
On the Implementation of Boundary Element
Engineering Codes on the Cell Broadband

Engine

Manoel T.F. Cunha, J.C.F. Telles, and Alvaro L.G.A. Coutinho

Federal University of Rio de Janeiro
Civil Engineering Department / COPPE

P.O. Box 68506 - 21941-972 - Rio de Janeiro - RJ - Brazil
{manoel,telles}@coc.ufrj.br,alvaro@nacad.ufrj.br

http://www.coc.ufrj.br

Abstract. Originally developed by the consortium Sony-Toshiba-IBM
for the Playstation 3 game console, the Cell Broadband Engine proces-
sor has been increasingly used in a much wider range of applications like
HDTV sets and multimedia devices. Conforming the new Cell Broad-
band Engine Architecture that extends the PowerPC architecture, this
processor can deliver high computational power embedding nine cores in
a single chip: one general purpose PowerPC core and eight vector cores
optimized for compute-intensive tasks. The processor’s performance is
enhanced by single-instruction-multiple-data (SIMD) instructions that
allow to execute up to four floating-point operations in one clock cy-
cle. This multi-level parallel environment is highly suited to applications
processing data streams: encryption/decryption, multimedia, image and
signal processing, among others. This paper discusses the use of Cell
BE to solve engineering problems and the practical aspects of the im-
plementation of numerical method codes in this new architecture. To
demonstrate the Cell BE programming techniques and the efficient port-
ing of existing scalar algorithms to run on a multi-level parallel processor,
the authors present the techniques applied to a well-known program for
the solution of two dimensional elastostatic problems with the Boundary
Element Method. The programming guidelines provided here may also
be extended to other numerical methods. Numerical experiments show
the effectiveness of the proposed approach.

Key words: Cell Broadband Engine, Boundary Element Method, Bound-
ary Elements, Parallel Programming, Vectorization, SIMD

1 Introduction

Limitations on power and memory use and processor frequency are leading hard-
ware manufacturers to develop new architectures that are changing the pro-
gramming paradigms established in the last decades. The performance of a large
number of existing serial codes no longer benefits from the rising multi-core

2 Implementation of BEM Engineering Codes on CELL BE

technology without a proper porting to these environments. Even parallel appli-
cations may need some redesign and rewriting to obtain optimum performance
on contemporary microprocessors. One clear example are vectorization tech-
niques much used in the past with vector computers that are now surpassed by
the SIMD instructions used in multimedia applications. This particular kind of
vectorization differs from old vectorization techniques since it relies on hardware
features and extended instruction sets only present on modern processors.

The Cell Broadband Engine is a new architecture that is already playing a
significant role in the computing industry in some specific areas [13–15] and the
knowledge of its strengths and also its current limitations is a decisive factor
for engineers and scientists willing to find high-performance solutions to the
increasing complexity of their problems and applications. To achieve this goal,
this paper introduces the Cell Broadband Engine Architecture and describes in
some detail the porting of a well-known serial engineering code to an efficient
multi-level parallel implementation.

The implementation of engineering codes, specially using numerical methods
to solve elastostatic problems, usually consists in assembling and solving linear
equations systems. Even more sophisticated analysis involving elastoplastics or
dynamics can be decomposed into a set of such procedures. To generate these
systems of equations, numerical methods like finite or boundary elements com-
pute a number of small matrices that are assembled into the equations system
accordingly to boundary conditions defined by the problem. In our application,
these 2x2 floating-point arrays are specially suited to be computed with SIMD
instructions and the paper describes in detail the use of such instructions and
how the original algorithm is rewritten to benefit from this vectorization ap-
proach.

The text also shows how the proposed algorithm takes advantage of the
parallel nature of the Boundary Element Method to efficiently distribute the
generation of the equations system among the multiple cores. Since each of the
eight computing cores addresses only 256 KB of memory, another challenge to the
implementation of engineering codes is the efficient division of the problem - data
and code - to fit the memory restraints of these cores. Here, the authors describe
the memory transfer mechanisms available on the Cell BE and introduces the
use of advanced techniques to hide communication latencies.

The present text is organized as follows: the section 2 presents an outline
of the boundary element theory and the following section describes the selected
application. Section 4 introduces the Cell Broadband Architecture, its mem-
ory transfers mechanisms and the Streaming SIMD Extensions while Section 5
details the multi-level parallel implementation of the code. In section 6 a per-
formance analysis is presented. The paper ends with a summary of the main
conclusions.

Implementation of BEM Engineering Codes on Cell BE 3

2 Outline of the Boundary Element Method

The Boundary Element Method (BEM) is a technique for the numerical solution
of partial differential equations with initial and boundary conditions [1].

