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Abstract. Sparse direct solvers, and in particular multifrontal methods, are widely
used in various simulation problems. Because of their large memory require-
ments, the use ofout-of-coresolvers is compulsory for large-scale problems,
where disks are used to extend the core memory. This study is at the junction
of two previous independent works: it extends the problem of the minimization
of the volume ofI/O [3] in the multifrontal method to the more generalflexible
parent allocationalgorithm [7]. We explain how to compute theI/O volume with
respect to this scheme and propose an efficient greedy heuristic whichsignifi-
cantly reduces theI/O volume on real-life problems in this new context.

1 Introduction

We are interested in the direct solution of systems of equations of the formAx = b,
whereA is a large sparse matrix. In direct methods, because the storage requirements
are large compared to the initial matrixA, out-of-core approaches may become neces-
sary. In such cases, left-looking [12, 13] and multifrontal[1, 11] methods are the two
most widely used approaches. One drawback of multifrontal methods comes from large
dense matrices that give a lower bound on the minimum core memory requirements.
However, those dense matrices may fit in memory, or they can betreated with an out-
of-core process. Apart from these dense matrices, the out-of-core multifrontal method
follows a write-once/read-once scheme, which makes it interesting when one is inter-
ested in limiting the volume ofI/O. For matricesA with a symmetric structure (or in
approaches like [5] when the structure ofA is unsymmetric), the dependency graph
of the multifrontal approach is given by a tree, processed from leaves to root. The tree
structure results from the sparsity of the matrix and from the order in which the variables
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of the sparse matrix are eliminated; different branches of the tree may be processed in-
dependently. To each node of the tree is associated a so called frontal matrix, which is
a dense matrix divided into two parts (see Figure 1, left): (i) a fully summed block, that
will be factorized, and a non-fully summed block that cannotbe factorized yet but will
be updated and used later at the parent node, after it has beenreplaced by aSchur com-
plement, or contribution block. To be more precise, the following tasks are performed
at each node of the tree:

(i) allocation of thefrontal matrix in memory;
(ii) assembly of data (contribution blocks) coming from the child nodes into that

frontal matrix;
(iii) partial factorization of the fully summed part of the frontal matrix, and update of

the rest.

After step (iii), the fully summed part of the frontal matrixhas been modified and
containsfactors, that will only be reused at the solution stage, whereas the non fully
summed part contains the Schur complement, that will contribute to the frontal matrix
from the parent node (see Figure 1, right). Because factors are not re-accessed during
the multifrontal factorization, they can be written to diskdirectly, freeing some storage.
Then remains the temporary storage associated to the contribution blocks waiting to be
assembled and to the current frontal matrix. In the classical multifrontal scheme, the
frontal matrix of a parent is allocated (and then factored) only after all children have
been processed. We call this approachterminal allocation. Assuming that a postorder
of the tree is used, contribution blocks can then be managed thanks to a stack mecha-
nism. Furthermore, the order in which the children are processed (or tree traversal) has
a strong impact on both the storage requirement for the stackand the volume ofI/O,
should this stack be processedout-of-core.
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block

block
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Fig. 1. Frontal matrix at a node of the tree before (left) and after (right) the partial factorization
of step (iii) in the unsymmetric case (LU factorization).

A more extensive description of the multifrontal approach can be found in, for ex-
ample, [6, 10]. In general a large workarray is pre-allocated, in order to store the current
frontal matrix and the contribution blocks. Allowing the frontal matrix of the parent to
overlap with the contribution block of the last child is possible, and significantly reduces
the overall storage requirement. Considering a so-calledfamily composed of a parent



node, with a frontal matrix of sizem, and its set ofn children that produce contribution
blocks of sizecbi, i = 1, . . . , n, [9] shows that the storage requirement to process the
tree rooted at the parent is

Sterminal = max

(

max
j=1,n

(Sterminal
j +

j−1
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k=1

cbk),m +
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cbk

)
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(whereSterminal
j is recursively the storage for the subtree rooted at child j)and can be

minimized by sorting the children in decreasing order ofmax(Sterminal
j ,m)− cbj . By

applying this formula and this ordering at each level of the tree, we obtain the volume
of I/O for the complete tree, together with the tree traversal. Starting from (1), we have
shown in [3] that for a given amount of available memory,M0, the volume ofI/O
(=volume written=volume read) associated to the temporary storage of the multifrontal
method is
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which is minimized by sorting the children in decreasing order of

max(min(Sterminal
j ,M0),m) − cbj

at each level of the tree. This gives an optimal tree traversal which is different from
the one from [9]: minimizing theI/O volume is different from minimizing the overall
storage requirement.

