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Abstract.  

The Methods Development Group at Lawrence Livermore National 
Laboratory has historically developed and supported software for engineering 
simulations, with a focus on nonlinear structural mechanics and heat transfer. The 
quality, quantity and complexity of engineering analyses have continued to increase 
over time as advances in chip speed and multiprocessing computers have empowered 
this simulation software. As such, the evolution of simulation software has seen a 
greater focus on multimechanics and the incorporation of more sophisticated 
algorithms to improve accuracy, robustness and usability. This paper will give an 
overview of the latest code technologies developed by the Methods Development 
group in the areas of large deformation transient analysis and implicit coupled codes. 
Applications were run on the state of the art hardware available at the national 
laboratories. 

INTRODUCTION 

The Methods Development Group (MDG) supports a group of roughly seventy two 
engineering analysts at Lawrence Livermore National Laboratory (LLNL) . It 
supports analysts at Los Alamos National Laboratory (LANL) and limited DoD sites. 
LLNL is the home of some of the fastest supercomputers in the world including the 
world’s fastest: Blue Gene/L. Much of the hardware and software development at the 
LLNL has been driven by the Advanced Simulation and Computing Program (ASC). 
ASC was created to help maintain the United States nuclear arsenal after the 1992 
moratorium on nuclear testing. The MDG group has traditionally supported roughly 
seventy-five analysts around the laboratory in the areas of weapons thermo-structural 
analysis, lasers and various physics groups. The group’s flagship codes: DYNA3D 
(explicit structural mechanics), NIKE3D (implicit structural mechanics) and the 
TOPAZ3D (thermal mechanics) were originally developed in the 1970’s. The latest 
parallel codes: PARADYN and DIABLO are the parallel explicit and implicit 
versions of the original codes. DIABLO, is the newest code and features support for 
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coupled structural, thermal, diffusion and electromagnetic analyses. This paper 
presents the latest code technologies incorporated into these codes. 

The paper is organized as follows. First the issues and technologies most related to 
explicit/transient dynamics and the PARADYN code will be presented including: 
automatic/dynamic contact, extreme material deformations and coupled finite 
element/meshless methods. Second, the underlying technologies and features unique 
to the implicit statics/dynamics multimechanics code DIABLO will be presented. The 
treatment of contact is still one of the group’s biggest challenges, thus much of the 
focus of this paper. Additional aspects are presented in the areas of parallelization, 
solution schemes and adaptive mesh refinement. Numerous examples illustrating the 
latest features and run on Lab’s fastest hardware will be presented. 

Explicit Finite Elements: PARADYN 

The main focus of this code is in the area of transient structural mechanics with 
limited thermal and fluid mechanics coupling. Many of the parallel methods 
underlying PARADYN are well document and very good scaling has been observed 
on very massively parallel runs (Fig. 1). The primary applications include the 
simulation of container drop tests (Fig. 2), pressure vessels (Fig. 3), infrastructure 
failure, (Fig. 4) automobile crash (Fig. 5) and penetration (Fig. 6). One of the main 
challenges in most of these problems typically is how the contact (interpenetration) 
constraints are handled. Issues regarding explicit contact and searching are presented 
here. Furthermore, because meshless methods accommodate evolving connectivity, 
the same dynamic partitioning can be applied to the meshless implementation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1.  Performance in element-steps per second versus number of processors of a simple 90 
million element simulation using PARADYN on the ASC Purple and Blue Gene/ L platforms. 
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Explicit node-on-surface contact formulation 

. The explicitly time integrated equations of motion specific to node-on-surface 
contact are given in Eq. 1. 

! 

Man+1 + fn
int
(xn ) + f

c
= fn

ext  (1) 

M – diagonal mass matrix 
f - force vector (internal, contact and external) 
xn,vn,an nodal position, velocity and acceleration vectors at time tn 

The internal forces are the forces elements apply to nodes, the external forces are the 
applied nodal loads and the contact forces enforce the interpenetration constraints. 
Here, all time tn quantities are known and the acceleration at time tn+1 is sought. The 
node-on-surface method computes a traction λ that forces penetrating nodes onto 
nearby facets. For example, in Fig. 5, the slave node S1 is forced onto segment M1-
M2 and the contact force f c is computed from the contact pressure λ at S1 and its 
distribution to node M1 and M2 based on where the closest point projection is. The 
single pass version of the method only forces slave nodes S onto opposing master 
segments. The symmetric or double pass version also forces master nodes M onto 
opposing slave segments. The contact pressure can be computed from the contact gap 
at time tn using a penalty method i.e. λ = κ gn. Since this gap is based on known time 
tn,the contact force f c is known and the acceleration is found easily since the mass 
matrix is diagonal 
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The velocities and positions are updated  
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The penalty method is often not sufficient to eliminate penetration since very high 
penalty values κ lower the stable time step. Here, Lagrange multipliers are used since 
they eliminate penetration, but don’t affect the time step. The predictor-corrector 
strategy [1] used here computes a predictor such that no contact is active f c = 0 in Eq. 
1. This step yields a predicted configuration 

! 