Using a weighted residual formulation, Green’s third identity, Betty’s recip-
rocal theorem or some other procedure, an equivalent integral equation can be
obtained and converted to a form that involves only surface integrals performed
over the boundary. The bounding surface is then divided into elements and the
original integrals over the boundary are simply the sum of the integrations over
each element, resulting in a reduced dense and non-symmetric system of linear
equations.

The discretization process involves selecting nodes on the boundary, where
unknown values are considered. Interpolation functions relate such nodes to the
approximated displacements and tractions distributions on the respective bound-
ary elements. The simplest case places a node in the center of each element and
defines an interpolation function that is constant over the entire element. For
linear 2-D elements, nodes are placed at, or near, the end of each element and the
interpolation function is a linear combination of the two nodal values. High-order
elements, quadratic or cubic, can be used to better represent curved boundaries
using three and four nodes, respectively.

Once the boundary solution has been obtained, interior point results can be
computed directly from the basic integral equation in a post-processing routine.

2.1 Differential Equation

Elastostatic problems are governed by the well-known Navier equilibrium equa-
tion which, using the so-called Cartesian tensor notation, may be written for a
domain Ω in the form :

G uj,kk +
G

1− 2 ν
uk,kj + bj = 0 inΩ (1)

subject to the boundary conditions :

u = ū on Γ1 and

p = p̄ on Γ2 (2)

where u are displacements, p are surface tractions, ū and p̄ are prescribed values
and the total boundary of the body is Γ = Γ1 +Γ2. G is the shear modulus, ν is
Poisson’s ratio and bj is the body force component. Notice that the subdivision
of Γ into two parts is conceptual, i.e., the same physical point of Γ can have the
two types of boundary conditions in different directions.

2.2 Integral Equation

An integral equation, equivalent to Eqs. (1) and (2), can be obtained through a
weighted residual formulation or Betty’s reciprocal theorem. This equation, also

4 Implementation of BEM Engineering Codes on CELL BE

known as Somigliana’s identity for displacements, can be written as :

ui(ξ) =
∫
Γ

u∗ij(ξ, x) pj(x) dΓ (x)−
∫
Γ

p∗ij(ξ, x) uj(x) dΓ (x) (3)

where bi = 0 was assumed for simplicity and the starred tensors, u∗ij and p∗ij ,
represent the displacement and traction components in the direction j at the
field point x due a unit load applied at the source point ξ in i direction.

In order to obtain an integral equation involving only variables on the bound-
ary, one can take the limit of Eq. (3) as the point ξ tends to the boundary Γ .
This limit has to be carefully taken since the boundary integrals become singular
at ξ. The resulting equation is :

cij(ξ) uj(ξ) +
∫
Γ

p∗ij(ξ, x) uj(x) dΓ (x) =
∫
Γ

u∗ij(ξ, x) pj(x) dΓ (x) (4)

where the coefficient cij is a function of the geometry of Γ at the point ξ and
the integral on the left is to be computed in a Cauchy principal value sense.

2.3 Discretization

Assuming that the boundary Γ is discretized into N elements, Eq. (4) can be
written in the form :

cij uj +
N∑
k=1

∫
Γk

p∗ij uj dΓ =
N∑
k=1

∫
Γk

u∗ij pj dΓ (5)

The substitution of displacements and tractions by element approximated inter-
polation functions in Eq. (5) leads to :

ci ui +
N∑

k=1

h u =
N∑

k=1

g p (6)

which can be rearranged in a simpler matrix form :

H u = G p (7)

By applying the prescribed boundary conditions, the problem unknowns can
be grouped on the left-hand side of Eq. (7) to obtain a system of equations ready
to be solved by standard methods.

This system of linear equations can be written as :

A x = f (8)

where A is a dense square matrix, vector x contains the unknown tractions
and displacements nodal values and vector f is formed by the product of the
prescribed boundary conditions by the corresponding columns of matrices H
and G. Note that Eq. (8) can be assembled directly from the elements h and g
without need to generate first Eq. (7).

Implementation of BEM Engineering Codes on Cell BE 5

2.4 Internal Points

Since Somigliana’s identity provides a continuous representation of displacements
at any point ξ ∈ Ω, it can also be used to generate the internal stresses. The dis-
cretization process, described above, can also be applied now in a post-processing
routine.

3 The Application Program

The program reviewed here is a well-known Fortran code presented by Telles [1]
for the solution of two dimensional elastostatic problems using linear elements.