2 Flexible parent allocation

With the terminal allocationscheme, steps (i), (ii) and (iii) for a parent node are only
performed when all children have been processed. However, the main constraint is that
the partial factorization (step (iii) above) at the parent level must be performed after the
assembly step (ii) has been performed for all child contributions. Thus, the allocation
of the parent node (step (i)), and the assembly of the contributions of some children can
be performed (and the corresponding contribution block freed) without waiting that all
children have been processed. This flexibility has been exploited by [7] to further reduce
the storage requirement for temporary data. Assume that theparent node is allocated
after p children have been processed, and that the memory for thepth child overlaps
with the memory for the parent. The storage required for a parent in thisflexiblescheme
is then given by:

Sflex = max
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When the parent is allocated, all the contributions from its factored children are assem-
bled and discarded. From that point on, each child that is factored sees its contribution
block immediately assembled and its memory is released. [7]shows how to choose the
point (split point) where the parent should be allocated and how to order the children
so that the storage requirementSflex is minimized.

Now if the value ofSflex is larger than the available memory, then disk storage
must be used. In that case, rather than minimizingSflex, it becomes more interesting
to minimize the volume ofI/O: this is the objective of the current paper. To limit the
volume ofI/O, minimizingSflex can appear like a good heuristic. In [11], the authors
have done so, adapting [7] with respect to some additional constraints imposed by their
code. However, by computing the volume ofI/O formally, we can show the limits of
a memory-minimizing approach when aiming at decreasing theI/O volume: similarly
to the terminal allocation case, minimizing the volume ofI/O in the flexible allocation
scheme is different from minimizing the storage requirement.

3 Volume of I/O in a flexible multifrontal method

The main difference compared to (2) is that with aflexible allocation scheme, a child
j processed after the parent allocation (j > p) may also generateI/O. Indeed, if this
child cannot be processedin-core together with the frontal matrix of the parent, then
part (or the whole) of the frontal matrix has to be written to disk in order to make
room and process the child with a maximum of available memory. This possible extra-
I/O corresponds to underbrace(a) of Formula (4). After that, the factor block of the
frontal matrix of childj is written to disk and its contribution block is ready to be
assembled into the frontal matrix of the parent; to do so, andbecause we cannot easily
rely on a simple property to find which rows of the contribution block, if any, can be
assembled into the part of the frontal matrix available in memory, we assume that this
latter frontal matrix is fully re-loaded into memory (reading back from disk the part
previously written). This operation may again generateI/O: if the contribution block of
child j and the frontal matrix of its parent cannot hold together in memory, a part ofcbj

has to be written to disk, then read back (panel by panel) and finally assembled. This
second possible extra-I/O is counted in underbrace(b) of Formula (4). All in all, and
using the storage definition from Formula (3), the volume ofI/O required to process the
subtree rooted at the parent node is given by:
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Again, a recursion gives theI/O volume for the whole tree.



4 Minimizing the I/O volume in the flexible multifrontal method

With the terminal allocation scheme, theI/O volume (on a parent node and itsn chil-
dren) is minimized by sorting the children in an appropriateorder. With the flexible
scheme, one shouldmoreoverdetermine the appropriatesplit point, i.e. the best value
for p. In other words, the flexibleI/O volume is minimized when together(i) the children
processedbeforethe parent allocation are correctly separated from the onesprocessed
after and(ii) each one of this set is processed in an appropriate order. Exploring these
n.n! combinations is not always conceivable since some familiesmay have a very large
numbern of children (more than one hundred for instance for theGUPTA3 matrix).
However, relying on [3] and Formula 2, we know that an optimalorder among children
processed before the parent allocation is obtained when they are sorted in decreasing
order of max(min(Sflex

j ,M0),m) − cbj . Moreover, theI/O volume on the children
processed after the allocation is independent of their relative processing order. Said dif-
ferently, these two remarks mean that(ii) is actually obvious when(i) is determined:
we only have to determine to which set (before or after the parent allocation) each child
belongs to. But this still makes an exponential (2n) number of possibilities to explore.

Actually, the decision problem associated to this minimization problem is NP-com-
plete. In other words, given an arbitrary target amount ofI/O V , there is no deterministic
polynomial algorithm that can consistently decide whetherthere exists a partition of the
children inducing a volume ofI/O lower than or equal toV (except ifP = NP). The
proof of the NP-completeness (reduction from2-PARTITION) is technical and out-
of-scope for this paper.

To further reduce the complexity, remark that if a child is such thatm+S
flex
j ≤ M0,

ordering this childafter the parent allocation does not introduce any additionalI/O ((a)
and(b) are both0 in (4)), whereas this may not be the case if it is processed before
the parent allocation. Therefore, we conclude that we can place all children verifying
m + S

flex
j ≤ M0 after the parent allocation. Furthermore, consider the case where

S
flex
j ≥ M0 − m + cbj andm + cbj ≤ M0. Processing this childafter the parent

allocation (see Formula (4)) leads to a volume ofI/O either equal to m (ifSflex
j >=

M0) – which is greater thancbj , or to S
flex
j − M0 + m (if S

flex
j ≤ M0) – which

is also greater thancbj . On the other hand, treating that childfirst (this may not be
optimal) will lead to a maximum additional volume ofI/O equal tocbj . Therefore, we
can conclude that we should process itbeforethe parent allocation. For the same type
of reasons, children verifyingSflex

j ≤ 2(M0 − m) andm + cbj > M0 should also be
processedbeforethe parent allocation.