" x 
n +1  with gaps 

! 

" g n +1 . In the corrector 
step, the contact tractions are treated as unknowns such that  f c = G λ in Eq. 1 and the 
corrected displacement is computed due to these unknown contact forces  
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Here the contact matrix G is based on segment normal vectors (Fig. 5) and is also 
used to compute the nodal gap vector  i.e. g = G x. Multiplying Eq. 4 by G yields the 
nodal gap vector based on the predicted configuration and unknown contact pressure 

! 

gn +1 = " g n +1 # $t
2
Gn +1

t
M

#1
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The nodal gaps must satisfy the Kuhn Tucker conditions: 

! 

"n+1 # 0, gn+1 # 0, gn+1 "n+1 # 0  (6) 
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i.e. contact pressure must be compressive, gaps must be open and only closed gaps 
have contact pressure. This is a mathematical programming problem and is solved via 
a parallel, constrained, preconditioned conjugate gradient method. 

 
 
 
 
 
 

 

Fig. 2. Transportation container flange detail (Courtesy of Dan Badders, LLNL). 

 
 
 
 
 
 

 

Fig. 3. Hydrodynamic containment vessel (LANL Weapons Engineering). 

 
 
 
 
 
 

 

Fig. 4. Blast loading on apartment building, 30 millioin degrees of freedom (P. Papados, U.S. 
Army ERDC). 

 
 
 
 
 
 
 
 

Fig. 5. Sequence of deformation as penetrator goes through two plates. The secondary damage 
is a result of the inertia from the fragments from the first penetration. That is, new contact 
surface (fragments) and particles from the first penetration will impact the second plate. 
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Fig. 6. (a) Impacting bodies. (b) Intersecting slave and master contact surfaces. (c) Contact gap 
based on closest point, contact forces at slave node S1 and master nodes M1 and M2. 

Parallel Contact Search Algorithm 

The node-on-segment contact methods described in the previous section require a 
search for the “nearest” master segments for each slave node (and slave segment for 
each master node for the double pass version). This process can be one of the most 
time consuming in an explicit finite element code. Master segments are generated 
automatically by computing the free/exposed element faces on the mesh. For large 
deformation problems, elements will become damaged and no longer active. This 
“element erosion” defines new master segments that must be accounted for. The 
parallel contact algorithm is based on a static domain decomposition of the mesh and 
a dynamic decomposition of the contact segments as follows: 
1. Compute static decomposition of the mesh using METIS [2]. This is done once at 

problem initialization. Nodes on partition boundaries are assigned a home processor 
and are considered shared on remaining partitions. 

2. On each static partition, define all free facets to be candidate contact segments and 
define all nodes attached to these facets to be candidate slave nodes. This is a 
double pass algorithm. 

3. Based on a characteristic distance, subdivide the entire domain into bins and loop 
over all slave nodes and master segments to determine which bin it resides in. 

4. A graph structure where each bin is a vertex and each master segment that overlaps 
bins is considered a connective edge, 

5. Use METIS [2] to partition this graph structure to minimize edge cuts and assign 
bins to a partition. 

6. Assign each “dynamic” partition to the processor that most of its contact nodes 
have for the “static” partition. 

7. A serial algorithm (e.g. bucket sort) is done in each dynamic partition to find 
contact node-segment pairs. Segments that overlap partitions are shared, hence the 
METIS [2] partitioning reduces the search size. 
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8. Contact forces are computed on each partition and then communicated to the home 
processor. The home processor then communicates the contact forces to the 
remaining shared partitions (processors) if any. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7.  (a) Static decomposition of mesh in un-deformed configuration. (b) Large deformations 
cause element erosion due to damage i.e. elements are eliminated. (c) The candidate contact 
segments are binned, partitioned according to METIS and placed on processors based on the 
home processors of the nodes in each bin. (d) This process is done dynamically as element 
erosion defines new candidate master segments and large motions change the graph structure of 
the contact bins. 

This process is illustrated in Fig. 7. The simulation in Fig. 5 used this parallel search 
algorithm with the element erosion and the Lagrange multiplier contact. In that, the 
elements fail but the surrounding nodes are still considered point masses so that 
momentum is conserved. These point masses are included as potential contact nodes 
in the process described above and cause secondary damage in the following plate. 