The main program defines some general variables and arrays, integer and
real, as shown below :

program MAIN

integer :: NN,NE,NP,IPL,INFB,NT,NN2,info
integer,parameter :: NMAX=4000
integer,dimension(NMAX) :: IDUP
integer,dimension(NMAX*2) :: IFIP,ipiv
integer,dimension(NMAX,2) :: INC

real :: E,PO,C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11
real,dimension(NMAX) :: X,Y,C
real,dimension(NMAX*2) :: P,XM
real,dimension(NMAX*2,NMAX*2) :: A

! data input
call INPUT
! compute matrix A and independent term XM
call MATRX
! solve system of equations
call SGESV (NN2, 1, A, NMAX*2, ipiv, XM, NMAX*2, info)
if (info == 0) then

! output results
call OUTPT

else
write (*,*) ’SGESV : ’,info

endif

end program MAIN

The INPUT routine reads the program data, the MATRX routine computes
matrix A and the right hand side vector f , stored in vector XM, while the OUTPT
routine prints the boundary solution, computes and prints boundary stresses
and internal displacements and stresses. The original SLNPD subroutine is here
replaced by the LAPACK solver SGESV [2] which is being ported for the Cell BE
processor [8, 9].

Subroutine MATRX generates the system of equations by assembling directly
matrix A without creating the global H and G matrices. This is done by con-
sidering the prescribed boundary conditions for the node under consideration
before assembling. The leading diagonal submatrices corresponding to H are
calculated using rigid body translations. Consequently, when the boundary is
unbounded a different type of rigid body consideration needs to be applied.

6 Implementation of BEM Engineering Codes on CELL BE

The element influence coefficients are computed calling subroutine FUNC. This
routine computes all the element integrals required for the system of equations,
internal displacements and internal stresses. Numerical integrals are performed
over non-singular elements by using Gauss integration. For elements with the
singularity at one of its extremities the required integrals are computed analyt-
ically to obtain more accurate results.

The boundary stresses are evaluated using subroutine FENC that employs
the interpolated displacements and tractions to this end. Here, the contribution
of adjacent elements to the common boundary nodes is automatically averaged
for non-double nodes. The internal displacements and stresses are obtained by
integrating over the boundary elements using subroutine FUNC.

The solver is usually the most time consuming routine in BEM programs and
various studies have been published on this matter [2]. However, the generation
of the equations system as well as the computing of internal points together can
take the most part of the processing time [5] and demand special care. While
many high-performance parallel solvers are available from standard libraries [2],
those two procedures are usually implemented by the researcher and greatly
limit the speedup if not optimized. Hence, the Cell BE programming techniques
are here applied to the generation of the system of equations and the evaluation
of internal point displacements and stresses can also be implemented with the
same techniques.

4 The Cell Broadband Engine

The Cell Broadband Engine is a new architecture that succeeds the well-known
PowerPC architecture. The Cell BE processor joins in a single chip one Pow-
erPC Processor Element (PPU) and eight Synergistic Processor Elements (SPU).
While the PPU runs the operating system and usually the control thread of an
application, the SPUs are independent processors optimized to execute data-
intensive routines and threads.

At the time of this writing, software for Cell BE is written with C/C++
compilers with vector/SIMD multimedia extensions. However, different SIMD
instructions sets for the PPU and SPUs force the programmer to compile sep-
arated objects (code modules) in a Cell BE application. Indeed, in a high-level
language source code, the SIMD intrinsics for the SPEs are not the same for the
PPE which are also different from the PowerPC Altivec instructions, even when
executing exactly the same operation.

4.1 The Cell BE Memory Model

The Cell BE Architecture implements a radically new memory organization
where PPEs and SPEs access memory in different ways. While the PPE accesses
the whole system address space, the SPEs can only address its own private mem-
ory. Direct memory access (DMA) commands are used to move data between
the main memory and the local memory of each SPEs. With no cache or other

Implementation of BEM Engineering Codes on Cell BE 7

hardware mechanisms to automatically load code and data when needed, this
memory model leaves to the programmer the task of scheduling DMA transfers
between the PPE and the eight SPEs efficiently.

Each SPE private memory includes a 256 KB local storage (LS) to be shared
by code and data and 128 registers 128-bits wide. One load and store unit handles
data transfers between the local storage and the register file while asynchronous
DMA transfers are supported by the Memory Flow Controller (MFC). The MFC
supports a maximum transfer size of 16 KB and peak performance is achieved
when both the effective (main memory) and LS addresses are 128-bytes aligned
and the transfer size is an even multiple of 128.

Besides DMA, Mailboxes is another primary communication mechanism used
to exchange queued 32-bits messages. Mailboxes are an useful way to transfer
memory addresses and general counters from the PPE to SPEs and can also be
used by SPEs to notify the PPE that a memory transfer or computational task
has ended.

A third type of communication mechanism, signal notification registers, will
not be addressed here. More details on the Cell Broadband Engine Architecture
can be found in the literature [10–12].

