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Abstract. We present the Direct Numerical Simulations of high Reynolds
numbers vortical flows employing vortex methods. The simulations in-
volve a highly efficient implementation on massively parallel computers,
enabling unprecedented simulations using billions of particles.
Present results of this work include the investigation of the implementa-
tion performance up to 16k IBM BG/L nodes and the study of multiple
wavelength instabilities in aircraft wakes, enabling state of the art calcu-
lations at high Re numbers. Ongoing developments include simulations
using up to 32k processors, the implementation of unbounded conditions
and the evolutionary optimization of flow decay and mixing.

1 Introduction

Vortex methods exemplify the computational advantages and challenges of par-
ticle methods in simulations of incompressible vortical flows. These simulations
are based on the discretization of the vorticity-velocity formulation of the Navier-
Stokes equations in a Lagrangian form.

In the recent years hybrid techniques (see [1, 2] and references therein) have
been proposed where a mesh is used along with the particles in order to develop
efficient and accurate computations of vortical flows.

In this work, we present an efficient and scalable implementation of these
methodological advances for the massively parallel architecture of the IBM BG/L.
The present results involve DNS on 4k processors and an efficiency investigation
going up to 16k processors and 6 billion particles.

The method is applied to the decay of aircraft wakes and vortex rings. The
wake of an aircraft consists of long trailing vortices that can subject the fol-
lowing aircraft to a large downwash. Several research efforts have focused on
the identification of the governing physical mechanisms of wake evolution that



would lead to design of vortex wake alleviation schemes[3–7]. Flight realistic
conditions involve turbulent flows (Re ∼ 106) in unbounded domains for which
DNS reference data is still lacking.

State of the art simulations have been limited to low resolution LES in large
domains[8], or vortex method simulations[9, 10] which achieved Re=5000 DNS
in short domains and investigated various subgrid stress models for LES in long
domains.

The present work enables unprecedented resolutions for the DNS of long
wavelength instabilities. The long domain calculation at Re=6000 presented
herein constitutes the largest DNS ever achieved for a vortex particle method.
We also present results for the turbulent decay of a vortex ring at ReΓ = 7500.
Ongoing work includes simulations at even higher Reynolds on larger partitions
of BG/L, the development of unbounded conditions and the coupling of this
methodology with evolutionary algorithms in order to accelerate the decay and
mixing inside these vortical flows.

2 Methodology

2.1 The remeshed Vortex Particle Method

We consider a three dimensional incompressible flow and the Navier-Stokes equa-
tions in its velocity (u)-vorticity (ω = ∇× u) form :

Dω

Dt
= (ω · ∇)u + ν∇2ω (1)

∇ · u = 0 (2)

where D
Dt = ∂

∂t + u ·∇ denotes the Lagrangian derivative and ν is the kinematic
viscosity.

Vortex methods discretize the vorticity field with particles, characterized by
a position xp, a volume Vp and a strength αp =

∫
Vp

ωdx. The field is then

ω(x, t) ≈
∑

p

αp(t)ζh (x− xp(t)) , (3)

where ζ is the interpolation kernel and h the mesh spacing. Particles are con-
vected by the flow field and their strength undergoes vortex stretching and dif-
fusion

dxp

dt
= u(xp) ,

dαp

dt
=

∫
Vp

(ω · ∇)u + ν∇2ωdx ,

'
(
(ω · ∇)u(xp) + ν∇2ω(xp)

)
Vp .

(4)

Using the definition of vorticity and the incompressibility constraint the velocity
field is computed by solving the Poisson equation

∇2u = −∇× ω . (5)



The solution of this equation can be computed by using the Green’s function
solution of the Poisson equation or, as in the present hybrid formulation, grid
solvers.

The use of a mesh (M) conjointly with the particles (P) allows the use of
efficient tools such as grid solvers and Finite Differences. This is demonstrated
below in the case of a Euler time-step

– (P → M) Interpolate particle strengths on a lattice by evaluating Eq. 3 on
grid locations

ω(xij...) =
∑

p

αpζ
h (xij... − xp) (6)

where xij... is a grid node and ij . . . are node indices
– (M → M) Perform operations on the grid, i.e. solve the Poisson equation for

velocity in Fourier space, use Finite Differences and evaluate the right-hand
sides of the system of Eq. 4

– (M → P) Interpolate velocities, right-hand sides, respectively back onto the
particles,

u(xp) =
∑

i

∑
j

∑
...

h−du(xij...)ζh (xp − xij...)

Dω

Dt
(xp) =

∑
i

∑
j

∑
...

h−d Dω

Dt
(xij...)ζh (xp − xij...)

(7)

and advance the quantities and locations.

The Lagrangian distortion of the particles leads to loss of convergence[11, 12]. We
ensure accuracy by means of a periodic reinitialization of the particle locations[13–
16, 1]. This remeshing procedure, essentially a P → M interpolation, is performed
at the end of every time step and uses the third order accurate M ′

4 kernel[17].

