schedul-
ing trees of malleable tasks. European journal of Operational Research, (142):242–
249, 2002.

16. Oh-Heum and K-Y Chwa. Scheduling parallel tasks with individual deadlines.
Theoretical Computer Science, 215:209–223, 1999.

17. Gyung-Leen Park. Performance evaluation of a list scheduling algorithm in dis-
tributed memory multiprocessor systems. Future Generation Computer Systems,
(20):249–256, 2004.

18. B. Shirazi, M. Wang, and G. Pathak. Analysis and evaluation of heuristic methods
for static task scheduling. Journal of Parallel and Distributing Computing, 10:222–
232, 1990.

19. O. Sinnen and L. Sousa. List scheduling: extension for contention awareness and
evaluation of node priorities for heterogeneous cluster architectures. Parallel Com-
puting, (30):81–101, 2004.

20. H. Topcuoglu, S. Hariri, and M.-Y Wu. Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel and
Distributed Systems, 13(3):260–274, March 2002.

21. Denis Trystram. Scheduling parallel applications using malleable tasks on clusters.
In 15th International Conference on Parallel and Distributed Processing Sympo-
sium, 2001.