4.2 The Vector/SIMD Multimedia Instructions

Computers were originally classified by Flynn’s taxonomy according to instruc-
tions and data streams as SISD (single-instruction single-data), SIMD (single-
instruction multiple-data), MISD (multiple-instruction single-data) and MIMD
(multiple-instruction multiple-data) [6].

As the name suggests, the SIMD model applies to systems where a single
instruction processes a vector data set, instead of scalar operands and SIMD
instructions perform one operation on two sets of four floating-point single-
precision values, simultaneously, as illustrated in Figure 1.

Fig. 1. SIMD Addition

? ? ? ?

? ? ? ?

a1 a2 a3 a4

b1 b2 b3 b4

a1 + b1 a2 + b2 a3 + b3 a4 + b4 vec2

vec1

vec0

vec2 = spu add(vec0,vec1)

Cell BE provides a large set of SIMD operations. For a full description of
all SIMD intrinsic functions the reader is referred to [10]. The implementation
of the code here in study with SIMD instructions will be addressed in the next
section.

8 Implementation of BEM Engineering Codes on CELL BE

5 The Cell BE Implementation

In the application under study, an equation system is generated in routine MATRX
with its influence coefficients computed by subroutine FUNC. This routine evalu-
ates all the non-singular element integrals using Gauss integration. For elements
with the singularity at one of its extremities the required integrals are com-
puted analytically. In the first case, a set of small matrix operations are initially
computed, as follows :

[
UL11 UL12
UL21 UL22

]
= −C1

[[
C2 logR 0

0 C2 logR

]
−
[

DR11 DR12
DR21 DR22

]]
[

P L11 P L12
P L21 P L22

]
= −C3

[[[
C4 0
0 C4

]
+ 2

[
DR11 DR12
DR21 DR22

]]
DRDN + C4

[
0 DRBN12

DRBN21 0

]] 1

R

Those 2x2 matrices can be converted into vectors of size 4 and matrix op-
erations can be performed with vector instructions. Thus, a straightforward ap-
proach is to use SIMD to evaluate those matrices leaving some intermediate
operations to be executed with scalar instructions.

In the original algorithm, those matrices are computed from 2 to 6 times,
accordingly to the number of Gauss integration points defined by the chosen in-
tegration rule. Alternatively, a fully vector implementation of the matrix compu-
tation above can be achieved by using 4 Gauss integration points and evaluating
all four values of each coefficient at once, including the intermediate values.

In the application under observation, for each integration point i, the matrix
coefficients can be computed as :

XMXIi = CT Ei ∗ DXY 1 + XXS

Y MY Ii = CT Ei ∗ DXY 2 + Y Y S

Ri =
√

XMXI2
i

+ Y MY I2
i

DR1i = XMXIi / Ri

DR2i = Y MY Ii / Ri

UL11i = DR12i − C2 ∗ log Ri

UL22i = DR22i − C2 ∗ log Ri

UL12i = DR1i ∗ DR2i

DRDNi = DR1i ∗ BN1i + DR2i ∗ BN2i

P L11i = (C4 + 2 ∗ DR12i) ∗ DRDNi / Ri

P L22i = (C4 + 2 ∗ DR22i) ∗ DRDNi / Ri

P L12i = (2 ∗ DR1i ∗ DR2i ∗ DRDNi + C4 ∗ (DR2i ∗ BN1i − DR1i ∗ BN2i)) / Ri

P L21i = (2 ∗ DR1i ∗ DR2i ∗ DRDNi − C4 ∗ (DR2i ∗ BN1i − DR1i ∗ BN2i)) / Ri

Initially using two-dimensional arrays and executed with scalar instructions,
the computation presented above - including the intermediate operations - are
now performed on vectors and four values are evaluated in each operation. Most
of those operations can be performed with basic memory and arithmetic SIMD
instructions introduced in the previous section. An SSE implementation of the
vector computation being discussed is presented in Listing 1.

For each integration point i, UL and PL are used to compute two other
matrices, G and H :

[
G11 G12 G13 G14
G21 G22 G23 G24

]
=
[

G11 G12 G23 G24
G21 G22 G23 G24

]
+

[[
ULi

11 ULi
12

ULi
21 ULi

22

]
∗ B

i
1

[
ULi

11 ULi
12

ULi
21 ULi

22

]
∗ B

i
2

]
∗ W

i

[
H11 H12 H13 H14
H21 H22 H23 H24

]
=
[

H11 H12 H23 H24
H21 H22 H23 H24

]
+

[[
P Li

11 P Li
12

P Li
21 P Li

22

]
∗ B

i
1

[
P Li

11 P Li
12

P Li
21 P Li

22

]
∗ B

i
2

]
∗ W

i

Implementation of BEM Engineering Codes on Cell BE 9

Listing 1.