2.2 Implementation for parallel computer architectures

The method was implemented as a client application of the open source Par-
allel Particle Mesh (PPM) library[18]. PPM provides a general-purpose frame-
work that can handle the simulation of particle-only, mesh-only or particle-mesh
systems. The library defines topologies, i.e. space decompositions and the as-
signment of sub-domains to processors, which achieve particle- and mesh-based
load balancing. The library provides several tools for the efficient parallelization
of the particle-mesh approach described in Section 2.1. Data communication is
organized in local and global mappings. Local mappings handle

– the advection of particles from a sub-domain into another
– ghost mesh points for the consistent summation of particle contributions

along sub-domain boundaries, e.g. in the P → M step: the interpolation
stencil will distribute particle strength to ghost points outside its own sub-
domain



– ghost mesh points for consistent Finite Difference operations.

Global mappings are used for the transfer of mesh data from a topology to
another, as in the case of the pencil topologies involved in multi-dimensional
FFTs. PPM is written in Fortran 90 on top of the Message Passing Interface
(MPI); the client uses the FFTW library[19] inside the Fourier solver.

The code is run on an IBM Blue Gene/L solution with dual cores nodes
based on the PowerPC 440 700Mhz low power processor. Each node has 512MB
of memory. The computations are all carried out in co-processor mode: one of the
two CPUs is fully devoted to the communications. The machine used for produc-
tion was the BG/L at IBM T.J. Watson Research Center - Yorktown Heights3

whereas porting, optimization and testing was done on the BG/L system of the
IBM Zurich Research Laboratory. Machine dependent optimization consisted in

1. data reordering and compiler directives to exploit the double floating point
unit of the PowerPC 440 processors,

2. mapping of the cartesian communicators to the BG/L torus,
3. use of the BG/L tree network for global reductions.

3 Aircraft wakes

The evolution and eventual destruction of the trailing vortices is affected by
several types of instabilities, usually classified according to their wavelength.
Long wavelength instabilities are the most powerful to drive the collapse of a
vortex pair albeit with a slow growth rate. The well-known Crow instability[20]
is an example of such instabilities that deforms the vortex lines into sinusoidal
structures until vortices of opposite sign reconnect and form rings.

More complex systems with multiple vortex pairs can undergo other insta-
bilities. A rapidly growing, medium-wavelength instability has been the focus
of recent experimental [5, 7, 21] and numerical studies[8–10]. This instability oc-
curs in the presence of a secondary vortex pair that is counter-rotating relative
to the main pair. These secondary vortices are generated by a sufficient negative
load on the horizontal tail or the inboard edge of outboard flaps. Being weaker,
they eventually wrap around the primary ones in so-called Ω-loops, leading to
the reconnection of vortices of unequal circulations. This in turn triggers an
accelerated vortex destruction.

3.1 Convergence and scalability

We use the geometry of this particular medium wavelength instability to assess
the performance of our code. The geometry of the problem is taken from [9]; it
comprises two counter-rotating vortex pairs with spans b1, b2 and circulations
Γ1, Γ2. The Reynolds number is Re = Γ0/ν = 3500, where Γ0 = Γ1 + Γ2.
Three grid sizes were considered, 64 × 320 × 192, 128 × 640 × 384, and 256 ×
3 Compiled with XLF version 10.1, with BG/L driver V1.3 and FFTW 3.1.1



1280 × 768, resulting in 4, 32 and 252 million particles respectively. All three
configurations were run on 1024 processors of IBM BG/L. The time-step was kept
constant for all resolutions ∆t = 3.3 10−4t0 where t0 = 2πb20

Γ0
and b0 = Γ1b1+Γ2b2

Γ0
.

Figure 1 shows the evolution of vorticity iso-surfaces and the wrapping-around

(a) t/t0 = 0 (b) t/t0 = 0.68

(c) t/t0 = 0.96 (d) t/t0 = 1.23

Fig. 1. Medium-wavelength instability of counter-rotating vortices, 128× 640×
384-grid: evolution of vorticity iso-surfaces. The opaque surface corresponds to
|ω| = 10Γ1/b2

1; the transparent one, to |ω| = 2Γ1/b2
1.

of the secondary vortices around the main ones. Diagnostics (Fig. 2) such as the
evolution of enstrophy, which measures the energy decay and the evolution of
the effective numerical viscosity confirm the low dissipation of the method and
its convergence.