Meshless Methods 

The meshless methods were developed to handle very large deformation problems 
where mesh tangling becomes an issue. That is, when elements get so distorted due to 
deformation, they are no longer usable (e.g. the invert). Meshless methods do not rely 
on elements to parameterize deformation but instead use shape functions that can 
operate on arbitrary point clouds. The overlap (Fig. 8) of elliptical meshless shape 
functions defines the graph structure of the discretization [3]. Since the meshless 
particles flow such that new support overlaps need to be defined on a regular basis for 
large deformation problems, a dynamic partitioning method identical to that for 
contact should be used. Fig. 9 shows a simulation of a steel penetrator going through a 
concrete slab with rebar. 

(a) (b) 

(c) (d) 



Accomplishments and Challenges in Code Development for Parallel and Multimechanics 
Simulations      7 

(a) 

(b) 

 
 
 
 
 
 
 
 

Fig. 8.  Overlapping elliptical supports of meshless method. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 9. (a) Simulation of penetration of a reinforced concrete (tensile damage shown in red) (b) 
Rebar (shown alone) was attached to particles in the simulation and eventually fails upon exit.  

Implicit Finite Elements: DIABLO 

Different strategies exist for how mechanics coupling is implemented in 
simulations codes. One of the simplest strategies is to take independent codes and 
then pass a limited amount of data (e.g. node positions, node temperatures and time) 
through an interface. This is the strategy for the coupling the DYNA3D structural 
mechanics mechanics code with the TOPAZ thermal mechanics code and the finite 
volume fluids code GEMINI. The codes themselves are standalone with minimum 
sharing of data structures and code reuse. This model can get more complicated when 
adaptive meshing (AMR) is employed since some common definition for the octree 
mesh needs to be defined. Because many of the operations needed to do error 
estimating and data remapping need to be written for data manipulation, a model that 
employs an ample amount of code reuse between the different mechanics becomes 
more tractable. As such, a single data structure for all the different mechanics would 
make this code re-use more practical. DIABLO is the latest MDG code project and 
employs the latter strategy. DIABLO currently has coupled solid mechanics, thermal 
mechanics, electromagnetics and diffusion along with adaptive meshing. Fig. 6 shows 
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an example where AMR is applied to a coupled thermal structural simulation. 
Example applications include metal forming, rail gun etc. As with PARADYN, the 
contact algorithms are considered a key component of the code development of 
DIABLO and are highlighted here. 

Implict finite elements: segment-to-segment contact 

Node-on-segment algorithms are simple but have a number of flaws. In particular, 
they don’t transmit stresses or fluxes smoothly across the boundary. This is 
particularly important for solid mechanics where non-smooth force transmission 
hinders converge of the implicit non-linear algorithm and in electromagnetics where 
Nedelec edge elements are used. Referring to Fig. 11, the mortar segment-to-segment 
algorithm for solid mechanics [4,5] computes a nodal gap based on the integral  

! 

gA = NA" (x
s # xm ) d$  (7) 

Here the contact traction can be computed via a penalty 

! 

"A =# gAor an augmented 
Lagrangian 

! 

"A
i+1

=# gA
i

+ "A
i  computed through an Uzawa algorithm. Now the static, 

implicit discrete equations of motion are written 

! 

fn+1
int
(xn+1) + fn+1

c
" fn+1

ext
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where the unknown configuration

! 

x
n+1  is typically solved for using the linearized 

form of Eq. 8 in a Newton Raphson (or Quasi-Newton) scheme. The additional 
mechanics types compute an analogous discrete balance equation. Fig. 12 illustrates 
the nonlinear algorithm used in DIABLO. Fig. 13 demonstrates the robustness of 
mortar segment-to-segment contact method. 

Parallel contact search algorithm 

The parallel implementation of this contact was kept simple for the sake of 
development and because communication costs for an implicit code are small 
compared to the solution of simultaneous equations. Here we choose to build an 
entirely static decomposition using METIS [2] and then add shared nodes from 
relevant contact surfaces on each partition (Fig. 14). Now a serial algorithm (e.g. 
bucket sort) can be performed on each processor for the contact search. Contact forces 
are only computed on contact home nodes and then scattered via point-to-point 
communications to shared nodes. 

Multimechanics Examples 

One of the main applications for the coupled solid electromagnetics is the rail gun. 
Here a high voltage is applied between two rails and an armature carries current 
between the rails (Fig. 15). Because of the transient time for the current to penetrate 
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the rails and armature (magnetic diffusion), the current travels along the skin of the 
rails (i.e. skin effect). Ampere’s law 

! 