DXY1 = spu_splats(DXY[0]); // DXY1
DXY2 = spu_splats(DXY[1]); // DXY2
tmp0 = spu_splats(xxs); // X[II] - XS
tmp1 = spu_splats(yys); // Y[II] - YS
XMXI = spu_madd(CTE,DXY1,tmp0); // .5 (XI + 1) DXY1 + X[II] - XS
YMYI = spu_madd(CTE,DXY2,tmp1); // .5 (XI + 1) DXY2 + Y[II] - YS
tmp2 = spu_mul(YMYI,YMYI); // YMYI^2
tmp3 = spu_madd(XMXI,XMXI,tmp2); // XMXI^2 + YMYI^2
INVR = rsqrtf4(tmp3); // sqrt(XMXI^2 + YMYI^2)
DR1 = spu_mul(XMXI,INVR); // XMXI / R
DR2 = spu_mul(YMYI,INVR); // YMYI / R
LOGR = logf4(INVR); // log R
BN2 = spu_splats(BN[1]); // BN2
UL12 = spu_mul(DR1,DR2); // DR1 DR2
DR11 = spu_mul(DR1,DR1); // DR1^2
DR22 = spu_mul(DR2,DR2); // DR2^2
tmp4 = spu_mul(DR2,BN2); // DR2 BN2
tmp5 = spu_mul(DR1,BN2); // DR1 BN2
BN1 = spu_splats(BN[0]); // BN1
UL11 = spu_madd(C2v,LOGR,DR11); // DR1^2 + C2 log R
UL22 = spu_madd(C2v,LOGR,DR22); // DR2^2 + C2 log R
tmp6 = spu_madd(DR11,TWO,C4v); // 2 DR1^2 + C4
tmp7 = spu_madd(DR22,TWO,C4v); // 2 DR2^2 + C4
tmp8 = spu_add(UL12,UL12); // 2 DR1 DR2
tmp9 = spu_msub(DR2,BN1,tmp5); // DR2 BN1 - DR1 BN2
DRDN = spu_madd(DR1,BN1,tmp4); // DR1 BN1 + DR2 BN2
tmp10 = spu_mul(tmp6,DRDN); // (2 DR1^2 + C4) DRDN
tmp11 = spu_mul(tmp7,DRDN); // (2 DR2^2 + C4) DRDN
tmp12 = spu_mul(tmp9,C4v); // C4 (DR2 BN1 - DR1 BN2)
PL11 = spu_mul(tmp10,INVR); // (2 DR1^2 + C4) DRDN / R
PL22 = spu_mul(tmp11,INVR); // (2 DR2^2 + C4) DRDN / R
tmp13 = spu_msub(tmp8,DRDN,tmp12); // 2 DR1 DR2 DRDN - C4 (DR2 BN1 - DR1 BN2)
tmp14 = spu_madd(tmp8,DRDN,tmp12); // 2 DR1 DR2 DRDN + C4 (DR1 BN2 - DR2 BN1)
PL21 = spu_mul(tmp13,INVR); // (2 DR1 DR2 DRDN - C4 (DR1 BN2 - DR2 BN1)) / R
PL12 = spu_mul(tmp14,INVR); // (2 DR1 DR2 DRDN + C4 (DR1 BN2 - DR2 BN1)) / R

Each one of the 2x4 matrices above can be splitted into two 2x2 matrices, as
sampled below :

[
G11 G12
G21 G22

]
=

[
G11 G12
G21 G22

]
+

[
ULi

11 UL
i
12

ULi
21 UL

i
22

]
∗ Bi

1 ∗W
i

Since all values of UL are stored in vectors, it is quite simple to perform the
multiplications of each value by the respective four values stored in B1 and W .
However, there is no SIMD instruction to perform the sum of the elements of
a vector needed in the computation of G. Using the SIMD shuffle instructions,
the values stored on four vectors can be reordered to obtain the same effect of a
matrix transposition, although here the operations are performed on vectors. A
possible SIMD implementation of the computations just presented is presented
in Listing 2.