The parallel scalability was assessed for 512 ≤ NCPU ≤ 16384 on IBM BG/L.
We measure the strong efficiency as

ηstrong =
N ref

CPUS T (N ref
CPUS)

NCPUS T (NCPUS)
(8)

where T is the average computation time of one time step. In order to test
the code up to the large sizes allowed by BG/L, we used N ref

CPUS = 2048 and
a problem size of 768 × 1024 × 2048 or 1.6 billion particles. This brings the
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Fig. 2. Medium-wavelength instability of counter-rotating vortices: convergence
and diagnostics for three spatial resolutions: Nx = 64 (blue), 128 (green) and
256 (red)

per-processor problem size from 786432 down to 98304 when we run on the
maximum number of processors. The curve (Fig. 3(b)) displays a plateau up
to NCPUS = 4096, with the per-processor problem size becoming progressively
smaller and communication overhead overwhelming the computing cycles.

From this result, we base our weak scalability study on a constant per-
processor number of particles of Mper CPU ' 4 105. We used the following mea-
sure

ηweak =
T (N ref

CPUS,M ref)
T (NCPUS, NCPUS

Nref
CPUS

M ref)
. (9)

where we took N ref
CPUS = 512. The code displays (Fig. 3(a)) excellent scalability

up to NCPUS = 4096 . Eq. 9 assumes linear complexity for the problem at
hand. There is however an O(N log N) component to the overall complexity of
the present problem as we are solving the Poisson equation for the convection
velocity. The two curves (with and without the cost for the solution of the
Poisson equation) are shown in (Fig. 3(a)); the relatively small gap between the
two curves manifests the good performance of the Poisson solver.

3.2 Instability initiation by ambient noise in a large domain

We consider the configuration presented in the state of the art calculations in [8,
see configuration 2] simulating the onset of instabilities of multiple wavelengths
in a long domain. The domain length is chosen as the wavelength of maximum
growth rate for the Crow instability, Lx = 9.4285b1. The transversal dimensions
are Ly = 1/2 Lx and Lz = 3/8 Lx. The vortices have Gaussian cores

ω(r) =
1

2πσ2
exp(−(r/2σ)2) (10)
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(b) Strong scalability (solid dots) and per-
processor size (circles)

Fig. 3. Medium-wavelength instability of counter-rotating vortices: parallel effi-
ciencies on IBM BlueGene/L

with σ1/b1 = 0.05 and σ2/b1 = 0.025. The secondary pair is located at b2/b1 =
0.5, with a relative strength Γ2/Γ1 = −0.35. In addition to the initially un-
perturbed vortices, the vorticity field is filled with a white noise that produces
uRMS = 0.005 umax. We study this flow with DNS at ReΓ1 = 6000. This rep-
resents a three-fold increase over previously reported Reynolds numbers [8]. In
addition, these prior simulations used a coarse resolution and a crude LES model
(MILES[22]) to model the high Reynolds number dynamics of the flow. The
present DNS is afforded due to a mesh resolution of 2048 × 1024 × 768 and
1.6 billion particles. It is run on 4096 CPUs; the wall-clock computation time
was 39s on average per time step. With approximately 10000 time steps, this
represents a time-to-solution of 100 hours.

Figure 4 shows that this system with a random initial condition picks up
the medium-wavelength instability. At t/t0 = 0.25 (Fig. 4(b)), we count 10 and
11 Ω-loops along the two primary vortices. This corresponds to the average
wavelengths λ/b1 = 0.943 and 0.86. These values are sensibly different from the
ones reported in [8], 1.047 and 1.309. This comparison, however, considers the
problem at the end of the exponential growth and ignores the uneven distribution
of loop wavelengths and hence, individual growth rates.

4 Vortex rings

The same code has been applied to the turbulent decay of vortex rings at
ReΓ = 7500[23]. It allowed the analysis of the vortex dynamics in the non-linear
stage and their correlation with structures captured in dye visualization and



(a) t/t0 = 0.21 (b) t/t0 = 0.25

(c) t/t0 = 0.27 (d) t/t0 = 0.34

Fig. 4. Counter-rotating vortices, initiation by ambient noise: visualization of the
vorticity structures by volume rendering. High vorticity norm regions correspond
to red and opaque; low vorticity are blue and transparent.



an observed decay of circulation. Figure 5 shows the emergence of stream-wise
structures in the ring.

(a) (b) (c)

Fig. 5. Evolution of a Vortex ring at Re=7500: vorticity iso-surfaces colored by
the stream-wise component of vorticity.

5 Conclusions

This paper presents the implementation of an efficient particle-mesh method for
massively parallel architectures and its application to wakes. We refer to [24] for
a more extensive assessment of the method.

Our code displays good scalability up to 16K processors on BlueGene/L.
The origin of the parallel efficiency drop at 4K is being investigated; a possi-
ble cause is the recurrent computation of mesh intersections inside the global
mappings. Other code development efforts include the implementation of un-
bounded boundary conditions based on fast convolutions in Fourier space[25]
and non-periodic conditions in the axial direction. Finally, the optimization of
vortex dynamics for enhanced decay and mixing is the subject of ongoing inves-
tigations.
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