"# B = µJ  predicts that the resulting magnet B 
field will be relatively high (pointing out) on the inside of the circuit (red) but small 
inside the surrounding iron armature and rails due to the low magnet permeability µ 
of the iron and high permeability µ of the air. This produces a Lorentz force per unit 
length, 

! 

F = J " B on the armature propelling it outward. Referring to Fig. 15, the 
model uses a grid for the armature (blue), two grids for the rails and four grids for the 
air. Only the rail and armature meshes consist of solid elements. All meshes are 
required to capture the magnetic field. Two fine (inner) air meshes move with the 
armature and interact with the surrounding air and rail through electromagnetic 
(mortar) contact surfaces. Both mechanical and electromagnetic contact is used 
between the armature and the two rails Snapshots of the 3D simulation are shown in 
Fig. 16 as the armature slides across the rails. Quarter symmetry is used to reduce the 
model size such that only the top, left-hand side of the mesh is shown. Here it is 
confirmed that the B field is very high at the back of the armature (i.e. fine mesh in 
Fig. 15) and low in the surrounding air. The problem had ~4.5 million degrees of 
freedom and was run on 16 processors on the ASC Purple platform in 20 hours. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.  Thermal-structural AMR example: (a) ring with (tensile) pressure loading (over faces) 
and concentrated thermal fluxes Q, (on nodes) on left and right side. (b) initial quarter 
symmetry mesh (c) effective stress and (d) temperature on final adapted mesh. Note that 
refinement was made near stress concentrations on the inner corner and locations where nodal 
flux loads reside. 

Another important application is in nuclear engineering (Fig. 17). Here, the fuel 
bundle is composed of hexagonal fuel rods (metal alloy tubes filled with nuclear fuel). 
The fuel is meshed as a homogenous material and acts as a neutron heat source. The 
rods are inserted into three restraint plates with hexagonal slots to constrain the 

(a) (b) 

(c) (d) 
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individual rods. The model in Fig. 17 is one-third symmetry and includes 390 contact 
surfaces between each of the 75 rods and also the slots in the restraint plates. The 
boundary conditions include neutron heat sources near the top center of the fuel 
bundle and thermal boundary conditions on the outer edges of the constraint plates. A 
separate neutronics package determined the heat sources in the model. The model was 
over 2 million degrees of freedom and was solved using 32 partitions on 32 (8 
processor) nodes on the ASC Purple machine. Each partition had a dedicated 
processor and four threads per node were used for the parallel linear direct solver. The 
thermal gradient that results from the heating causes bending in the individual rods 
such that many large gaps open up between the adjacent rods near the top. 

 
 
 
 
 
 
 
 
 

Fig. 11. Segment-to-segment contact computes the weighted volume between adjacent facets to 
get the nodal gap. This is simple in 2D (left). More sophisticated 3D algorithms require the 
intersection of adjacent slave and master segments to compute the nodal gap. 

Discussion 

Different methods were presented for doing parallel contact with applications in 
both large deformations with failure and multimechanics. A novel dynamic 
partitioning algorithm was presented for the contact searching and meshless particle 
methods. An overview of a one-of-a-kind parallel implicit solid-thermal-
electromagnetics code was presented along with its novel contact algorithms 
capabilities. Future work includes embedded mesh techniques and coupled mechanics 
on different meshes.
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Fig. 12.  Flow of nonlinear solution algorithm over a time step. A Uzawa loop is included to 
enforce augmented Lagrange type contact for each mechanics. 
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Fig. 13. Sequence of deformations of steel block penetrating rubber block and sliding.  Because 
of the sharp corners and the “bumpy” segments, this problem can’t be solved using node-on-
segment with an implicit scheme. 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 14. DIABLO builds a static domain decompositions and then adds shared nodes to each 
partition so that all relevant contact nodes reside on the partition. So, for example, partition II 
computes contact gaps on its three (orange) home contact nodes using coordinates from its 
shared (green,blue) nodes. Forces are then communicated back to shared nodes.. 
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Fig. 15.  A 2D slice of a 3D mesh used for electromagnetic rail gun. A large voltage is applied 
across the rails (green) and the resulting current (red) stays close to the surface as it passes 
across the armature (blue).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16. A quarter symmetry simulation of the 3D rail gun simulation.  The trailing B field is 
very high (green) whilst the B field in the air (blue) is very low. Only a little current is visible 
in the armature and rail at the early time, but it becomes particularly apparent in the outside 
portion (red) of the armature at the later time.  
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Fig. 17.  Nuclear fuel bundle (one-third symmetry). Neutron heat sources cause thermal 
gradient and bending of fuel rods forming large gaps in contact surfaces between adjacent rods. 
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