Well-known optimization techniques usually applied to scalar codes can also
be used in the implementation of vector algorithms in order to replace long la-
tency instructions and to reduce data dependence. Data dependence is the major
obstacle to the vectorization of any algorithm. Even well-written programs en-

10 Implementation of BEM Engineering Codes on CELL BE

Listing 2.

vector unsigned char permvec1 = {0,1,2,3,16,17,18,19,4,5,6,7,20,21,22,23};
vector unsigned char permvec2 = {8,9,10,11,24,25,26,27,12,13,14,15,28,29,30,31};
vector unsigned char permvec3 = {0,1,2,3,4,5,6,7,16,17,18,19,20,21,22,23};
vector unsigned char permvec4 = {8,9,10,11,12,13,14,15,24,25,26,27,28,29,30,31};
...
tmp0 = spu_mul(UL11,B1W);
tmp1 = spu_mul(UL12,B1W);
tmp2 = spu_mul(UL22,B1W);
tmp3 = spu_shuffle(tmp0,tmp1,permvec1);
tmp4 = spu_shuffle(tmp0,tmp1,permvec2);
tmp5 = spu_shuffle(tmp1,tmp2,permvec1);
tmp6 = spu_shuffle(tmp1,tmp2,permvec2);
tmp7 = spu_shuffle(tmp3,tmp5,permvec3);
tmp8 = spu_shuffle(tmp3,tmp5,permvec4);
tmp9 = spu_shuffle(tmp4,tmp6,permvec3);
tmp10 = spu_shuffle(tmp4,tmp6,permvec4);
tmp11 = spu_add(tmp7,tmp8);
tmp12 = spu_add(tmp9,tmp10);
tmp13 = spu_add(tmp11,tmp12);
Cv = spu_splats(C);
CC1 = spu_mul(Cv,C1v);
G1 = spu_mul(tmp13,CC1);
...

close data dependencies due to the nature of the applications. High performance
techniques are presented by the authors in previous studies [3, 4] and will not be
addressed here.

The boundary element method has a parallel nature since each boundary
node generates two rows on the equations systems. The computing of each pair
of rows is totally independent and can safely be performed concurrently. Hence, a
straightforward approach is to distribute the boundary elements equally between
the eight SPEs. The same procedure can also be used to the computing of internal
points. With no communications needed between the SPEs and taking in account
that each boundary node must be integrated with all elements on the boundary,
an efficient approach is to leave to the SPEs the task of moving and processing
data while the PPE only starts the same thread on each SPE, transferring the
global addresses of input data vectors and arrays, as demonstrated in Listing 3.

In each SPU, the SPU number (spu id) is read from the PPU using mailbox
and the input data is transfered from main memory to local arrays using DMA.
In this implementation, the boundary nodes are evenly distributed among the
SPUs and only a pair of rows of the equations system corresponding to each
node is computed and transfered from the local storage to the main memory in
each iteration, as shown in Listing 4.

The concurrent computing of a given pair of rows with the asynchronous
DMA transfer of the previous pairs of rows is a technique used to hide memory
transfer latencies, known as double-buffering.

Due to 256 KB local storage size, the initial approach of loading all the input
data in SPU’s local arrays limits the number of nodes to approximately 4000. In
an alternative implementation, only parts of each input array can be transfered

Implementation of BEM Engineering Codes on Cell BE 11

Listing 3.

typedef struct {
float *X;
...

} BESTRUCT;
float X[NMAX] __attribute__((aligned(128)));
...
BESTRUCT bestruct __attribute__((aligned(128)));
bestruct.X = X;
...
extern spe_program_handle_t bizep_spu;
int main(void) {

ppu_pthread_data_t ppdata[8];
for (i=0;i<NSPU;i++) {

ppdata[i].context = spe_context_create(0,NULL);
spe_program_load(ppdata[i].context,&bizep_spu);
ppdata[i].entry = SPE_DEFAULT_ENTRY;
ppdata[i].argp = (void *) &bestruct;
ppdata[i].envp = (void *) 128;
pthread_create(&ppdata[i].pthread,NULL,&ppu_pthread_function,&ppdata[i]);
spe_in_mbox_write(ppdata[i].context,&i,1,SPE_MBOX_ANY_NONBLOCKING);

}
for (i=0;i<NSPU;i++) {

pthread_join(ppdata[i].pthread,NULL);
spe_context_destroy(ppdata[i].context);

}
printf ("End of PPU thread\n");
return 0;

}

Listing 4.

// the MATRX routine is now the main function running on the SPE
int main(unsigned long long speid,unsigned long long argp,unsigned long long envp) {

BESTRUCT bestruct __attribute__((aligned(128)));
// read the SPU id using mailbox
unsigned int spu_id = spu_read_in_mbox();
// transfer the structure data from PPU to SPU using DMA
int tag = 1, tag_mask = 1<<tag;
mfc_get(&bestruct,(unsigned int) argp,envp,tag,0,0);
mfc_write_tag_mask(tag_mask);
mfc_read_tag_status_all();
// transfer vectors and arrays using DMA
mfc_get((char *) X,(unsigned long int) bestruct.X,16384,tag,0,0);
mfc_read_tag_status_all();
...
for (i=first_node;i<=last_node;i++) { // loop over boundary nodes

for (j=1;j<=bestruct.NE;j++) { // loop over boundary elements
FUNC(ICOD,C,II,IF,XS,YS,G,H); // SIMD routine
...