We will say that a child isfixed if it verifies one of the above properties: a straight-
forward analysis - independent of the metrics of its siblings - determines if it should
be processed before or after the allocation of the parent node. Even though the num-
ber of fixedchildren can be large in practice, some matrices may have a few families
with a large number ofunfixedchildren, as shown in Figure 2 for two sparse problems.
For instance, among the28 families inducingI/O for theGUPTA3 matrix ordered with
METIS when a memory ofM0 = 684686 reals is available,21 families have no unfixed
children (thus for them the optimum process is directly known), but one family keeps
having54 unfixed children. In such cases, heuristics are necessary and we designed one



(a) GUPTA3 matrix - METIS ordering
M0=684686

(b) TWOTONE matrix - PORD ordering
M0=7572632

Fig. 2.Distribution of the families in function of their total and unfixed number of children. After
a straightforward analysis, most families have few (or no) unfixed children.

consisting in moving after the allocation the child which isresponsible for the peak of
storage until one move does not decrease the volume ofI/O anymore.

5 Experimental results

In order to evaluate the impact of this flexible allocation scheme on the volume ofI/O,
we compare the results of our heuristic (Flex-MinIO) both to the terminal allocation
scheme with the IO-minimizing algorithm of [3] (Term-MinIO) and to the flexible
allocation scheme with the memory-minimizing algorithm of[7] (Flex-MinMEM).

The volumes ofI/O were computed by instrumenting the analysis phase ofMUMPS [4]
which allowed us to experiment several ordering heuristics. We retained results with
both METIS [8] and PORD [14]. For a given matrix, an ordering heuristic defines the
order in which the variables of the matrix are eliminated andan associated task depen-
dency graph (or tree, see Section 1). It impacts the computational complexity as well as
different metrics such as the volume ofI/O.

We have selected four test problems that we present in Table 1and for which we
have observed significant gains. Figure 3 shows the evolution of the corresponding vol-
ume of I/O with the available memory on the target machine. When a large amount
of memory is available (right part of the graphs), the flexible allocation schemes (both
Flex-MinMEM andFlex-MinIO) induce a small amount ofI/O compared to the
terminal allocation scheme (Term-MinIO). Indeed, with such an amount of memory,
many children can be processed after the allocation of theirparent without inducing
any I/O (or inducing a small amount ofI/O): the possible extra-I/Os corresponding to
underbraces(a) and(b) of Formula (4) are actually equal (or almost equal) to zero for
those children.

When the amount of available memory is small (left part of the graphs), the memory-
minimizing algorithm (Flex-MinMEM) induces a very large amount ofI/O compared



Matrix Order nnz Type nnz(L|U) Flops Description
(×106) (×109)

CONV3D 64 83655012548250UNS 4690.6 48520 Provided by CEA-CESTA; generated using AQUILON

(http://www.enscpb.fr/master/aquilon).
GUPTA3 16783 4670105 SYM 10.1 6.3 Linear programming matrix (AA’), Anshul Gupta

(Univ. Florida collection).
MHD1 48559724233141UNS 1169.7 8382 Unsymmetric magneto-hydrodynamic 3D problem,

provided by Pierre Ramet.
TWOTONE 120750 1224224 UNS 30.7 39.7 AT&T,harmonic balance method, two-tone. More off-

diag nz than onetone (Univ. Florida collection).

Table 1. Test problems. Size of factors (nnz(L|U)) and number of floating-point operations
(Flops) were computed with PORD ordering, except the ones ofGUPTA3 for which METIS
ordering was used.

to theI/O-minimization algorithms (bothFlex-MinIO andTerm-MinIO). Indeed,
processing a child after the parent allocation may then induce a very large amount of
I/O (M0 is small in underbraces(a) and(b) of Formula (4)) but memory-minimization
algorithms do not take into account the amount of available memory to choose thesplit
point.

Finally, when the amount of available memory is intermediate, the heuristic we
have proposed (Flex-MinIO) induces lessI/O than both other approaches. Indeed,
according to the memory, not only does the heuristic use a flexible allocation scheme
on the families for which it is profitable, but it can also adapt the number of children to
be processed after the parent allocation.

The algorithms presented in this paper should allow to improve the new generation of
serial [11]out-of-coremultifrontal codes, based on the flexible allocation scheme, as
well as the serial parts of the parallel ones [2].
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