}
// transfer local array A using DMA
ppu_address = (unsigned long int) (i-1) * sizeof(A);
for (j=0;j<4;j++)

mfc_put((char *) A+j*16384,(unsigned long int) ppu_address+j*16384,16384,tag,0,0);
mfc_read_tag_status_all();

}
return 0;

}

12 Implementation of BEM Engineering Codes on CELL BE

from the PPU to the SPU. Although increasing the number of DMA transfers,
this technique reduces the memory size demand and increases the maximum
number of the nodes to be processed. Using 1 GB main memory (QS20), the
total number of nodes is limited to 6000 while in a 2 GB system (QS21) it is
limited to 10000, approximately.

6 Results

The parallel implementation presented here run on a Cell Blade QS21 server
with two processors and 2 GB main memory shared between the processors.
Each 3.2 GHz processor has a 64-bits PowerPC with two 32 KB L1 caches and
a 512 KB L2 cache and eight SPUs with 256 KB memory each. The operating
system is Linux Fedora 7 with Cell BE SDK 3.0.

The study case to be presented here corresponds to a square plate under
biaxial load, as found in [1]. The schematic description of the problem is depicted
in Figure 2.

Figure 2. A square plate under biaxial load

b b b b b

b b b b b

b
b
b

b
b
b

4d d d d

d d d d d

1 2 3 4 5

15 14 13 12 11

6

7

8

9

20

19

18

17

16 10

�

�

�

�

�

-

-

-

-

-
−px px

L

L

� -

6

?

Table 1. QS21 Results - 4000 nodes

SPUs 1 2 4 8

real 7.617s 3.822s 1.926s 0.978s
user 0.002s 0.002s 0.002s 0.002s
sys 0.148s 0.151s 0.159s 0.171s

Speedup - 1.993 3.955 7.788

The results shown on Table 1 refer to the generation of a 8000x8000 equations
system while Table 2 refers to a 20000x20000 equations system of single-precision

Implementation of BEM Engineering Codes on Cell BE 13

Table 2. QS21 Results - 10000 nodes

SPUs 1 2 4 8

real 3m4.297s 1m32.350s 46.252s 23.245s
user 0.002s 0.002s 0.002s 0.003s
sys 0.887s 0.901s 0.920s 1.098s

Speedup - 1.996 3.985 7.928

Table 3. Intel Xeon Results - 4000 nodes

time Original Autovectorization SSE Intrinsics

real 5.132 3.604 1.992
user 0.212 0.152 0.196
sys 0:5.35s 0:3.75 0:2.18

floating-point elements . The use of a smaller number of SPUs is presented here
only for sake of reference, since in practice there is no sense to leave a vector
core idle. Also for sake of reference, the results of the SIMD implementation [6,
7] of the same code on another architecture, a quadcore Intel Xeon 2.66 GHz
(X5355) processor with 8 GB memory, is presented on Tables 3 and 4.

The almost linear speedups shown in Tables 1 and 2 show the effectiveness
of the algorithm used here and emphasize the parallel nature of the Boundary
Element Method. The technique of distributing the boundary nodes between the
SPUs can also be used to distribute workload between the cores of a blade and
among multiple blades. The same approach is used in the shared and distributed
memory implementations of this and other BEM codes [4, 5] and will not be
discussed here.

It must be noticed that the results shown in Table 1 refers to an implemen-
tation where all the input data are loaded to the SPE local store while Table 2
refers to an implementation where only parts of input data are transfered during
the runtime, as explained in the previous section. In the first case, most of DMA
transfers (99%) are used to write the equations system into main memory. In
the second case, to bypass the SPE local store size limitation, most of DMA
transfers (92%) are performed to load the input data into SPE’s local store. A
radical change in the input data layout could reduce DMA reads and will be
implemented in a subsequent work.

Table 4. Intel Xeon Results - 10000 nodes

time Original Autovectorization SSE Intrinsics

real 45.822 32.918 12.880
user 1.184 0.956 1.160
sys 0:47.02 0:33.88 0:14.06

14 Implementation of BEM Engineering Codes on CELL BE

7 Conclusions

The Cell Broadband Engine processor is a new architecture developed origi-
nally to be used in game consoles and multimedia devices. To face the current
limitations on power and memory use and processor frequency, the Cell Broad-
band Engine introduces a multi-core processor with a highly innovative memory
model. As one of the many options of a changing industry, this paper addresses
the viability of this environment to run engineering codes, specially numerical
methods applications.

Here, the basic aspects of Cell BE architecture and its programming tech-
niques are presented with the porting of a well-known boundary element code
to solve two-dimensional elastostatic problems. As shown, existing codes can be
rewritten to run on Cell BE after a careful change of the serial algorithm in
order to benefit from the multiple vector cores. The results presented here show
the effectiveness of the proposed algorithm and emphasize the parallel nature
of Boundary Elements. The same parallelization technique can be used to dis-
tribute the workload between the SPUs, the cores of a Cell BE blade or among
multiple blades. At the time of this writing, these results clearly show the Cell
BE well suited to run the kind of engineering application presented here.

However, some current limitations of Cell BE must be taken in account. The
first implementation of this family of processors is designed to handle efficiently
single-precision floating-point operations while double-precision are usually ten
times slower. With no cache and other hardware mechanism developed to handle
the processor-memory performance gap, the Cell BE leaves to the programmer
the task of scheduling data transfers between main memory and local storages
efficiently. This radical design leads to greater learning and programming efforts.
A very limited amount of memory in each vector core also implies in significant
changes on existing algorithms resulting in increasing development costs and loss
of portability.

With the implementation of efficient double-precision floating-point opera-
tions, larger memory, a greater number of vector cores and a set of development
tools, the next generations of Cell Broadband Engine will play a major role in
the computer industry in the near future and become one of the main options
for engineering and scientific applications.

Acknowledgments. The authors are in debt to Dr. Michael Perrone, Dr.
Ulisses Mello and IBM T.J. Watson Research Center for the support in this
work. Hardware resources were provided by IBM Innovation Center, Dallas.
M.T.F. Cunha is supported by a CAPES grant from the Ministry of Educa-
tion, Brazil.

References

1. Brebbia CA, Telles JCF, Wrobel LC. Boundary Elements Techniques : Theory and
Applications in Engineering. Berlin: Springer Verlag; 1984.

Implementation of BEM Engineering Codes on Cell BE 15

2. Dongarra J et al. LAPACK Users Guide. 3rd ed. SIAM; 1999.
3. Cunha MTF, Telles JCF, Coutinho ALGA. On the Parallelization of Boundary

Element Codes Using Standard and Portable Libraries. Engineering Analysis with
Boundary Elements. 2004. 28/7:893-902. doi: 10.1016/j.enganabound.2004.02.002

4. Cunha MTF, Telles JCF, Coutinho ALGA. A Portable Implementation of
a Boundary Element Elastostatic Code for Shared and Distributed Mem-
ory Systems. Advances in Engineering Software. 2004. 37/7:893-902. doi:
10.1016/j.advengsoft.2004.05.007

5. Cunha MTF, Telles JCF, Coutinho ALGA. Parallel Boundary Elements : A Portable
3-D Elastostatic Implementation for Shared Memory Systems. Lecture Notes in
Computer Science. 2005. 3402:514-526.

6. Cunha MTF, Telles JCF, Ribeiro FLB. Streaming SIMD Extensions Applied
to Boundary Element Codes. Advances in Engineering Software. 2008. doi:
10.1016/j.advengsoft.2008.01.003

7. Cunha MTF, Telles JCF. On The Vectorization of Engineering Codes Using Mul-
timedia Instructions. Engineering Analysis with Boundary Elements. 2008. under
revision.

8. Kurzak J, Buttari A, Dongarra J. Solving Systems of Linear Equations on the Cell
Processor Using Cholesky Factorization. LAPACK Working Note 184, CS-UTK
Tech Report 07-596.

9. Kurzak J, Dongarra J. Implementation of the Mixed Precision in Solving Systems
of Linear Equations on the Cell Processor. LAPACK Working Note 177, CS-UTK
Tech Report 06-580. Concurrency: Practice and Experience. 2007. 19/10:1371–1385.

10. Cell Broadband Engine Programming Tutorial. IBM. 2007.
11. Cell Broadband Engine Programming Handbook. IBM. 2007.
12. C/C++ Language Extensions for Cell Broadband Engine Architecture. IBM. 2007.
13. Liu Y, Jones H, Vaidya S et al. Speech Recognition Systems on the Cell Broadband

Engine Processor. IBM Journal of Research and Development. 2007. 51/5:583–0591.
14. Kachelrieb M., Knaup M., Bockenbach O.: Hyperfast Parallel-beam and Cone-

beam Backprojection Using the Cell General Purpose Hardware. Medical Physics.
2007. 34/4:1474–1486.

15. Bockenbach O., Mangin M., Schuberth S.: Real Time Adaptive Filtering for Digital
X-ray Applications. Lecture Notes in Computer Science. 2006. 4190:578–587.

